Galileon Cosmology

Tsutomu Kobayashi

 Hakubi Center \＆Department of Physics Kyoto University

小林努
京大白眉センター \＆天体核

Scalar fields play an important role in cosmology

Inflation / Dark energy

In this talk, I will describe the (most general extension of the) Galileon and its applications to cosmology

The Galileon extends far beyond a specific scalar-field theory!

Talk Plan

1. Introduction to the Galileon
2. G-inflation - Inflation driven by the Galileon field -
3. Galileon models of dark energy

1

Introduction to the Galileon

Scalar-field Lagrangian

$$
\mathcal{L}=-\frac{1}{2}(\partial \phi)^{2}-V(\phi)
$$

Euler-Lagrange equation

$$
\begin{aligned}
& \text { 2nd-order EOM } \\
& \square \phi-V_{\phi}=0
\end{aligned}
$$

$\mathcal{L}=\mathcal{L}\left(\phi, \partial \phi, \partial^{2} \phi, \cdots\right)$ has higher-order EOM?

- No, not necessarily

Tensor example: Einstein-Hilbert

$$
R \supset \partial \Gamma_{\mu \nu}^{\lambda} \supset \partial^{2} g_{\mu \nu}
$$

Example:
(*) appears in an effective description of the brane-bending mode in DGP

$$
\mathcal{L} \supset(\partial \phi)^{2} \square \phi
$$

(*)

$$
\mathrm{EOM} \supset(\square \phi)^{2}-\left(\partial_{\mu} \partial_{\nu} \phi\right)\left(\partial^{\mu} \partial^{\nu} \phi\right)
$$

2nd-order EOM

The term $\partial_{\mu} \phi \partial^{\mu} \square \phi$ is canceled out
(*) has the Galilean shift symmetry:

$$
\phi \rightarrow \phi+v_{\mu} x^{\mu}+c
$$

Look for scalar-field Lagrangians having:

$$
\partial_{\mu} \phi \rightarrow \partial_{\mu} \phi+v_{\mu}
$$

looks like Galilei transformation
(i) Galilean shift symmetry;
(ii) 2nd-order EOM

Galileon (in flat space)

Only 5 possible Lagrangians that have the two properties:
$\mathcal{L}_{1}=\phi$,
$\mathcal{L}_{2}=(\partial \phi)^{2}$,
$\mathcal{L}_{3}=(\partial \phi)^{2} \square \phi$,
$\mathcal{L}_{4}=(\partial \phi)^{2}\left[(\square \phi)^{2}-\left(\partial_{\mu} \partial_{\nu} \phi\right)^{2}\right]$,
$\mathcal{L}_{5}=(\partial \phi)^{2}\left[(\square \phi)^{3}-3(\square \phi)\left(\partial_{\mu} \partial_{\nu} \phi\right)^{2}+2\left(\partial_{\mu} \partial_{\nu} \phi\right)^{3}\right]$.

Covariantization

Coupling to gravity: $\partial_{\mu} \rightarrow \nabla_{\mu}$
Forget about Galilean shift symmetry, maintain 2nd-order equations both for ϕ and $g_{\mu \nu}$

Computation example:

$$
\begin{aligned}
\frac{\delta}{\delta \phi}\left\{(\partial \phi)^{2}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]\right\} \supset & (\cdots)^{\mu}\left[\square \nabla_{\mu} \phi-\nabla_{\mu} \square \phi\right], \longrightarrow(\cdots)^{\mu} R_{\mu \nu} \nabla^{\nu} \phi \\
& (\cdots)\left[\square \square \phi-\nabla_{\mu} \square \nabla^{\mu} \phi\right]
\end{aligned}
$$

$$
\longrightarrow-R^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi-\frac{1}{2} \nabla^{\mu} R \nabla_{\mu} \phi
$$

Add non-minimal coupling such as $\left[(\partial \phi)^{2}\right]^{2} R$ so as to cancel higher-derivative terms

Covariant completion of Galileon

$\mathcal{L}_{2}=X$,
Galiean shift symmetry is now abandoned...
$\mathcal{L}_{3}=X \square \phi$,
$\mathcal{L}_{4}=\frac{X^{2}}{2} R+X\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]$,
$\mathcal{L}_{5}=\frac{X^{2}}{2} G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi \quad$ Non-minimal coupling to gravity
$-\frac{X}{6}\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]$.
where $\quad X:=-\frac{1}{2}(\partial \phi)^{2}$

Question

Can we further generalize the Galileon while maintaining the 2 nd-order property?

What is the most general Lagrangian of the form

$$
\mathcal{L}=\mathcal{L}\left(\phi, \partial \phi, \partial^{2} \phi, \partial^{3} \phi, \cdots ; g_{\mu \nu}, \partial g_{\mu \nu}, \partial^{2} g_{\mu \nu}, \partial^{3} g_{\mu \nu}, \cdots\right)
$$

having 2 nd-order field equations?

Answer

Generalized Galileon

Generalized Galileon

$$
\mathcal{L}_{1}=\phi
$$

$$
\mathcal{L}_{2}=K(\phi, X)
$$

k-inflation/k-essence

4 arbitrary functions of ϕ and X

$\mathcal{L}_{3}=X \square \phi$

$$
\mathcal{L}_{3}=-G_{3}(\phi, X) \square \phi
$$

$$
\mathcal{L}_{4}=G_{4}(\phi, X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]
$$

$$
\begin{aligned}
& \mathcal{L}_{5}=G_{5}(\phi, X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{1}{6} G_{5 X}\left[(\square \phi)^{3}\right. \\
& \left.-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]
\end{aligned}
$$

$G_{4} G_{\mu \nu}-\frac{1}{2} G_{4 X} R \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac{1}{2} G_{4 X X}\left[(\square \phi)^{2}-\left(\nabla_{\alpha} \nabla_{\beta} \phi\right)^{2}\right] \nabla_{\mu} \phi \nabla_{\nu} \phi-G_{4 X} \square \phi \nabla_{\mu} \nabla_{\nu} \phi$

$$
+G_{4 X} \nabla_{\lambda} \nabla_{\mu} \phi \nabla^{\lambda} \nabla_{\nu} \phi+2 \nabla_{\lambda} G_{4 X} \nabla^{\lambda} \nabla_{(\mu} \phi \nabla_{\nu)} \phi-\nabla_{\lambda} G_{4 X} \nabla^{\lambda} \phi \nabla_{\mu} \nabla_{\nu} \phi+g_{\mu \nu}\left(G_{4 \phi} \square \phi-2 X G_{4 \phi \phi}\right)
$$

$$
+g_{\mu \nu}\left\{-2 G_{4 \phi X} \nabla_{\alpha} \nabla_{\beta} \phi \nabla^{\alpha} \phi \nabla^{\beta} \phi+G_{4 X X} \nabla_{\alpha} \nabla_{\lambda} \phi \nabla_{\beta} \nabla^{\lambda} \phi \nabla^{\alpha} \phi \nabla^{\beta} \phi+\frac{1}{2} G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\alpha} \nabla_{\beta} \phi\right)^{2}\right]\right\}
$$

$$
+2\left[G_{4 X} R_{\lambda(\mu} \nabla_{\nu)} \phi \nabla^{\lambda} \phi-\nabla_{(\mu} G_{4 X} \nabla_{\nu)} \phi \square \phi\right]-g_{\mu \nu}\left[G_{4 X} R^{\alpha \beta} \nabla_{\alpha} \phi \nabla_{\beta} \phi-\nabla_{\lambda} G_{4 X} \nabla^{\lambda} \phi \square \phi\right]
$$

$$
+G_{4 X} R_{\mu \alpha \nu \beta} \nabla^{\alpha} \phi \nabla^{\beta} \phi-G_{4 \phi} \nabla_{\mu} \nabla_{\nu} \phi-G_{4 \phi \phi} \nabla_{\mu} \phi \nabla_{\nu} \phi+2 G_{4 \phi X} \nabla^{\lambda} \phi \nabla_{\lambda} \nabla_{(\mu} \phi \nabla_{\nu)} \phi
$$

$$
-G_{4 X X} \nabla^{\alpha} \phi \nabla_{\alpha} \nabla_{\mu} \phi \nabla^{\beta} \phi \nabla_{\beta} \nabla_{\nu} \phi
$$

