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We want to solve the higher-dimensional 
gravitational theories and explicitly construct 
the solutions that have physically and 
mathematically interesting properties. 

But, it is difficult to solve them in general.

Investigating known solutions, we consider a 
generalization of them.

We focus on hidden symmetries of black holes.

Motivation of this work



Exact solutions – vacuum black holes 
with Sn horizon topology

Four dimensions mass,    NUT, rotation, λ 

Higher dimensions                         mass,  NUTs, rotations,     λ

Schwarzschild (1916) ○

Kerr (1963) ○ ○

Carter (1968) ○ ○ ○ ○

Tangherlini (1916) ○

Myers-Perry (1986) ○ [(D-1)/2]

Gibbons-Lu-Page-Pope (2004) ○ [(D-1)/2] ○

Chen-Lu-Pope (2006) ○ [D/2-1]  [(D-1)/2] ○

5-dim. Hawking, et al. (1998)

vacuum Einstein’s Eq.



In 1963, Kerr discovered a solution 
describing rotating black holes in a vacuum.

Rotating black hole solution

where



Geometry of Kerr spacetime

where

- Two parameters 
mass M 
angular momentum J=Ma 

- Two isometries
time translation ∂/∂t
axial symmetry ∂/∂Φ

- Ring singularity at Σ=0, i.e., 
r=0, θ=π/2

- Two horizons at r=r± s.t. △(r±)=0

Kerr’s metric



Geodesics in the Kerr spacetime

In 1968, Cater demonstrated that
the Hamilton-Jacobi equation for geodesics

for the Kerr’s metric can be separated for a solution

and then the functions R(r) and Θ(θ) follow

where



Scalar fields in the Kerr spacetime

He also demonstrated that the massive Klein-Gordon 
equation

for the Kerr’s metric can be separated for a solution

and then the functions R(r) and Θ(θ) follow

where



- Klein-Gordon equation

Separation of variables in various equations
for the Kerr’s metric

- Hamilton-Jacobi equation for geodesics

- Dirac equation

Carter (1968)

- Maxwell equation

- Linearized Einstein’s equation

Teukolsky (1972)

- Neutrino equation

Teukolsky (1973), Unruh (1973)

Chandrasekhar (1976), Page (1976)



Hidden symmetries

Killing vector conformal Killing vector

symmetric

anti-symmetric

Killing-Stackel (KS)

Killing-Yano (KY) conformal Killing-Yano (CKY)

conformal Killing-Stackel (CKS)

Tachibana (1969), Kashiwada (1968)Yano (1952)

Stackel (1895)

vector

In order to give an account of such integrabilities and 
separabilities, a generalization of Killing symmetry has 
been studied since 1970s.
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0. Introduction



1. Introduction 
– Hidden symmetry of 

Kerr black holes –



Complete integrable system – Liouville integrability –

Liouville integrability means that there exists a maximal 
set of Poisson commuting invariants. 

F(x, p) : a constant of motion ⇔

Poisson’s bracket

Geodesic equation

for



Assume

Constants of motion and Killing tensors

= 0 ; Killing equation

Def. Killing-Stackel tensor (KS) is a rank-n symmetric 
tensor K obeying the Killing equation Stackel (1895)



Hamilton-Jacobi approach

For a D-dimensional manifold (MD, g), a local coordinate 
system xa is called a separable coordinate system if a 
Hamilton-Jacobi equation in these coordinates

where κ0 is a constant, is completely integrable by 
(additive) separation of variables, i.e.,

where Sa(xa, c) depends only on the corresponding 
coordinate xa and includes D constants c=(c1, … , cD).



δr-Separability structure

Theor. A D-dimensional manifold (MD, g) admits separability of H-J 
equation for geodesics if and only if

1. There exist r indep. commuting Killing vectors X(i) :

2. There exist D-r indep. rank-2 Killing tensors K(μ), which satisfy 

3. The Killing tensors K(μ) have in common D-r eigenvectors X(μ) s.t.

Benenti-Francaviglia (1979)
Comments:

- Some examples which are not separable but integrable are 
known. cf.) Gibbons-TH-Kubiznak-Warnick (2011)



: :

Hidden symmetry of Kerr spacetime I

Kerr spacetime admits a rank-2 irreducible Killing 
tensor . Walker-Penrose (1970)

Comments:

- One also finds that this Killing tensor admits the δ2-separability 
structure of the H-J equation for geodesics.

