Instanton partition function (with a general surface operator) and Whittaker vector of W algebra

Hiroaki Kanno

Graduate School of Math. and KMI, Nagoya university
Based on a collaboration with Y. Tachikawa
arXiv 1105.0357 [hep-th] and work in progress with M. Taki
11 August 2011, SI2011

Instanton partition function

The instanton expansion of the partition function of $\mathcal{N}=2$ SUSY Yang-Mills theory in four dimensions;

$$
Z_{\text {inst }}(a, \Lambda)=1+\sum_{k=1}^{\infty} \wedge^{k} n_{k}(a), \quad n_{k}(a)=\int_{\mathcal{M}_{k}} e^{-S_{\text {iop }}+\left[Q_{B}, V\right]} .
$$

The integral over the moduli space \mathcal{M}_{k} can be computed by the localization theorem with the " Ω-background" ($\epsilon_{1}, \epsilon_{2}$), that is a kind of regularization parameters.

We obtain Nekrasov's partition function

$$
Z_{\mathrm{Nek}}\left(a, \epsilon_{1,2} ; \Lambda\right)=\exp \left(-\frac{1}{\epsilon_{1} \epsilon_{2}} \mathcal{F}_{S W}(a ; \Lambda)+\cdots\right) .
$$

$\mathrm{U}(1)$ partition function by a coherent state

For $\mathrm{U}(1)$ theory with $\hbar=\epsilon_{1}=-\epsilon_{2}$;

$$
\begin{aligned}
Z_{U(1)}(\hbar ; \Lambda) & =\sum_{k=0}^{\infty}\left[\sum_{|\lambda|=k} \frac{1}{\prod_{\square \in \lambda}(\hbar h(\square))^{2}}\right] \Lambda^{2 k}=\exp \left(\frac{\Lambda^{2}}{\hbar^{2}}\right) \\
& =\langle\Psi \mid \Psi\rangle,
\end{aligned}
$$

where the fixed points are labeled by a single Young diagram $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}\right)$ and h (口) denotes the hook length.
We can find a coherent state (a Whittaker vector) $|\Psi\rangle=\exp \left(\frac{\Lambda}{\hbar} J_{-1}\right)|0\rangle$ in the Verma module of the Heisenberg algebra $\left[J_{n}, J_{m}\right]=\delta_{n+m, 0}$, or the Fock space of a free boson.

The coherent state for $Z_{U_{(1)}}$

By the boson-fermion correspondence $J_{n}=\sum: \psi_{n-m}^{*} \psi_{m}:$, $m \in \mathbb{Z}+\frac{1}{2}$

$$
J_{-1}^{k}|0\rangle=\sum_{|\lambda|=k} \frac{k!}{\prod_{\square \in \lambda} h(\square)}|\lambda\rangle_{F}=\sum_{|\lambda|=k} \operatorname{dim} R_{\lambda} \cdot|\lambda\rangle_{F} .
$$

Hence,

$$
|\Psi\rangle=\exp \left(\frac{\Lambda}{\hbar} J_{-1}\right)|0\rangle=\sum_{k=0}^{\infty} \frac{\Lambda^{k}}{\hbar^{k}} \sum_{|\lambda|=k} \frac{1}{\prod_{\square \in \lambda} h(\square)}|\lambda\rangle_{F} .
$$

We can easily compute the norm of $|\Psi\rangle$;

$$
\langle\Psi \mid \Psi\rangle=\langle 0| e^{\frac{\Lambda^{2}\left[U_{1}, J-1\right]}{\hbar^{2}}}|0\rangle=\exp \left(\frac{\Lambda^{2}}{\hbar^{2}}\right) .
$$

Whittaker vecotrs for instanton partition function

The coherent state $|\Psi\rangle$ is an eigenstate of $J_{1} ;$

$$
J_{1}|\psi\rangle=\frac{\Lambda}{\hbar}|\psi\rangle .
$$

In general a Whittaker vector is characterized as a simultaneous eigenvector of annihilation operators.

$$
\chi: \mathfrak{n}_{-} \rightarrow \mathbb{C}, \quad a|W\rangle=\chi(a)|W\rangle, \quad\left(a \in \mathfrak{n}_{-}\right)
$$

$\chi \equiv 0$ for a highest weight vector.
We will propose a similar definition for $|\Psi\rangle$ with $Z_{\text {inst }}^{\vec{n}}\left(a_{\alpha}, \epsilon_{1,2} ; \vec{q}\right)=\langle\Psi \mid \Psi\rangle$ in $S U(N)$ theory with a (general) surface operator.