$+G_{5 X} R_{\alpha \beta} \nabla^{\alpha} \phi \nabla^{\beta} \nabla_{(\mu} \phi \nabla_{\nu)} \phi-G_{5 X} R_{\alpha(\mu} \nabla_{\nu)} \phi \nabla^{\alpha} \phi \square \phi-\frac{1}{2} G_{5 X} R_{\alpha \beta} \nabla^{\alpha} \phi \nabla^{\beta} \phi \nabla_{\mu} \nabla_{\nu} \phi$ $-\frac{1}{2} G_{5 X} R_{\mu \alpha \nu \beta} \nabla^{\alpha} \phi \nabla^{\beta} \phi \square \phi+G_{5 X} R_{\alpha \lambda \beta(\mu} \nabla_{\nu)} \phi \nabla^{\lambda} \phi \nabla^{\alpha} \nabla^{\beta} \phi+G_{5 X} R_{\alpha \lambda \beta(\mu} \nabla_{\nu)} \nabla^{\lambda} \phi \nabla^{\alpha} \phi \nabla^{\beta} \phi$ $-\frac{1}{2} \nabla_{(\mu}\left[G_{5 X} \nabla^{\alpha} \phi\right] \nabla_{\alpha} \nabla_{\nu)} \phi \square \phi+\frac{1}{2} \nabla_{(\mu}\left[G_{5 \phi} \nabla_{\nu)} \phi\right] \square \phi-\nabla_{\lambda}\left[G_{5 \phi} \nabla_{(\mu} \phi\right] \nabla_{\nu)} \nabla^{\lambda} \phi$ $+\frac{1}{2}\left[\nabla_{\lambda}\left(G_{5 \phi} \nabla^{\lambda} \phi\right)-\nabla_{\alpha}\left(G_{5 X} \nabla_{\beta} \phi\right) \nabla^{\alpha} \nabla^{\beta} \phi\right] \nabla_{\mu} \nabla_{\nu} \phi+\nabla^{\alpha} G_{5} \nabla^{\beta} \phi R_{\alpha(\mu \nu) \beta}-\nabla_{(\mu} G_{5} G_{\nu) \lambda} \nabla^{\lambda} \phi$ $+\frac{1}{2} \nabla_{(\mu} G_{5 X} \nabla_{\nu)} \phi\left[(\square \phi)^{2}-\left(\nabla_{\alpha} \nabla_{\beta} \phi\right)^{2}\right]-\nabla^{\lambda} G_{5} R_{\lambda(\mu} \nabla_{\nu)} \phi+\nabla_{\alpha}\left[G_{5 X} \nabla_{\beta} \phi\right] \nabla^{\alpha} \nabla_{(\mu} \phi \nabla^{\beta} \nabla_{\nu)} \phi$ $-\nabla_{\beta} G_{5 X}\left[\square \phi \nabla^{\beta} \nabla_{(\mu} \phi-\nabla^{\alpha} \nabla^{\beta} \phi \nabla_{\alpha} \nabla_{(\mu} \phi\right] \nabla_{\nu)} \phi+\frac{1}{2} \nabla^{\alpha} \phi \nabla_{\alpha} G_{5 X}\left[\square \phi \nabla_{\mu} \nabla_{\nu} \phi-\nabla_{\beta} \nabla_{\mu} \phi \nabla^{\beta} \nabla_{\nu}\right.$ $-\frac{1}{2} G_{5 X} G_{\alpha \beta} \nabla^{\alpha} \nabla^{\beta} \phi \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac{1}{2} G_{5 X} \square \phi \nabla_{\alpha} \nabla_{\mu} \phi \nabla^{\alpha} \nabla_{\nu} \phi+\frac{1}{2} G_{5 X}(\square \phi)^{2} \nabla_{\mu} \nabla_{\nu} \phi$ $+\frac{1}{12} G_{5 X X}\left[(\square \phi)^{3}-3 \square \phi\left(\nabla_{\alpha} \nabla_{\beta} \phi\right)^{2}+2\left(\nabla_{\alpha} \nabla_{\beta} \phi\right)^{3}\right] \nabla_{\mu} \phi \nabla_{\nu} \phi+\frac{1}{2} \nabla_{\lambda} G_{5} G_{\mu \nu} \nabla^{\lambda} \phi$ $+g_{\mu \nu}\left\{-\frac{1}{6} G_{5 X}\left[(\square \phi)^{3}-3 \square \phi\left(\nabla_{\alpha} \nabla_{\beta} \phi\right)^{2}+2\left(\nabla_{\alpha} \nabla_{\beta} \phi\right)^{3}\right]+\nabla_{\alpha} G_{5} R^{\alpha \beta} \nabla_{\beta} \phi\right.$
$-\frac{1}{-} \nabla_{\rho}\left(G_{5 \phi} \nabla^{\alpha} \phi\right) \square \phi+{ }^{1} \nabla_{\rho}\left(G_{5 \phi} \nabla_{\beta} \phi\right) \nabla^{\alpha} \nabla^{\beta} \phi-{ }^{1} \nabla_{\alpha} G_{5 x} \nabla^{\alpha} X \square \phi+{ }^{1} \nabla_{\rho} G_{5 x} \nabla_{\beta} X \nabla^{\alpha} \nabla^{\beta} \phi$

Original derivation by Deffayet et al.

Start with flat space; assume
(I) $\mathcal{L}=\mathcal{L}\left(\phi, \partial \phi, \partial^{2} \phi\right)$
(2) \mathcal{L} is polynomial in $\partial^{2} \phi$
and then covariantize

Not completely general...

\}
Strong assumptions

Lagrangians that vanish in flat space seem missing (?)

Proof in arbitrary dimensions

$$
\begin{equation*}
\xi(\phi)\left(R^{2}-4 R_{\mu \nu}^{2}+R_{\mu \nu \rho \sigma}^{2}\right) \tag{?}
\end{equation*}
$$

- D Lagrangians in D dimensions

However, at least in 4 dimensions their result turns out to be the most general!

Back in 70's...

Horndeski (Lovelock's student!) determined the most general scalar-tensor Lagrangian of the form
$\mathcal{L}=\mathcal{L}\left(\phi, \partial \phi, \partial^{2} \phi, \partial^{3} \phi, \cdots ; g_{\mu \nu}, \partial g_{\mu \nu}, \partial^{2} g_{\mu \nu}, \partial^{3} g_{\mu \nu}, \cdots\right)$
that has second-order field equations both for ϕ and $g_{\mu \nu}$ in 4D
__ The generalized Galileon was already discovered in 70's ?!

Revisited recently by Charmousis et al. (201 I)

Second-Order Scalar-Tensor Field Equations in a Four-Dimensional Space

GREGORY WALTER HORNDESKI
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada

Received: 10 July 1973

Abstract
Lagrange scalar densities which are concomitants of a pseudo-Riemannian metric-tensor, a scalar field and their derivatives of arbitrary order are considered. The most general second-order Euler-Lagrange tensors derivable from such a Lagrangian in a fourdimensional space are constructed, and it is shown that these Euler-Lagrange tensors may be obtained from a Lagrangian which is at most of second order in the derivatives of the field functions.