: :

- Kerr spacetime has 4 independent and mutually commuting 
constants of geodesic motion, which are corresponding to 2
Killing vectors and 2 rank-2 Killing tensors.



Hidden symmetry of Kerr spacetime II

The Killing tensor K can be written as the square of a 
rank-2 Killing-Yano tensor f. Penrose-Floyd (1973)

rank-2 KY equation

- Killing-Yano tensor (KY) is a rank-p anti-symmetric
tensor f obeying                                 .

Comments:

- Having a Killing-Yano tensor, one can always construct 
the corresponding Killing tensor. On the other hand, 
not every Killing tensor can be decomposed in terms of 
a Killing-Yano tensor.

Yano (1952)

Collinson (1976), Stephani (1978)



Hidden symmetry of Kerr spacetime III

Moreover, the Killing-Yano tensor f generates two 
Killing vectors. Hughston-Sommers (1973)

In the end, all the symmetries necessary for complete 
integrability and separability of the H-J equation for 
geodesics can be generated by a single rank-2 Killing-
Yano tensor.



- Obviously, is closed 2-form.

The Killing-Yano tensor is derived from a 1-form 
potential b, Carter (1987)

Hidden symmetry of Kerr spacetime IV

Comments:

Tachibana (1969)

- One finds that h is a conformal Killing-Yano tensor 
(CKY) of rank-2, i.e., it follows

where



Hidden symmetry of Kerr spacetime V

Kerr’s metric

where

- KY 2-form

- CCKY 2-form

- rank-2 Killing tensor



Dirac equation

Carter-McLenaghan (1979)

Symmetry operators

Klein-Gordon equation

For the scalar Laplacian □,      

are symmetry operators, i.e.,

Carter (1977)

for a diff. op. D
a sym. op. for D
⇔

For the Dirac operator D, the operator      

is symmetry operator whenever f is a Killing-Yano tensor. 



Separability structures for Kerr black hole

Klein-Gordon equation is separable.
Hamilton-Jacobi equation is separable.

Algebraic type of curvature is type-D.

Carter (1968)

Dirac equation is separable. Chandrasekhar (1976)

A closed CKY 2-form exists. Carter (1987)

Geodesic motion is completely integrable.
Carter (1968)

Dirac symmetry operators exist.
Carter-McLenaghan (1979)

K-G symmetry operators exist. Carter (1977)



Carter’s metric

where

Kerr’s metric

where

coord. trasf.

The “off-shell” metric with Q and P replaced by arbirary
functions Q(r) and P(p) is said to be of Carter’s class.

Carter (1968)

(Boyer’s coordinates)



Spacetimes admitting a Killing-Yano tensor

Dietz-Rudiger (1982), Taxiarchis (1985)

Theor. A spacetime (M4, g) admits a rank-2 Killing-Yano tensor if 
and only if the metric is of Carter’s class, i.e.,

Demianski-Francaviglia (1980)

Theor. Let (M4, g) be a vacuum type-D space-time. The following
conditions are equivalent:

1. (M4, g) is without acceleration.
2. (M4, g) is one of Carter’s class.
3. (M4, g) admits a δ2-separability structure.
4. (M4, g) admits a Killing-Yano tensor.



Carter’s metric in Einstein-Maxwell theory

The Carter’s metric

obeys the Einstein-Maxwell equations when provided that the 
functions take the form

and the vector potential reads 

This metric has six independent parameters.