Introduction

Introduction

Instanton counting with a surface operator
Surface operator
Orbifold action on ADHM and chain-saw quiver

Relation to W-algebra
W-algebra and Whittaker vector

Definition of the surface operator

The surface operator is a half-BPS object in SUSY Yang-Mills theory. [Gukov-Witten, hep-th/0612073]

A surface operator at $w=0$, filling the z-plane induces a singular behavior of $S U(N)$ gauge field A_{μ} on $\mathbb{R}^{4} \simeq \mathbb{C}^{2} \ni(z, w)$;

$$
A_{\mu} d x^{\mu} \sim \operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right) \sqrt{-1} d \theta, \quad r \rightarrow 0
$$

(r, θ) : the polar coordinates of the w-plane
$\vec{\alpha}:=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right)$ is a monodromy around $w=0$.

Classification of the surface operator

Suppose $\vec{\alpha}$ has the structure with $\alpha_{(\ell)}>\alpha_{(\ell+1)}$,

$$
\vec{\alpha}=(\underbrace{\alpha_{(1)}, \ldots, \alpha_{(1)}}_{n_{1} \text { times }}, \underbrace{\alpha_{(2)}, \ldots, \alpha_{(2)}}_{n_{2} \text { times }}, \ldots, \underbrace{\alpha_{(M)}, \ldots, \alpha_{(M)}}_{n_{M} \text { times }})
$$

where $\left(n_{\ell}\right)$ is a composition of N, not a partition of N.
Then the gauge group $S U(N)$ is broken to the Levi subgroup \mathbb{L} (=the commutant of $\vec{\alpha}$) on the surface:

$$
S U(N) \supset \mathbb{L}=S\left[U\left(n_{1}\right) \times U\left(n_{2}\right) \times \cdots \times U\left(n_{M}\right)\right] \supset U(1)^{M-1} .
$$

The surface operator is classified by \mathbb{L} which depends only on the partition $\left[n_{\ell}\right]$ of N.

Partition function with a surface operator

Instanton partition function with a surface operator of type $\vec{n}=\left(n_{1}, n_{2}, \cdots, n_{M}\right)$;

$$
Z_{\text {inst }}^{\vec{n}}\left(a_{\alpha}, \epsilon_{1,2} ; \vec{q}\right)=1+\sum_{\vec{k}} \vec{q}^{\vec{k}} \int_{\mathcal{M}_{\vec{n}, \vec{k}}} e^{-\left[Q_{B}, V\right]}
$$

$\mathcal{M}_{\vec{n}, \vec{k}}$: Instanton moduli space
$\vec{k}=\left(k_{1}, k_{2}, \cdots, k_{M}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{M}$: topological numbers
$\vec{q}=\left(q_{1}, q_{2}, \cdots, q_{M}\right)$: parameters of topological expansion
a_{α} : VEV of $U(1)^{N-1}$ (the Coulomb moduli); $\sum_{\alpha=1}^{N} a_{\alpha}=0$

Surface operator as a defect in six dimensional theory

In Gaiotto's construction [0904.2715], four dim. theory is identified with (twisted) compactification of the six dim. $\mathcal{N}=(2,0)$ theory on a punctured Riemann surface C. The surface operator can be realized as either codimension four defects or codimension two defects.
[Drukker-Gaiotto-Gomis,1003.1112; Alday-Tachikawa, 1005.4468]

- Codim. four defect = an M2 brane ending on N M5's
- Codim. two defect = an M5 brane intersecting with N M5's