From Horndeski to the GG

$$
\begin{aligned}
& \mathcal{L}_{H}= \delta_{\mu \nu \gamma}^{\alpha \beta \gamma} \kappa_{1} \nabla^{\mu} \nabla_{\alpha} \phi R_{\beta \gamma}{ }^{\nu \sigma}+\frac{2}{3} \kappa_{1 X} \nabla^{\mu} \nabla_{\alpha} \phi \nabla^{\nu} \nabla_{\beta} \phi \nabla^{\sigma} \nabla_{\gamma} \phi \\
&+\kappa_{3}{ }^{\prime}{ }_{\alpha} \phi \nabla^{\mu} \phi R_{\beta \gamma}{ }^{\nu \sigma}+2 \kappa_{3 X} \nabla_{\alpha} \phi \nabla^{\mu} \phi \nabla^{\nu} \nabla_{\beta} \phi \nabla^{\sigma} \nabla_{\gamma} \phi \\
&\left.+\delta_{\mu \nu}^{\alpha \beta}(F+2 W) \lambda_{\alpha \beta}{ }^{\mu \nu}+2 F_{X} \nabla^{\mu} \nabla_{\alpha} \phi \nabla^{\nu} \nabla_{\beta} \phi+2 \kappa_{8} \nabla_{\alpha} \phi \nabla^{\mu} \phi \nabla^{\nu} \nabla_{\beta} \phi\right] \\
&\left.-6\left(F_{\phi}+2 W_{\phi}-X \kappa_{8}\right) \square \phi-\kappa_{9}\right) \\
& \partial_{X} F(\phi, X)=2\left(\kappa_{3}+2 X \kappa_{3 X}-\kappa_{1 \phi}\right)
\end{aligned}
$$

4 arbitrary functions of ϕ and X
$W(\phi)$: absorbed into redefinition of F The two theories are equivalent!

$$
\begin{aligned}
K & =\kappa_{9}+4 X \int^{X} \mathrm{~d} X^{\prime}\left(\kappa_{8 \phi}-2 \kappa_{3 \phi \phi}\right) \\
G_{3} & =6 F_{\phi}-2 X \kappa_{8}-8 X \kappa_{3 \phi}+2 \int^{X} \mathrm{~d} X^{\prime}\left(\kappa_{8}-2 \kappa_{3 \phi}\right), \\
G_{4} & =2 F-4 X \kappa_{3}, \\
G_{5} & =-4 \kappa_{1} \quad \text { TK, Yamaguchi, Yokoyama } 1105.5723
\end{aligned}
$$

Particular cases

- $\mathcal{L}_{2}=K(\phi, X) \quad$ All the k-inflation models

Example: DBI inflation

Armendariz-Picon, Damour, Mukhanov (1999)

$$
\mathcal{L}=-f(\phi) \sqrt{1+f^{-1}(\partial \phi)^{2}}+f-V(\phi) \quad \text { Silverstein \& Tong (2004) }
$$

($\mathcal{L}_{4}=G_{4}(\phi, X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]$

$$
\begin{array}{ll}
G_{4}=\frac{M_{\mathrm{Pl}}^{2}}{2} \quad \rightarrow \mathcal{L}_{4}=\frac{M_{\mathrm{Pl}}^{2}}{2} R \\
G_{4}=f(\phi) \quad \rightarrow \mathcal{L}_{4}=f(\phi) R
\end{array}
$$

Einstein-Hilbert

Familiar non-minimal coupling

Particular cases contd.

$\mathcal{L}_{5}=G_{5}(\phi, X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{1}{6} G_{5 X}[\cdots]$
$G_{5}=-\phi \xrightarrow{Q} \mathcal{L}_{5}=G^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi$
Sometimes used in inflation and dark energy models
Integration by parts
e.g., Germani, Kehagias (2010)

$$
\begin{aligned}
K & =8 \xi^{(4)} X^{2}(3-\ln X) \\
G_{3} & =4 \xi^{(3)} X(7-3 \ln X) \\
G_{4} & =4 \xi^{(2)} X(2-\ln X) \\
G_{5} & =-4 \xi^{(1)} \ln X
\end{aligned}
$$

Even non-minimal coupling to the Gauss-Bonnet term can be reproduced

$$
\xi(\phi)\left(R^{2}-4 R_{\mu \nu}^{2}+R_{\mu \nu \rho \sigma}^{2}\right)
$$

Higher-order gravity theories

- $\mathcal{L}=f(R) \longrightarrow \mathcal{L}=f(\phi)+f_{\phi}(R-\phi)$
$f(R)$ models can be transformed to a scalar-tensor theory
Example: R^{2} inflation $\quad R+\frac{R^{2}}{6 M^{2}} \quad$ Starobinsky (1980)
$\mathcal{L}=\frac{R}{2}+f(\mathscr{G}) \longrightarrow \mathcal{L}=\frac{R}{2}+f(\phi)+f_{\phi}(\mathscr{G}-\phi)$
$\mathscr{G}:=R^{2}-4 R_{\mu \nu}^{2}+R_{\mu \nu \rho \sigma}^{2}$
This can also be transformed to a single-scalar theory, with non-minimal coupling to the Gauss-Bonnet term

Galileon from higher dimensions

Particular cases of the generalized Galileon can be derived from a probe brane embedded in a 5D bulk a la DBI

$\mathrm{d} s^{2}=\mathrm{d} y^{2}+f^{2}(y) g_{\mu \nu}(x) \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}$

Probe brane action

$$
S=-\lambda \int \mathrm{d}^{4} x \sqrt{-q}
$$

DBI = particular case of $K(\phi, X)$

$$
S=-\lambda \int \mathrm{d}^{4} x \sqrt{-g} f^{4} \sqrt{1+f^{-2}(\partial \phi)^{2}}
$$

Generalize this to $S=\int \mathrm{d}^{4} x \sqrt{-q} F\left(q_{\mu \nu}, R_{\mu \nu \sigma \lambda}, K_{\mu \nu}, \nabla_{\mu}\right)$

Probe brane Lagrangian that gives second-order equations of motion

Gibbons-Hawking
$\sim \mathcal{L}_{3} \quad$ Induced gravity
$\sim \mathcal{L}_{4}$

$$
\begin{aligned}
& \mathcal{L}=\sqrt{-q}\left(-\lambda-M_{5}^{3} K+\frac{M_{4}^{2}}{2} R[q]-\beta \mathcal{K}_{\mathrm{GB}}\right) \\
& \text { wking }
\end{aligned}
$$

Boundary term from bulk Gauss-Bonnet $\sim \mathcal{L}_{5}$
$\mathcal{K}_{\mathrm{GB}}:=-\frac{2}{3} K_{\mu \nu}^{3}+K K_{\mu \nu}^{2}-\frac{1}{3} K^{3}-2 G_{\mu \nu} K^{\mu \nu}$
Brane is 4D: no higher induced Lovelock terms; Bulk is 5D: no higher boundary terms

$$
\gamma:=\frac{1}{\sqrt{1+f^{-2}(\partial \phi)^{2}}}
$$

$$
\sqrt{-q} K \stackrel{\downarrow}{\subset} \sqrt{-g}\left[-4 f f^{\prime} X+\cdots+\frac{1}{\subset K(\phi, X)}+\xlongequal[\subset G_{3}(\phi, X) \square \phi]{\left.\left(f^{2} \ln \gamma\right) \square \phi\right]}\right.
$$

$$
\sqrt{-q} R[q]=\sqrt{-g}\left\{\cdots+\frac{f^{2}}{\gamma} R[g]-\gamma\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]\right\}
$$

$$
\subset K, G_{3} \square \phi \quad \subset G_{4} R+G_{4} \times\left[(\square \phi)^{2}-\left(\nabla_{\mu} \phi \nabla_{\nu} \phi\right)^{2}\right]
$$

$\sqrt{-q} \mathcal{K}_{\mathrm{GB}}=\cdots$
Minkowski bulk $f=1, g_{\mu \nu}=\eta_{\mu \nu}$
Non-relativistic limit $\quad X \ll 1$
> Shuntaro's talk
Flat space Galileon

Summary of Part 1

The most general scalar-tensor theory with second-order field equations is given by the generalized Galileons (in 4D)

$$
\begin{aligned}
\mathcal{L}_{2} & =K(\phi, X) \\
\mathcal{L}_{3} & =-G_{3}(\phi, X) \square \phi \\
\mathcal{L}_{4} & =G_{4}(\phi, X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right] \\
\mathcal{L}_{5} & =G_{5}(\phi, X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{1}{6} G_{5 X}\left[(\square \phi)^{3}\right. \\
& \left.\quad-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]
\end{aligned}
$$

G-inflation

- Inflation driven by the Galileon field -

Now we have a framework to deal with the most general single-field inflation model

Why don't we study inflation driven by the generalized Galileon, (generalized) G-inflation?