Plebanski-Demianski metric

The important family of type D in four dimensions can be 
represented by the seven-parameter metric.

and the vector potential reads

Plebanski-Demianski (1976)

This metric obeys the Einstein-Maxwell equations provided that 
the functions take the form



Relationship b/w Carter’s metric and P-D metric
Plebanski-Demianski metric

where

where

Set α=0 and ω=1. Then we recover the Carter’s family.

rescale

relabel



TABLE I in Plebanski, Demianski, Annal. Phys. 98 (1976) 98-127

1975 1975

1968

1973

1973 1965
1969
1968

1918

1917 1916

1916

1963

1966

1966

1968

1969

1964

1963
1951

1959
1959

1968

1969

1968

1918
1961
1962

1962
1972

1973



2. On Spacetimes admitting 
conformal Killing-Yano (CKY) symmetry



Exact solutions – vacuum black holes 
with Sn horizon topology

Four dimensions mass,    NUT, rotation, λ 

Higher dimensions                         mass,    NUT, rotation,       λ

Schwarzschild (1916) ○
Kerr (1963) ○ ○
Carter (1968) ○ ○ ○ ○

Tangherlini (1916) ○

Myers-Perry (1986) ○ ○

Gibbons-Lu-Page-Pope (2004) ○ ○ ○

Chen-Lu-Pope (2006) ○ ○ ○ ○

The most general known solution

= higher-dimensional Kerr-NUT-(A)dS

5-dim. Hawking, et al. (1998)

vacuum Einstein’s Eq.



where

D=2n D=2n+1

D-dimensional Kerr-NUT-(A)dS metric

D = 2n + ε

Chen-Lu-Pope (2006)

This metric satisfies Einstein Eq.



where

Four-dimensional Kerr-NUT-(A)dS metric



where

Five-dimensional Kerr-NUT-(A)dS metric



Six-dimensional Kerr-NUT-(A)dS metric

where



Seven-dimensional Kerr-NUT-(A)dS metric

where



where

D=2n D=2n+1

D-dimensional Kerr-NUT-(A)dS metric

D = 2n + ε

Chen-Lu-Pope (2006)

This metric satisfies Einstein Eq.



How about higher dimensions?
– Higher dim. Kerr-NUT-(A)dS –

Klein-Gordon equation is separable.
Hamilton-Jacobi equation is separable.

Algebraic type of curvature is type-D.
Hamamoto-TH-Oota-Yasui (2007)

Frolov-Krtous-Kubiznak (2007)

Dirac equation is separable. Oota-Yasui (2008)

A closed CKY 2-form exists. Kubiznak-Frolov (2007)

Geodesic motion is completely integrable.
Page-Kubiznak-Vasudevan-Krtous (2007)

Dirac symmetry operators exist.
Benn-Charlton (1996), Wu (2009)

K-G symmetry operators exist.
Sergyeyev, Krtous (2008)



Hidden symmetries

Killing vector conformal Killing vector

symmetric

anti-symmetric

Killing-Stackel (KS)

Killing-Yano (KY) conformal Killing-Yano (CKY)

conformal Killing-Stackel (CKS)

Tachibana (1969), Kashiwada (1968)Yano (1952)

Stackel (1895)

vector

There exist two “natural” (symmetric and anti-
symmetric) generalizations of (conformal) 
Killing vector.



Generalizations of Killing vector

Def. Killing-Stackel tensor (KS) is a rank-p 
symmetric tensor K obeying

Def. Killing-Yano tensor (KY) is a rank-p 
anti-symmetric tensor f obeying

Stackel (1895)

Yano (1952)



Properties of KY tensors and KS tensors

Prop. When f is a rank-n Killing-Yano (KY) tensor, 
then rank-2 symmetric tensor K defined by

Kab = fa・・・fb
・・・

is a Killing-Stackel (KS) tensor.

Prop. Let K be a rank-n Killing-Stackel tensor field 
and γ be a geodesic with tangent p. Then

Kabc… papbpc
…

is constant along γ.



Conformal Killing-Yano tensor

Def. Conformal Killing-Yano tensor (CKY) is a 
rank-p anti-symmetric tensor k obeying

where

Tachibana (1969), Kashiwada (1968)

Prop. Let k be a CKY p-form for a metric g. Then, 
~k = Ωp+1 k is a CKY p-form for the metric ~g = Ω2 g.