The second view point implies that the presence of the surface operator can be described by a \mathbb{Z}_{M} orbifold action on

$$
\mathbb{C}^{2} \ni(z, w) \text { by }(z, w) \rightarrow(z, \omega w) \text { with } \omega=\exp (2 \pi i / M)
$$

ADHM data and ADHM conditions

ADHM data : (A, B, P, Q)
W and V : the Chan-Paton spaces of D4 and D0 branes $\operatorname{dim} W=N=$ the number of D4 branes $\operatorname{dim} V=k=$ the number of DO branes
$A, B \in \operatorname{Hom}(V, V)$ from " $0-0$ " string
$P \in \operatorname{Hom}(W, V), Q \in \operatorname{Hom}(V, W)$ from " $4-0$ " and " $0-4$ " string
ADHM equation : BPS condition for the effective theory on D0

$$
\begin{aligned}
& {[A, B]+P Q=0, \quad \text { F-term condition }} \\
& {\left[A, A^{\dagger}\right]+\left[B, B^{\dagger}\right]+P P^{\dagger}-Q^{\dagger} Q=0 . \quad \text { D-term condition }}
\end{aligned}
$$

Orbifold decomposition of the Chan-Paton space

In the presence of the surface operator we have the orbifold action $(z, w) \rightarrow(z, \omega w)$. The vector spaces V and W are decomposed according to the representation under \mathbb{Z}_{M} action,

$$
W=\bigoplus_{\ell=1}^{M} W_{\ell}, \quad V=\bigoplus_{\ell=1}^{M} V_{\ell}, \quad \operatorname{dim} W_{\ell}=n_{\ell}, \quad \operatorname{dim} V_{\ell}=k_{\ell} .
$$

n_{ℓ} : the number of D4-branes on which \mathbb{Z}_{M} acts as ω^{ℓ}.
k_{ℓ} : the number of fractional instantons (D0-branes).
$a_{1}, \ldots, a_{N} \Longrightarrow a_{s, \ell}, 1 \leq s \leq n_{\ell}$: eigenvalues of $S U(N)$ acting on $W_{\ell}, 1 \leq \ell \leq M$.

Orbifold quotient of ADHM data

The toric action of \mathbb{C}^{2} on the ADHM data is
$(A, B, P, Q) \rightarrow\left(e^{\epsilon_{1}} \cdot A, e^{\epsilon_{2}} \cdot B, P, e^{\epsilon_{1}+\epsilon_{2}} \cdot Q\right)$.
\Longrightarrow Under the \mathbb{Z}_{M} orbifold action $(z, w) \rightarrow(z, \omega w)$,
$A_{\ell} \in \operatorname{Hom}\left(V_{\ell}, V_{\ell}\right), B_{\ell} \in \operatorname{Hom}\left(V_{\ell}, V_{\ell+1}\right)$,
$P_{\ell} \in \operatorname{Hom}\left(W_{\ell}, V_{\ell}\right)$ and $Q_{\ell} \in \operatorname{Hom}\left(V_{\ell}, W_{\ell+1}\right)$ survive.

$$
A_{\ell+1} B_{\ell}-B_{\ell} A_{\ell}+P_{\ell+1} Q_{\ell}=0, \quad \text { F-term condition }
$$

We obtain the chain-saw quiver. [Finkelberg-Rybnikov, 1009.0676] (Compare it with the (Kronheimer-Nakajima) quiver for ADHM on ALE by another \mathbb{Z}_{M} orbifold action $\left.(z, w) \rightarrow\left(\omega z, \omega^{-1} w\right)\right)$