References

"G-inflation: Inflation driven by the Galileon field"
TK, Masahide Yamaguchi, Jun'ichi Yokoyama
Phys. Rev. Lett. 105231302 (2010) arXiv:1008.0603
"Higgs G-inflation"
Kohei Kamada, TK, Masahide Yamaguchi, Jun'ichi Yokoyama
Phys. Rev. D83 083515 (2011) arXiv:1012.4238
"Primordial non-Gaussianity from G-inflation"
TK, Masahide Yamaguchi, Jun'ichi Yokoyama
Phys. Rev. D83 103524 (2011) arXiv:1103.1740
"Generalized G-inflation: Inflation with the most general second-order field equations"
TK, Masahide Yamaguchi, Jun'ichi Yokoyama
PTP accepted, arXiv:1105.5723

2-1

Background

Background equations

$$
\phi=\phi(t) \quad \begin{gathered}
\mathrm{d} s^{2}=-N^{2}(t) \mathrm{d} t^{2}+a^{2}(t) \mathrm{d} \mathbf{x}^{2} \\
S=\sum_{i=2}^{5} \int \mathrm{~d}^{4} x \sqrt{-g} \mathcal{L}_{i}
\end{gathered}
$$

$$
\sum_{i=2}^{5} \mathcal{E}_{i}=0
$$

$$
\delta a \quad \sum_{i=2}^{0} \mathcal{P}_{i}=0
$$

$$
\delta \phi \quad \dot{J}+3 H J=P_{\phi} \vdots \ddot{\phi}+3 H \dot{\phi}=-V_{\phi}
$$

$$
\begin{aligned}
\mathcal{E}_{2}= & 2 X K_{X}-K, \\
\mathcal{E}_{3}= & 6 X \dot{\phi} H G_{3 X}-2 X G_{3 \phi}, \\
\mathcal{E}_{4}= & -6 H^{2} G_{4}+24 H^{2} X\left(G_{4 X}^{2} / 2\right. \text { reproduces Einstein gravity } \\
\mathcal{E}_{5}= & 2 H^{3} X \dot{\phi}\left(5 G_{5 X}+2 X G_{5 X X}\right)-6 H^{2} X\left(3 G_{5 \phi}+2 X G_{5 \phi X}\right) \\
\mathcal{P}_{2}= & K, \\
\mathcal{P}_{3}= & -2 X\left(G_{3 \phi}+\ddot{\phi} G_{3 X}\right), \\
\mathcal{P}_{4}= & 2\left(3 H^{2}+2 \dot{H}\right) G_{4}-12 H^{2} X G_{4 X}-4 H \dot{X} G_{4 X}-8 \dot{H} X G_{4 X} \\
& -8 H X \dot{X} G_{4 X X}+2(\ddot{\phi}+2 H \dot{\phi}) G_{4 \phi}+4 X G_{4 \phi \phi}+4 X(\ddot{\phi}-2 H \dot{\phi}) G_{4 \phi X}, \\
\mathcal{P}_{5}= & -2 X\left(2 H^{3} \dot{\phi}+2 H \dot{H} \dot{\phi}+3 H^{2} \ddot{\phi}\right) G_{5 X}-4 H^{2} X^{2} \ddot{\phi} G_{5 X X} \\
& +4 H X(\dot{X}-H X) G_{5 \phi X}+2\left[2(H X)^{\bullet}+3 H^{2} X\right] G_{5 \phi}+4 H X \dot{\phi} G_{5 \phi \phi}
\end{aligned}
$$

Our" $T_{\mu}{ }^{\nu}$ "includes" $-G_{\mu}^{\nu}{ }^{\prime \prime}$

- Distinction between gravitational and scalar-field parts is ambiguous

$$
\begin{aligned}
\text { For } K= & X-V(\phi) \\
J= & J \rightarrow \dot{\phi} \\
J= & \dot{\phi} K_{X}+6 H X G_{3 X}-2 \dot{\phi} G_{3 \phi} \\
& +6 H^{2} \dot{\phi}\left(G_{4 X}+2 X G_{4 X X}\right)-12 H X G_{4 \phi X} \\
& +2 H^{3} X\left(3 G_{5 X}+2 X G_{5 X X}\right) \\
& -6 H^{2} \dot{\phi}\left(G_{5 \phi}+X G_{5 \phi X}\right) \\
P_{\phi}= & K_{\phi}-2 X\left(G_{3 \phi \phi}+\ddot{\phi} G_{3 \phi X}\right) \\
& +6\left(2 H^{2}+\dot{H}\right) G_{4 \phi}+6 H(\dot{X}+2 H X) G_{4 \phi X} \\
& -6 H^{2} X G_{5 \phi \phi}+2 H^{3} X \dot{\phi} G_{5 \phi X} \\
& P_{\phi} \rightarrow-V_{\phi}
\end{aligned}
$$

Structure of the equations

"Friedmann equation" (00 equation)

$$
\frac{(\cdots)}{\sim \mathcal{L}_{2}}+\frac{(\cdots) H}{\sim \mathcal{L}_{3}}+\frac{(\cdots) H^{2}}{\sim \mathcal{L}_{4}}+\frac{(\cdots) H^{3}}{\sim \mathcal{L}_{5}}=0
$$

ij and scalar-field equations

$$
\begin{aligned}
\dot{H} & =(\cdots) \ddot{\phi}+\cdots \\
\ddot{\phi} & =(\cdots) \dot{H}+\cdots
\end{aligned}
$$

Not diagonal in second derivatives
In general, this mixing cannot be undone through conformal transformation

Cf. Usual (k-)inflation
$T_{i j}$ does not contain second derivatives of ϕ
Scalar-field EOM does not contain second derivatives of $g_{\mu \nu}$

Background examples

How do we get H ~ const?

(1) H is supported by potential energy; (Slow-roll) scalar-field dynamics is modified by the G terms.
(2) H is supported by kinetic energy;

Completely different from usual slow-roll dynamics (generalization of k-inflation).

1. Potential-driven model

Suppose the 4 functions can be expanded in terms of X :

$$
\begin{aligned}
K(\phi, X) & =-V(\phi)+\mathcal{K}(\phi) X+\cdots \\
G_{i}(\phi, X) & =g_{i}(\phi)+h_{i}(\phi) X+\cdots
\end{aligned}
$$

Consider slowly rolling ϕ

Slow-roll conditions:
$\epsilon:=-\frac{\dot{H}}{H^{2}} \ll 1, \ddot{\phi} \ll H \dot{\phi}, \dot{J} \ll H J, \dot{g}_{i} \ll H g_{i}, \dot{h}_{i} \ll H h_{i}$
"Friedmann equation" g_{4} is ϕ-dependent " $1 / 16 \pi G$ "

$$
\begin{aligned}
& \mathcal{E}_{2}=2 X K \nmid-K, \\
& \mathcal{E}_{3}=6 X \phi H G_{3 X}-2 X G_{3 \phi}, \\
& \left.\mathcal{E}_{4}=-6 H^{2} G_{4}\right)+24 H^{2} X\left(G_{4 X}+X G_{4 X X}\right)-12 H X \dot{\phi} G_{4 \phi X}-6 H \dot{\phi} G_{4 \phi}, \\
& \mathcal{E}_{5}=2 H^{3} X \phi\left(5 G_{5 X}+2 X G_{5 X X}\right)-6 H^{2} X\left(3 G_{5 \phi}+2 X G_{5 \phi X}\right)
\end{aligned}
$$

Scalar-field EOM

$$
3 H J \simeq-V_{\phi}+12 H^{2} g_{4 \phi}
$$

with $\quad J \simeq\left(\mathcal{K}-2 g_{3 \phi}\right) \dot{\phi}+6\left[H h_{3} X+H^{2} \dot{\phi}\left(h_{4}-g_{5 \phi}\right)+H^{3} h_{5} X\right]$

Friction term is modified

Application:
Enhance friction so that inflation proceeds even with a steep potential

Enhancing friction

Minimal example: $\quad \mathcal{L}=\frac{M_{\mathrm{Pl}}^{2}}{2} R+X-V-h_{3}(\phi) X \square \phi$

$$
\begin{aligned}
& J \simeq\left(1+3 H h_{3} \dot{\phi}\right) \dot{\phi} \simeq-V_{\phi} \\
& \epsilon=-\frac{\dot{H}}{H^{2}}=\left(1+3 H h_{3} \dot{\phi}\right)^{-1} \times \frac{M_{\mathrm{Pl}}^{2}}{2}\left(\frac{V_{\phi}}{V}\right)^{2}
\end{aligned}
$$

Suppresses the slope if $H h_{3} \dot{\phi} \gg 1$

Standard expression in terms of potential

Even when $H h_{3} \dot{\phi} \gg 1$ we still have $V \gg\left|h_{3} X \square \phi\right|$