; h is a closed CKY

Subclasses of CKY tensors

; ψ is a special KY

; f is a KY

for an arbitrary vector X.

Def. Equivalently, CKY is a p-form k obeying

Tachibana-Yu (1970)

covariantly constant form



Prop. The Hodge star * maps CKY p-forms into 

CKY (D-p)-forms. In particular, the Hodge star of a 
closed CKY p-form is a KY (D-p)-form and vice versa.

Prop. When h1 and h2 is a closed CKY p-form and  
q-form, respectively, then h3 = h1 Λ h2 is a closed 
CKY (p+q)-form.

Basic properties of CKY tensors



CKY

CCKY

KY

rank-2 KS

rank-2 CKS

＊

＊

Basic properties of hidden symmetries

Λ



Tower of hidden symmetries

CCKY(2)

CCKY(0) CCKY(4)CCKY(2) CCKY(2n-2)

volume KY(D-4)KY(D-2) KY(D-2n+1)

metric KS(2)KS(2) KS(2)

・・・

・・・

・・・

form



closed CKY 2-form

closed CKY 2j-form KY (D-2j)-form rank-2 KS tensor const. of motion

Killing vector const. of motionKilling vector
*nontrivial

even (D=2n)

odd (D=2n+1)

# Killing vector # KS tensor

n+1

n n

n

dimension

Geodesic integrability in higher dimensions

Krtous-Kubiznak-Page-Frolov (2006) TH-Oota-Yasui (2007)

One further finds that such a spacetime admits δ(n+ε)-separability
structure, that is, separability of H-J equation for geodesics.

TH-Oota-Yasui (2007)



Theor. Suppose a Riemannian manifold (MD, g) 
admits a non-degenerate closed CKY 2-form h. 
Then the metric takes the form

TH-Oota-Yasui (2007), Krtous-Frolov-Kubiznak (2008)

where

Manifolds admitting a closed CKY 2-form



Einstein metrics with a non-degenerate CKY 2-form

when

in 2n+1 dimension , 

in 2n dimension 

This metric satisfies Einstein Eq.

Then, the metric coincides with that of Kerr-NUT-(A)dS
metric. In this mean, only vacuum spacetime admitting 
a non-degenerate CKY 2-form is the Kerr-NUT-(A)dS
spacetime.



It is convenient to see the eigenvalues of a rank-2 closed CKY 
by                            .

The D-dim. generalized Kerr-NUT-(A)dS offshell metric is

Where       is arbitrary K-dim metric and      is 2mj-dim Kahler metric 
with the Kahler form       .  

We can’t determine them any 
more without Einstein’s Eq.

TH-Oota-Yasui (2008)

In the case of degenerate CCKY tensors



Einstein metrics with a degenerate CKY 2-form

When       is K-dim Einstein metric,       is 2mj-dim 
Einstein-Kahler metric with the Kahler form        and 

where 

This metric satisfies Einstein Eq.     

( 



Semmelmann (2002)

Theor. Let (Mn, g) be a compact, simply 
connected manifold admitting a special KY. 
Then M is either isometric to Sn or M is a Sasakian, 
3-Sasakian, nearly Kahler or weak G2-manifold. 

Manifolds admitting a special KY

Example Let (M2n+1, g, ξ, η) be a Sasakian manifold with 
Killing vector field ξ. Then

is a rank-(2k+1) special KY for k = 0, …, n, which satisfies 
for any vector field X and any k



3. A generalization of 
CKY symmetry



Known facts :

Existence of a rank-2 Killing tensor
Davis-Kunduri-Lucietti (2005)

Chong-Cvetic-Lu-Pope (2005)

Existence of a GCCKY 2-form
Kubiznak-Kundri-Yasui (2009)

Hidden symmetry of charged BH in 
5-dim. minimal SUGRA

- Charged rotating BH



Note: This connection gives                . 

for an arbitrary vector X.