A part of \mathbb{Z}_{M} chain-saw quiver

Orbifold action on ADHM and chain-saw quiver

Formula of the character

\mathbb{Z}_{M} invariant part of the character at a fixed point \vec{Y} is

$$
\chi_{\vec{r}}=\sum_{\ell=1}^{M}\left[-\left(1-e^{\epsilon_{1}}\right) V_{\ell}^{*} V_{\ell}+\left(1-e^{\epsilon_{1}}\right) e^{\epsilon_{2}} V_{\ell-1}^{*} V_{\ell}+W_{\ell}^{*} V_{\ell}+e^{\epsilon_{1}+\frac{\epsilon_{2}}{M}} V_{\ell-1}^{*} W_{\ell}\right]
$$

where we identified the vector spaces and their characters,

$$
\begin{aligned}
& V_{\ell}=\sum_{\tilde{\ell}=1}^{M} \sum_{s=1}^{n_{\ell-\bar{l}+1}} e^{\left.\frac{\ell-\tilde{\eta}}{M}\right\rfloor \epsilon_{2}-\frac{\ell}{M} \epsilon_{2}+a_{s, \ell-\bar{\ell}+1}} \sum_{(i, j \cdot M+\tilde{\ell}) \in Y s, \ell-\bar{\ell}+1} e^{(1-i) \epsilon_{1}-\epsilon_{2}}, \\
& W_{\ell}=\sum_{s=1}^{n_{\ell}} e^{-\frac{\ell}{M} \epsilon_{2}+a_{s, \ell}}
\end{aligned}
$$

Expansion of this formula reproduces the conjecture made by Wyllard [1012.1355].

Partition function from the character

The character $\chi_{\vec{Y}}$ at a fixed point \vec{Y} after expansion,

$$
\chi_{\vec{Y}}=\sum_{i=1}^{\operatorname{dim}(\vec{Y})} e^{w_{i}(\vec{Y})}, \quad \operatorname{dim}(\vec{Y}) \equiv \sum_{\ell=1}^{M}\left(n_{\ell}+n_{\ell+1}\right) k_{\ell}(\vec{Y}),
$$

where w_{i} are integral linear combinations of $a_{s, l}$ and $\epsilon_{1,2}$.
Localization $Z \sim \int d \sigma \frac{\Delta_{F}(\sigma)}{\Delta_{B}(\sigma)} e^{-S_{\text {top }}(\sigma)}$;

$$
z_{\text {inst }}^{\vec{i}}\left(a_{s, \ell}, \epsilon_{1,2} ; \vec{q}\right)=\sum_{\vec{Y}} \frac{1}{\prod_{i=1}^{\operatorname{dim}(\vec{Y})} w_{i}(\vec{Y})} \prod_{\ell=1}^{M} q_{\ell}^{k_{\ell}(\vec{Y})} .
$$

It turns out that the partition function $Z_{\text {inst }}^{\vec{n}}\left(a_{s, \ell}, \epsilon_{1,2} ; \vec{q}\right)$ depends on the ordering of $\vec{n}=\left(n_{1}, \ldots, n_{M}\right)$.

W-algebra from the current algebra

the $\mathfrak{s l}(N)$ current algebra \Longrightarrow the W-algebra $W\left(\widehat{\operatorname{SU}(N)},\left[n_{\ell}\right]\right)$
by the quantum Hamiltonian (Drinfeld-Sokolov) reduction with an enbedding $\rho: S U(2) \rightarrow S U(N)$, where $N=\underline{n_{1}} \oplus \underline{n_{2}} \oplus \cdots \oplus \underline{n_{M}}$ under the subgroup $\rho(S U(2))$.
$W(\widehat{S U(N)},[N]) \simeq W_{N}$ algebra, $\quad W\left(\widehat{S U(N)},\left[1^{N}\right]\right) \simeq A_{N-1}^{(1)}$
$W\left(\widehat{S U(N)},\left[n_{\ell}\right]\right) \oplus$ Heis. $\simeq W\left(\widehat{U(N)},\left[n_{\ell}\right]\right)$ is generated by

$$
\begin{aligned}
& \left\{U_{\tilde{\ell},(s)}^{\ell}(z)\right\}, \quad 1 \leq \ell, \tilde{\ell} \leq M, \\
& s=\frac{\left|n_{\ell}-n_{\tilde{\ell} \mid}\right|}{2}+1, \frac{\left|n_{\ell}-n_{\tilde{\ell}}\right|}{2}+2, \cdots, \frac{n_{\ell}+n_{\tilde{\ell}}}{2}
\end{aligned}
$$