Chaotic G-inflation

$$
V
$$

$$
V=\frac{\lambda}{n} \phi^{n} \quad h_{3}=-\frac{1}{M^{3}} \quad \uparrow \quad \begin{gathered}
M \\
\hline
\end{gathered}
$$

Standard inflation
would not occur

Reheating

Non-trivial in general

But... arrange so that

$$
K \simeq X-V(\phi)
$$

$$
G_{i}=g_{i}(\phi)+h_{i}(\phi) X+\cdots
$$

 $\simeq 0$ around the minimum of V, then reheating will proceed in an usual way

2. Kinetically driven model

Shift symmetry: $\phi \rightarrow \phi+c \quad \longrightarrow \quad K=K(X), G_{i}=G_{i}(X)$
Scalar-field EOM: $\dot{J}+3 H J=0 \rightarrow J(\dot{\phi}, H) \propto a^{-3} \rightarrow 0$

$$
\begin{aligned}
J= & \dot{\phi} K_{X}+6 H X G_{3 X} \\
& +6 H^{2} \dot{\phi}\left(G_{4 X}+2 X G_{4 X X}\right) \\
& +2 H^{3} X\left(3 G_{5 X}+2 X G_{5 X X}\right)
\end{aligned}
$$

de Sitter attractor

$$
\begin{aligned}
\dot{\phi} & =\text { const. } \\
H & =\text { const. }
\end{aligned}
$$

"Friedmann equation"
satisfying
$\sum_{i=2}^{5} \mathcal{E}_{i}=0=\dot{\phi} J-\underbrace{\left[K+6 H^{2}\left(G_{4}-2 X G_{4 X}\right)-4 H^{3} X \dot{\phi} G_{5 X}\right]}_{=: F(\dot{\phi}, H) \rightarrow 0}$

$$
\begin{aligned}
J(\dot{\phi}, H) & =0 \\
F(\dot{\phi}, H) & =0
\end{aligned}
$$

$$
=: F(\dot{\phi}, H) \rightarrow 0
$$

Exit from kinetically driven G-inflation

Shift symmetry $\phi \rightarrow \phi+c$ must be broken in order to end inflation
The situation is essentially

$\dot{\phi}=\dot{\phi}_{\mathrm{inf}}$ is no longer
a solution for $\phi>\phi_{\text {end }}$
Reheating through gravitational particle production Ford (1987)
6. GW spectrum is enhanced at high frequencies
(ف) Everything in the world, including what you don't want, will be produced

2-2

Tensor perturbation

$g_{i j}=a^{2}\left(\delta_{i j}+h_{i j}\right)$
Substitute this to the action and expand to second order

General quadratic action for tensor perturbations:

$$
S_{T}^{(2)}=\frac{1}{8} \int \mathrm{~d} t \mathrm{~d}^{3} x a^{3}\left[\mathcal{G}_{T} \dot{h}_{i j}^{2}-\frac{\mathcal{F}_{T}}{a^{2}}\left(\vec{\nabla} h_{i j}\right)^{2}\right]
$$

$$
\begin{aligned}
\mathcal{F}_{T} & :=2\left[G_{4}-X\left(\ddot{\phi} G_{5 X}+G_{5 \phi}\right)\right] \\
\mathcal{G}_{T} & :=2\left[G_{4}-2 X G_{4 X}-X\left(H \dot{\phi} G_{5 X}-G_{5 \phi}\right)\right]
\end{aligned}
$$

$$
S_{T}^{(2)}=\frac{1}{8} \int \mathrm{~d} t \mathrm{~d}^{3} x a^{3}\left[\mathcal{G}_{T} \dot{h}_{i j}^{2}-\frac{\mathcal{F}_{T}}{a^{2}}\left(\vec{\nabla} h_{i j}\right)^{2}\right]
$$

Propagation speed: $c_{T}^{2}:=\mathcal{F}_{T} / \mathcal{G}_{T} \longrightarrow c_{T}^{2} \neq 1$ in general

Stability: $\quad \mathcal{F}_{T}>0$ - avoid gradient instabilities

$$
\mathcal{G}_{T}>0 \quad \text { - avoid ghost instabilities }
$$

Normalized mode: $z h_{i j}=\frac{\sqrt{\pi}}{2} \sqrt{-y} H_{\circlearrowright}^{(1)}(-k y) \mathrm{e}_{i j}$
$z:=\frac{a}{2}\left(\mathcal{F}_{T} \mathcal{G}_{T}\right)^{1 / 4}$

$$
\mathrm{d} y:=\frac{c_{T}}{a} \mathrm{~d} t
$$

$$
\nu:=\frac{3-\epsilon-2 s_{T}+f_{T}}{2\left(1-\epsilon-s_{T}\right)}
$$

Constant (slow) variation parameters

$$
\epsilon=\text { const, } \quad s_{T}:=\frac{\dot{c}_{T}}{H c_{T}}=\text { const, } \quad f_{T}:=\frac{\dot{\mathcal{F}}_{T}}{H \mathcal{F}_{T}}=\text { const }
$$

Tensor power spectrum

- $\mathcal{P}_{T}=2^{2 \nu}\left|\frac{\Gamma(\nu)}{\Gamma(3 / 2)}\right|^{2}(1-\epsilon-s) \frac{\mathcal{G}_{T}^{1 / 2}}{\mathcal{F}_{T}^{3 / 2}} \frac{H^{2}}{4 \pi^{2}} \underbrace{}_{-k y=1)}$
evaluated at sound horizon crossing
($n_{T}=3-2 \nu$

$$
n_{T}>0
$$

$2 \epsilon+s_{T}+f_{T}<0$

In principle, this is possible without causing instabilities both in scalar and tensor modes

Curvature perturbation

Unitary gauge: $\delta \phi(t, \mathbf{x})=0$

$$
\begin{aligned}
& \mathrm{d} s^{2}=-N^{2} \mathrm{~d} t^{2}+\gamma_{i j}\left(\mathrm{~d} x^{i}+N^{i} \mathrm{~d} t\right)\left(\mathrm{d} x^{j}+N^{j} \mathrm{~d} t\right) \\
& N=1+\alpha, \quad N_{i}=\partial_{i} \beta, \quad \gamma_{i j}=a^{2}(t) e^{2 \zeta} \delta_{i j}
\end{aligned}
$$

$\longrightarrow S_{S}^{(2)}=\int \mathrm{d} t \mathrm{~d}^{3} x a^{3}\left[-3 \mathcal{G}_{T} \dot{\zeta}^{2}+\frac{\mathcal{F}_{T}}{a^{2}}(\vec{\nabla} \zeta)^{2}+£ \mathrm{E}^{2} \quad\right.$ defined in the next slide...

$$
\left.-2 \Theta \alpha \cdot \frac{\vec{\nabla}^{2}}{a^{2}} \beta+2 \mathcal{G}_{T} \dot{\zeta} \frac{\vec{\nabla}^{2}}{a^{2}} \beta+\Theta \Theta \alpha \dot{\zeta}-2 \mathcal{G}_{T} \alpha \frac{\vec{\nabla}^{2}}{a^{2}} \zeta\right]
$$

Get quadratic action for ζ

- $\delta \alpha$

$\delta \beta$

Momentum constraint

$$
\begin{aligned}
\Sigma:= & X K_{X}+2 X^{2} K_{X X}+12 H \dot{\phi} X G_{3 X} \\
& +6 H \dot{\phi} X^{2} G_{3 X X}-2 X G_{3 \phi}-2 X^{2} G_{3 \phi X}-6 H^{2} G_{4} \\
& +6\left[H^{2}\left(7 X G_{4 X}+16 X^{2} G_{4 X X}+4 X^{3} G_{4 X X X}\right)\right. \\
& \left.-H \dot{\phi}\left(G_{4 \phi}+5 X G_{4 \phi X}+2 X^{2} G_{4 \phi X X}\right)\right] \\
& +30 H^{3} \dot{\phi} X G_{5 X}+26 H^{3} \dot{\phi} X^{2} G_{5 X X} \\
& +4 H^{3} \dot{\phi} X^{3} G_{5 X X X}-6 H^{2} X\left(6 G_{5 \phi}\right. \\
& \left.+9 X G_{5 \phi X}+2 X^{2} G_{5 \phi X X}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Theta:= & -\dot{\phi} X G_{3 X}+2 H G_{4}-8 H X G_{4 X} \\
& -8 H X^{2} G_{4 X X}+\dot{\phi} G_{4 \phi}+2 X \dot{\phi} G_{4 \phi X} \\
& -H^{2} \dot{\phi}\left(5 X G_{5 X}+2 X^{2} G_{5 X X}\right) \\
& +2 H X\left(3 G_{5 \phi}+2 X G_{5 \phi X}\right)
\end{aligned}
$$