Def. Generalized CKY is a p-form k if a 3-form T 
exists obeying

Generalized conformal Killing-Yano tensor



; h is a generalized closed CKY

Subclasses of GCKY tensors

; f is a GKY



1) A GCKY 1-form is equal to a conformal Killing 1-form.

2) The Hodge star ＊ maps GCKY p-forms into GCKY (D-p)-forms. 
In particular, the Hodge star of a closed GCKY p-form is a GKY (D-p)-form 
and vice versa.

3) When h1 and h2 is a closed GCKY p-form and  q-form, respectively, then 
h3 = h1 Λ h2 is a closed GCKY (p+q)-form.

GCKY

GCCKY

GKY
＊

＊

4) When f is a G(C)KY p-form, then rank-2 symmetric tensor K defined by

Kab=fa・・・fb
・・・ is a (conformal) Killing tensor.

rank-2 KS

rank-2 KS

Basic Properties of GCKY symmetry



Tower of hidden symmetries

GCCKY(2)

GCCKY(0) GCCKY(4)GCCKY(2) GCCKY(2n-2)

volume GKY(D-4)GKY(D-2) GKY(D-2n+1)

metric KS(2)KS(2) KS(2)

・・・

・・・

・・・

form



GCCKY 2-form

GCCKY 2j-form GKY (D-2j)-form rank-2 Killing tensor const. of motion

Killing vector const. of motionKilling vector

- Constants of motion generated from a GCCKY 2-form 
are in involution, i.e.,

comments:

Geodesic integrability

- one doesn’t have Killing vectors.



TH-Kubiznak-Warnick-Yasui, arXiv:1002.3616
Benn-Charlton, Class.Quant.Grav.14 (1997)

Th. Let ω be a generalized conformal Killing-Yano 
(GCKY) p-form obeying 

Then the operator 

satisfies

Dirac symmetry operator



The last term A = A(p+2) + A(p-2) is written explicitly as

In the case A vanishes, Ｌω is an symmetry operator 
for massless Dirac equation, i.e.,

( on-shell )

Anomaly

Massless Dirac symmetry operators



Col. Let ω be a generalized Killing-Yano (GKY) p-
form such that an anomaly A vanishes. Then there 
exists an operator Ｋω such that

Col. Let ω be a generalized closed conformal Killing-
Yano (GCCKY) p-form such that an anomaly A 
vanishes. Then there exists an operator Mω such that

( off-shell )

( off-shell )

Massive Dirac symmetry operators



The symmetry operators in terms of gamma matrices



- Separation of variables

- GCCKY 2-form

with

H-J, K-G and Dirac equations are separable.

Kubiznak-Kunduri-Yasui (2009)

Davis-Kunduri-Lucietti (2005), Wu (2009)

It was shown that this 2-form produces a rank-2 Killing 
tensor discovered by Davis-Kunduri-Lucietti.

Hidden symmetry of CCLP black hole



We consider the following theory

where

This action gives an bosonic part of the low-energy 
effective action of heterotic string theory.

4-dim. heterotic SUGRA



where
Sen (1992)

Kerr-Sen black holes



Separability of the Klein-Gordon equation

Separability of the Hamilton-Jacobi equation

Algebraic properties of curvature

Existence of a rank-2 Killing tensor (string frame)

Burinskii (1995)

Blaga-Blaga (2001)

Wu-Cai (2003)

Hioki-Miyamoto (2008)

Known facts :

Questions :

Separability of the Dirac equation ?

Why does such a separation occur?

Hidden symmetry of Kerr-Sen black holes



where

We consider the ‘naïve’ generalization of heterotic
supergravity

This kind of action gives a bosonic part of supergravity
such as heterotic supergravity compactified on a torus 
in each dimension.

D-dimensional heterotic SUGRA



Cvetic-Youm (1996), Chow (2008)

where

Higher-dimensional Kerr-Sen black holes



Chow (2008)Known facts :

Hamilton-Jacobi equation is separable.

Rank-2 Killing tensors exist.

Questions :

Does the separation of the K-G equation occurs?

If separable, where does such a structure come from?

How about the Dirac equation?