Highest weight representations

In the R-sector, the universal enveloping algebra is generated by $U_{\tilde{\ell},(s), n}^{\ell}(n \in \mathbb{Z})$. Let $\left|u_{\ell,(s)}\right\rangle$ be a highest weight vector with eigenvalues $u_{\ell,(s)}$ of $U_{\ell,(s), 0}^{\ell}$ (no summation on ℓ). We declare

$$
U_{\tilde{\ell},(s), n}^{\ell}\left|u_{\ell,(s)}\right\rangle=0
$$

for $\ell>\tilde{\ell}, n \geq 0$ or $\ell \leq \tilde{\ell}, n>0$.
The Verma module \mathcal{V} depends on the composition $\left(n_{\ell}\right)$ of N.

Definition of the Whittaker vector

In general a coherent state is defined by

$$
U_{\tilde{\ell},(s), n}^{\ell}|\Psi\rangle=u_{\tilde{\ell},(s), n}^{\ell}|\Psi\rangle, \quad U_{\tilde{\ell},(s), n}^{\ell}: \text { annihilation operators }
$$

A choice $u_{\tilde{\ell},(s), n}^{\ell} \neq 0$ only for $U_{\ell,(s), 0}^{\ell+1}, 1 \leq \ell \leq M-1$ and $U_{M,(s), 1}^{1}$ is consistent with the commutation relations.

$$
Z_{\text {inst }}^{\vec{i}}\left(a_{s, \ell}, \epsilon_{1,2} ; \vec{q}\right)=\sum_{\vec{Y}} \frac{1}{\prod_{i=1}^{\operatorname{dim}(\vec{Y})} w_{i}(\vec{Y})} \prod_{\ell=1}^{M} q_{\ell}^{k_{\ell}(\vec{Y})} .
$$

where q_{ℓ} has mass dimension $n_{\ell}+n_{\ell+1}=2 s_{\text {max }}$.
Mass dimension of 4D theory = Scaling dimension of 2D theory. Hence we propose

$$
U_{\ell,\left(s_{\text {max }), 0}^{\ell+1}\right.}^{\ell+1}|\Psi\rangle=c_{\ell} \sqrt{q_{\ell}}|\Psi\rangle, \quad U_{M,(s), 0}^{M+1} \equiv U_{M,(s), 1}^{1}
$$

Examples of the Whittaker vector

1. $(3) \Longrightarrow W_{3}$ algebra, [Mironov-Morozov, 0908.2596, Taki, 0912.4789]

$$
W_{1}^{(3)}|\Psi\rangle \sim \sqrt{q_{1}}|\Psi\rangle, \quad\left[q_{1}\right]=6
$$

2. $(1,1,1) \Longrightarrow S U(3)$ current algebra, [Kozcaz-Pasquetti-Passerini-Wyllard, 1008.1412] $J_{0}^{12}|\Psi\rangle \sim \sqrt{q_{1}}|\Psi\rangle, \quad J_{0}^{23}|\Psi\rangle \sim \sqrt{q_{2}}|\Psi\rangle, \quad J_{1}^{31}|\Psi\rangle \sim \sqrt{q_{3}}|\Psi\rangle$

$$
\left[q_{1}\right]=\left[q_{2}\right]=\left[q_{3}\right]=2
$$

3. $(2,1) \Longrightarrow W_{3}^{(2)}$ algebra, [Wyllard, 1011.0289]

$$
\begin{aligned}
& G_{0}^{+}|\Psi\rangle \sim \sqrt{q_{1}}|\Psi\rangle, \\
& (1,2) \Longrightarrow G^{ \pm} \leftrightarrow G^{\mp}
\end{aligned}
$$

$$
G_{1}^{-}|\Psi\rangle \sim \sqrt{q_{2}}|\Psi\rangle,
$$

$$
\left[q_{1}\right]=\left[q_{2}\right]=3
$$