Compact expressions

$$
\begin{gathered}
\Sigma=X \sum_{i=2}^{5} \frac{\partial \mathcal{E}_{i}}{\partial X}+\frac{1}{2} H \sum_{i=2}^{5} \frac{\partial \mathcal{E}_{i}}{\partial H} \\
\Theta=-\frac{1}{6} \sum_{i=2}^{5} \frac{\partial \mathcal{E}_{i}}{\partial H}
\end{gathered}
$$

General quadratic action for curvature perturbation:

$$
S_{S}^{(2)}=\int \mathrm{d} t \mathrm{~d}^{3} x a^{3}\left[\mathcal{G}_{S} \dot{\zeta}^{2}-\frac{\mathcal{F}_{S}}{a^{2}}(\vec{\nabla} \zeta)^{2}\right]
$$

$$
\begin{aligned}
\mathcal{F}_{S} & :=\frac{1}{a} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{a}{\Theta} \mathcal{G}_{T}^{2}\right)-\mathcal{F}_{T} \\
\mathcal{G}_{S} & :=\frac{\Sigma}{\Theta^{2}} \mathcal{G}_{T}^{2}+3 \mathcal{G}_{T}
\end{aligned}
$$

Sound speed: $\quad c_{s}^{2}=\mathcal{F}_{S} / \mathcal{G}_{S} \quad$ Stability: $\quad \mathcal{F}_{S}>0, \quad \mathcal{G}_{S}>0$
k-inflation
$\mathcal{L}=\frac{M_{\mathrm{Pl}}^{2}}{2} R+K(\phi, X)$
$\longrightarrow \mathcal{F}_{S}=M_{\mathrm{Pl}}^{2} \epsilon$
In more general cases, the sign of \dot{H} and the stability criteria are not correlated

Phase space of kinetically driven G-inflation

$$
\begin{aligned}
\quad \text { Normalized mode: } & z \zeta=\frac{\sqrt{\pi}}{2} \sqrt{-y} H H^{(1)}(-k y) \\
z:=\sqrt{2} a\left(\mathcal{F}_{S} \mathcal{G}_{S}\right)^{1 / 4} \xrightarrow[\mathrm{~d} y]{ }:=\frac{c_{S}}{a} \mathrm{~d} t & \nu:=\frac{3-\epsilon-2 s+f_{S}}{2(1-\epsilon-s)}
\end{aligned}
$$

Constant (slow) variation parameters

$$
\epsilon=\text { const, } \quad s:=\frac{\dot{c}_{s}}{H c_{s}}=\text { const, } \quad f_{S}:=\frac{\dot{\mathcal{F}}_{S}}{H \mathcal{F}_{S}}=\text { const }
$$

Power spectrum

$$
\begin{aligned}
& \mathcal{P}_{\zeta}=\left.2^{2 \nu-4}\left|\frac{\Gamma(\nu)}{\Gamma(3 / 2)}\right|^{2}(1-\epsilon-s) \frac{\mathcal{G}_{S}^{1 / 2}}{\mathcal{F}_{S}^{3 / 2}} \frac{H^{2}}{4 \pi^{2}}\right|_{-k y=1} \\
& n_{s}-1=3-2 \nu \quad \text { Approximately scale-invariant if } \nu \simeq \frac{3}{2}
\end{aligned}
$$

Consistency relation

$$
\begin{gathered}
r=16 \frac{\mathcal{F}_{S}}{\mathcal{F}_{T}} \frac{c_{s}}{c_{T}} \\
\left(r=\mathcal{P}_{T} / \mathcal{P}_{\zeta}, \text { Slow-variation parameters } \ll \mathrm{I}\right)
\end{gathered}
$$

Canonical inflation

$$
r=16 \epsilon=-8 n_{T}
$$

k-inflation

$$
r=16 \epsilon c_{s}=-8 n_{T} c_{s}
$$

Consistency relation in potential-driven G^{2}

$$
\begin{gathered}
K(\phi, X)=-V(\phi)+\mathcal{K}(\phi) X+\cdots \\
G_{i}(\phi, X)=g_{i}(\phi)+h_{i}(\phi) X+\cdots \\
\mathcal{F}_{S} \simeq \frac{X}{H^{2}}\left(\mathcal{K}+6 H^{2} h_{4}\right)+\frac{4 \dot{\phi} X}{\frac{H}{H}\left(h_{3}+H^{2} h_{5}\right)} \\
\mathcal{G}_{S} \simeq \frac{X}{H^{2}}\left(\mathcal{K}+6 H^{2} h_{4}\right)+\frac{6 \dot{\phi} X}{H}\left(h_{3}+H^{2} h_{5}\right) \\
\mathcal{F}_{T} \simeq \mathcal{G}_{T} \simeq 2 g_{4} \longrightarrow c_{T}^{2} \simeq 1
\end{gathered}
$$

New consistency relation
Usual consistency relation

$$
\begin{aligned}
c_{s}^{2} & \simeq 1 \\
r & \simeq-8 n_{T}
\end{aligned}
$$

$$
\begin{aligned}
c_{s}^{2} & \simeq \frac{2}{3} \\
r & \simeq-\frac{32 \sqrt{6}}{9} n_{T}
\end{aligned}
$$

2-3
Non-Gaussianity

Let's focus on the minimal example

$$
\mathcal{L}=\frac{R}{2}+K(\phi, X)-G(\phi, X) \square \phi
$$

and evaluate $\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle$

$$
M_{\mathrm{Pl}}=1
$$

TK, Yamaguchi, Yokoyama (2011)

Key quantities

Recall the quadratic action

$$
\begin{gathered}
S=\int \mathrm{d} t \mathrm{~d}^{3} x a^{3} \sigma\left[\frac{1}{c_{s}^{2}} \dot{\zeta}^{2}-\frac{1}{a^{2}}(\partial \zeta)^{2}\right] \\
\sigma:=\mathcal{F}_{S} \quad
\end{gathered}
$$

reduces to $\epsilon\left(=-\dot{H} / H^{2}\right)$
in standard (k-) inflation ($G=0$)
Tensor-to-scalar ratio
$\sigma \neq \epsilon$, not necessarily slow-roll suppressed in (kinetically driven) G^{2}

Cubic action

$$
\begin{gathered}
S_{3}=\int d t d^{3} x a^{3}\left[\frac{\mathcal{C}_{1}}{H} \dot{\zeta}^{3}+\mathcal{C}_{2} \zeta \dot{\zeta}^{2}+\frac{\mathcal{C}_{3}}{a^{4} H^{2}} \partial^{2} \zeta(\partial \zeta)^{2}+\frac{\mathcal{C}_{4}}{a^{2} H^{2}} \dot{\zeta}^{2} \partial^{2} \zeta+\mathcal{C}_{5} H \zeta^{2} \dot{\zeta}\right. \\
\left.\chi:=\frac{a \sigma^{2} \dot{\zeta}}{c_{s}^{2}}+\frac{\mathcal{C}_{6}}{a^{4} H} \partial^{2} \zeta(\partial \zeta \cdot \partial \chi)+\frac{\mathcal{C}_{7}}{a^{4}} \partial^{2} \zeta(\partial \chi)^{2}+\frac{\mathcal{C}_{8}}{a^{2}} \zeta(\partial \zeta)^{2}+\frac{\mathcal{C}_{9}}{a^{2}} \dot{\zeta}(\partial \zeta \cdot \partial \chi)+\left.\frac{2}{a^{3}} f(\zeta) \frac{\delta L}{\delta \zeta}\right|_{1}\right] \\
\text { at most four derivati }
\end{gathered}
$$ at most four derivatives