Hidden symmetry of Kerr-Sen black holes



- Separation of variables

- GCCKY 2-form

with

H-J

K-G

Dirac*

Einstein string

frame

separable

separable

separable separable

×

×

Okai (1994), Blaga, et al. (2001), Wu-Cai (2003), Hioki-Miyamoto(2008)
Chow (2008), HKWY (2010)

- Symmetry operators
For the torsion T=H, one can produce the symmetry operators 
for the Laplacian and the modified Dirac operator DT/3.

TH-Kubiznak-Warnick-Yasui (2010)

Hidden symmetry of Kerr-Sen black holes

TH-Kubiznak-Warnick-Yasui (2010)



4. Summary & Outlook



Summary

We have studied properties of spacetimes admitting a 
conformal Killing-Yano symmetry and its generalization. 
Especially, a rank-2 CCKY and GCCKY 2-form.

If the torsion is persent, we have shown that such 
symmetry are seen in the solutions of supergravities
such as 5-dim. minimal SUGRA and heterotic
supergravity.

If the torsion is absent, we have shown that such 
symmetry characterizes vacuum black hole solutions 
with spherical horizon topology.



the most general solution

・ Cvetic-Lu-Pope 
(2004)

・ Mei-Pope (2007)

・ Chong-Cvetic-Lu-Pope ・ Chong-Cvetic-Lu-Pope  
(2005)

(2003)

(2005)

・ Chow (2007)

・ Gauntlett-Gutowski
・ Kunduri-Lucietti-Reall

(2006)

・ Cvetic-Youm (1996)

・ Galt’sov-Sherbluk (2008)

susy limit 

minimal SUGRA 

susy limit 

Exact solutions of 5-dim. U(1)3 SUGRA



vacuum rotating BH →
limit even

odd Sasaki-Einstein

Calabi-Yau

It is known that Sasaki-Einstein and Calabi-Yau metrics are 
derived from vacuum rotating BH by taking a limit.

5-dim. Kerr-(A)dS

6-dim. Kerr-NUT-(A)dS

Yp,q La,b,c→

→ resolved Calabi-Yau cone

Ex) 

Type-IIB supergravity
on AdS5×X5 SCFT

correspondence

T1,1S5(Examples of Sasaki-Einstein)

Manifolds with special holonomy

Sasaki-Einstein



≠
vacuum rotating BH Calabi-Yau manifold

Space admitting 
a CCKY 2-form

Kahler manifold admitting 
a Hamiltonian 2-form

⊃
charged rotating BH Calabi-Yau with torsion 

Space admitting 
a GCCKY 2-form

KT manifold admitting  a 
Hamiltonian 2-form with 
torsion

⊃ ⊃

limit

limit

TH, Oota, Yasui (2008)
Krtous, Frolov, Kubiznak (2008)

Apostolov et al (2002)

HKWY (2010)

Even Dimensions



：D-dim metric

：GCCKY 2-form

i.e.

・ assumption

Spacetimes admitting a GCCKY 2-form



・ the form of ξ

・ introduce canonical basis

Orthonoramal frame

s.t.

where Qμ is an arbitrary fn.

non-degenerate:







・ the only components            are non-vanishing.

・ local multi-Hermitian structure

(1) For each ε, Jε is complex structure.

∃

s.t.

(2) g is Hermitian : 



・ Bismut torsion

s.t.

where

・ relationship b/w the torsion T of GCCKY 2-form
and the Bismut torsion B

＊（M, g, J, Ω, B） is called Kahler with torsion (KT) manifond. 
When B=0, then it becomes Kahler manifold.



・ 3 types of solutions: Ｋμ＝０、Ｍμν＝０、Mixed

（These doesn’t exist when T=0．）

(1) Ｋμ＝０ type: special solution

where and



(2) Ｍμν＝０： we have general solution

(3) Mixed： for simplicity, in 4 dimensions

where



・ construction of metrics

(1) Ｋμ＝０:

(2) Ｍμν＝０：

(3) Mixed： not yet

（This includes Kerr-Sen black holes）

where

where