$$
\begin{aligned}
& \mathcal{C}_{1}=-\frac{O}{\Theta v_{s}}\left(1+2 \frac{\mathcal{I}}{\mathcal{G}}\right)-2 \dot{\phi} X\left(G_{X}+X G_{X X}\right) \frac{H \sigma}{c_{s}^{2} \Theta^{2}}+\frac{H^{2} \sigma}{c_{s}^{4} \Theta^{2}}, \\
& \left.\mathcal{C}_{2}=\frac{c_{s}^{2}}{c_{s}^{2}} 3-\frac{H^{2}}{c_{s}^{2} \Theta^{2}}\left(3+\epsilon+\frac{2 \dot{\Theta}}{H \Theta}\right)\right], \\
& \mathcal{C}_{3}=-\frac{H^{2} \dot{\phi} X G_{X}}{\Theta^{3}}, \\
& \mathcal{C}_{4}=\frac{2 H^{2} \dot{\phi} X\left(G_{X}+X G_{X X}\right)}{\Theta^{3}}, \\
& \mathcal{C}_{5}=\frac{d}{2 \varepsilon_{s} 1} \frac{H^{2} \delta}{d t}\left(\frac{H^{2} \delta}{c_{s}^{2} \Theta^{2}}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{C}_{6}=\frac{2 H \dot{\phi} X G_{X}}{\Theta^{2}}, \\
& \mathcal{C}_{7}=\frac{\sigma \dot{\phi} X G_{X}}{\Theta}
\end{aligned}
$$

$$
\mathcal{C}_{8}=-O \frac{H O}{\Theta^{2} c_{s}^{2}}\left(1-\epsilon-2 s-\frac{2 \dot{\Theta}}{H \Theta}\right),
$$

$$
\mathcal{C}_{9}=\frac{O}{c_{s}^{L}}\left(-\frac{2 H}{\Theta}-\frac{\sigma}{2}\right),
$$

$$
\begin{aligned}
& X K_{X X}+\frac{2 X^{2}}{3} K_{X X X}+H \dot{\phi} G_{X}+6 X^{2} G_{X}^{2} \\
& \quad 4 \dot{\phi} X G_{X X}+6 X^{3} G_{X} G_{X X}+2 H \dot{\phi} X^{2} G_{X X X}
\end{aligned}
$$

$$
=\left(2 G_{\phi X}+X G_{\phi X X}\right)
$$

Evaluating Non-Gaussianity

in-in formalism

$$
\begin{gathered}
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle=-i \int_{t_{0}}^{t} \mathrm{~d} t^{\prime}\left\langle\left[\zeta\left(\mathbf{k}_{1}, t\right) \zeta\left(\mathbf{k}_{2}, t\right) \zeta\left(\mathbf{k}_{3}, t\right), H_{\mathrm{int}}\left(t^{\prime}\right)\right]\right\rangle \\
H_{\mathrm{int}}(t)=-\int \mathrm{d}^{3} x a^{3}\left[\frac{\mathcal{C}_{1}}{H} \dot{\zeta}^{3}+\mathcal{C}_{2} \zeta \dot{\zeta}^{2}+\cdots\right] \\
\longrightarrow\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle=(2 \pi)^{7} \delta^{(3)}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) \mathcal{P}_{\zeta}^{2} \frac{\mathcal{A}}{k_{1}^{3} \frac{k_{2}^{2} k_{3}^{3}}{2}}
\end{gathered}
$$

A peaks at $k_{1}=k_{2}=k_{3}$ (except in the case of fine-tuned parameters)

$$
f_{\mathrm{NL}}^{\mathrm{equi}}=30 \frac{\mathcal{A}_{k_{1}=k_{2}=k_{3}}}{\left(k_{1}+k_{2}+k_{3}\right)^{3}}
$$

Size of Non-Gaussianity

$f_{\mathrm{NL}}^{\text {equi }}=\mathcal{O}\left(\frac{\tilde{\sigma}^{2}}{c_{s}^{2}}\right)+\mathcal{O}\left(\tilde{\sigma}^{2} \frac{X G_{X X}}{G_{X}}\right)+\mathcal{O}\left(\tilde{\sigma} \frac{\mathcal{I}}{\mathcal{G}_{S}}\right), \quad \tilde{\sigma}:=\max \{1, \sigma\}$
C.f. $r=16 \sigma c_{s}$

$$
\mathcal{I}:=X K_{X X}+\frac{2 X^{2}}{3} K_{X X X}+H \dot{\phi} G_{X}+\cdots
$$

k-inflation $\quad \sigma=\epsilon$
$f_{\mathrm{NL}} \sim \frac{1}{c_{s}^{2}} \quad r=16 \epsilon c_{s}$

Large $f_{\mathrm{NL}}(\mathrm{r}) \rightarrow$ Small $r\left(f_{\mathrm{NL}}\right)$

G-inflation $\quad \sigma \neq \epsilon$

Both $f_{N L}$ and r can be large

Say, $f_{\mathrm{NL}}=210$ with $r=0.17$ is possible in kinetically driven models

The most general case

$$
G_{4}=G_{4}(\phi, X), \quad G_{5}=G_{5}(\phi, X)
$$

$$
\begin{aligned}
& S_{(3)}[\zeta]= \int d \eta d^{3} x a^{2}\left\{\frac{\Lambda_{1}}{\mathcal{H}} \zeta^{\prime 3}+\Lambda_{2} \zeta^{\prime 2} \zeta+\Lambda_{3} \zeta\left(\partial_{i} \zeta\right)^{2}+\frac{\Lambda_{4}}{\mathcal{H}^{2} \zeta^{\prime 2}} \partial^{2} \zeta+\Lambda_{5} \zeta^{\prime} \partial_{i} \zeta \partial^{i} \psi+\Lambda_{6} \partial^{2} \zeta\left(\partial_{i} \psi\right)^{2}\right. \\
&\left.+\frac{\Lambda_{7}}{\mathcal{H}^{2}}\left[\partial^{2} \zeta\left(\partial_{i} \zeta\right)^{2}-\zeta \partial_{i} \partial_{j}\left(\partial^{i} \zeta \partial^{j} \zeta\right)\right]+\frac{\Lambda_{8}}{\mathcal{H}}\left[\partial^{2} \zeta \partial_{i} \zeta \partial^{i} \psi-\zeta \partial_{i} \partial_{j}\left(\partial^{i} \zeta \partial^{j} \psi\right)\right]+\left.F(\zeta) \frac{\delta \mathcal{L}_{2}}{\delta \zeta}\right|_{1}\right\}, \\
& \text { Gao \& Steer } 1107.2642
\end{aligned}
$$

See also De Felice \& Tsujikawa 1107.3917

No new operators beyond k-inflation Reneux-Petel (2011)
More complicated expressions for coefficients...

Summary of Part 2

The generalized Galileon offers a framework to study the most general single-field inflation model

We now have the most general quadratic (and cubic) actions for curvature and tensor perturbations, which can be used to determine stability and compute 2-(and 3-) point functions of all the single-field inflation models

Non-Gaussianity: No new shapes beyond k-inflation, but large r and large fNL are compatible in more general models than k-inflation

Talk Plan

1. Introduction to the Galileon
2. G-inflation - Inflation driven by the Galileon field -
3. Galileon models of dark energy

Galileon models of dark energy

Many dynamical dark energy models and modified gravity models are described in a generic, unified manner by

Most general scalar-tensor theory
= generalized Galileon

Ordinary matter:

dark matter, photons, baryons, ...

* $f(R)$ gravity is also in this class

Assume matter is coupled to $g_{\mu \nu}$, and not directly to ϕ

If you want to consider matter coupled to $\tilde{g}_{\mu \nu}=A(\phi) g_{\mu \nu}$, a conformal transformation brings your theory to the above form

Solar-system constraints on scalar-mediated force

Severe constraint on Brans-Dicke theory (prototype example of ST theories)

$$
\mathcal{L}=\phi R-\frac{\omega}{\phi}(\partial \phi)^{2}+\mathcal{L}_{\mathrm{m}}
$$

Gravitational field around a point mass
Cf. General Relativity $\gamma=1$
$T_{00}=M \delta^{(3)}(\mathbf{x})$
$\mathrm{d} s^{2}=-(1+2 \Phi) \mathrm{d} t^{2}+(1-2 \Psi) \mathrm{d} \mathrm{x}^{2}$

$$
\longrightarrow \gamma=\frac{\Psi}{\Phi}=\frac{1+\omega}{2+\omega}
$$

$\theta=1.75^{\prime \prime}(1+\gamma) / 2$
Light bending $\quad|\gamma-1|<10^{-4}$
Will gr-qc/0103036

Screening mechanisms

Scalar d.o.f. must be screened somehow in the vicinity of matter
(1) Scalar d.o.f. is effectively massive in the vicinity of matter

- not fluctuate

$$
\sum_{i=2}^{5} \mathcal{L}_{i} \supset-V(\phi)
$$

(2) Scalar d.o.f. is effectively weakly coupled

Potential term at work in the vicinity of matter

- fluctuate, but do not care

$$
\sum_{i=2}^{5} \mathcal{L}_{i} \supset(\partial \phi)^{2} \square \phi, \cdots
$$

Chameleon mechanism

Khoury, Weltman (2004)
$\sqrt{ }$

Improving BD theory

Add Galileon-type interaction to BD theory

$$
\mathcal{L}=\phi R-\frac{\omega}{\phi}(\partial \phi)^{2}+\xlongequal{G_{3}=2 f(\phi)(\partial \phi)^{2} \square \phi}+\mathcal{L}_{\mathrm{m}}
$$

Schematically,

$$
\square \phi \sim \phi R \sim \rho \quad \rightarrow \quad G_{3} \square \phi \propto \rho(\partial \phi)^{2}
$$

‘Large kinetic term at high densities
$\omega \ll \omega_{\text {eff }} \propto \rho$

Some Galileon models for lãte-time acceleration

Chow, Khoury (2009); Silva, Koyama (2009); TK, Tashiro, Suzuki (2010); TK (2011)

Cosmology of BD $+\mathcal{L}_{3}$

Two-parameter model $\quad \mathrm{BD}+\mathcal{L}_{3}+\mathcal{L}_{\mathrm{m}}$

$$
\omega \sqrt{G_{3}}=2 f(\phi) X, \quad f(\phi)=\frac{r_{c}^{2}}{\phi^{2}}\left(\frac{2 \phi}{M_{\mathrm{Pl}}^{2}}\right)^{\alpha} \propto \phi^{\alpha-2}
$$

Early-time behavior $\quad H \gg r_{c}^{-1}$
$3 H^{2} \simeq 8 \pi G \rho \quad$ Standard cosmology is not destroyed
Late-time behavior $\quad H \lesssim r_{c}^{-1}$
>0 for $\alpha>0$
$=0 \quad$ for $\quad \alpha=0$
$1+w_{\text {eff }} \rightarrow \frac{\alpha}{3}\left[\frac{-2+\alpha \pm \sqrt{-6 \omega-(2-\alpha)(4+\alpha)}}{\omega+2}\right]<0 \quad$ for $\quad \alpha<0$
$1+w_{\mathrm{eff}}=-\frac{\dot{\rho}_{\mathrm{eff}}}{3 H \rho_{\mathrm{eff}}}$

$$
\omega=-500
$$

Shift-symmetric scalar

$$
K=K(X), G_{i}=G_{i}(X) \quad \text { - Recall kinetically driven G-inflation }
$$

Recent applications
"Kinetic gravity braiding"

Deffayet et al. (2010)
Kimura, Yamamoto (2011)
"Purely kinetic coupled gravity"
Gubitosi, Lieder (2011)
$G_{3} \propto X^{n}$
$G^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi \longleftarrow G_{4} \propto X$

Kimura, Yamamoto (2011)
$K=-X, \quad G_{3} \propto X^{(n} \pi$ Reproduce the phenomenological model of Dvali and Turner (2003)

Friedmann equation

$$
\begin{aligned}
& n=1-\text { covariant Galileon } \\
& n=\infty-\text { LCDM }
\end{aligned} \quad \alpha=-\frac{2}{2 n-1}
$$

$3 M_{\mathrm{Pl}}^{2} H^{2}-(X+\dot{\phi} J)=\rho$
Along the attractor,

$$
J=-\dot{\phi}+6 H X G_{3 X}=0
$$

$3-2$

Density perturbations

The aim: test/distinguish different models of dark energy and modified gravity

Density perturbations in the most general ST theory

TK, to appear
For all the ST theories with second-order field equations, the subhorizon evolution of the density perturbation is described by

$$
\ddot{\delta}+2 H \dot{\delta}=\frac{\xi(t ; k)}{2} \rho_{\mathrm{m}} \delta \quad 4 \pi G_{\mathrm{eff}}
$$

This can be shown by using the quasi-static approximation

$$
\partial_{t} \sim H \ll \frac{\partial_{i}}{a}
$$

$$
\mathrm{d} s^{2}=-(1+2 \Phi) \mathrm{d} t^{2}+a^{2}(t)(1-2 \Psi) \mathrm{d} \mathbf{x}^{2}, \quad Q=H \frac{\delta \phi}{\dot{\phi}}
$$

ij equation

$$
\mathcal{F}_{T} \Psi-\mathcal{G}_{T} \Phi=\left(\frac{\dot{\mathcal{G}_{T}}}{H}+\mathcal{G}_{T}-\mathcal{F}_{T}\right) Q
$$

00 equation

$$
\mathcal{G}_{T} \frac{\nabla^{2}}{a^{2}} \Psi+\left(\mathcal{G}_{T}-\frac{\Theta}{H}\right) \frac{\nabla^{2}}{a^{2}} Q \simeq \frac{1}{2} \rho \delta
$$

$$
\text { Cf. GR } \quad \Psi-\Phi=0
$$

Scalar-field equation

$$
m^{2}:=-K_{\phi \phi}
$$

$$
\begin{aligned}
{\left[\frac{\dot{\Theta}}{H^{2}}+\right.} & \left.\frac{\Theta}{H}+\mathcal{F}_{T}-2 \mathcal{G}_{T}-2 \frac{\dot{\mathcal{G}}_{T}}{H}-\frac{\mathcal{E}+\mathcal{P}}{2 H^{2}}\right] \frac{\nabla^{2}}{a^{2}} Q+m^{2} \frac{X}{H^{2}} Q \\
& -\left(\frac{\dot{\mathcal{G}}_{T}}{H}+\mathcal{G}_{T}-\mathcal{F}_{T}\right) \frac{\nabla^{2}}{a^{2}} \Psi-\left(\mathcal{G}_{T}-\frac{\Theta}{H}\right) \frac{\nabla^{2}}{a^{2}} \Phi \simeq 0
\end{aligned}
$$

$$
\frac{\nabla^{2}}{a^{2}} \Phi=\frac{\xi}{2} \delta \rho \stackrel{\nabla}{\mu} T_{\nu}^{\mu(\mathrm{m})}=0 \quad \square \text { Evolution equation for } \delta
$$

$$
\xi:=\frac{(\dot{\Theta}+H \Theta) \mathcal{F}_{S}+\left(\dot{\mathcal{G}}_{T}-\dot{\Theta} \mathcal{G}_{T} / \Theta\right)^{2}+\mathcal{F}_{T}\left[(\mathcal{E}+\mathcal{P}) / 2+X a^{2} m^{2} / k^{2}\right]}{\Theta^{2} \mathcal{F}_{S}+\mathcal{G}_{T}^{2}\left[(\mathcal{E}+\mathcal{P}) / 2+X a^{2} m^{2} / k^{2}\right]}
$$

Schematically...

δ / a

$$
\xi \simeq 8 \pi G_{N}
$$

Matter dominant Universe
Accelerating Universe

$\mathrm{BD}+\mathcal{L}_{3}$ model

$$
\omega=-500
$$

Characterizing growth history

Growth factor: $\quad g=\delta / a$
Growth rate: $\quad f=\frac{\mathrm{d} \ln \delta}{\mathrm{d} \ln a} \quad \begin{aligned} & \text { Useful discrimina } \\ & \text { different models }\end{aligned}$

$$
\begin{aligned}
& \text { Growth index: } \\
& \qquad f=\left[\Omega_{\mathrm{m}}(a)\right] \gamma \Omega_{\mathrm{m}}(a)=\frac{\rho_{\mathrm{m}}}{3 M_{\mathrm{Pl}}^{2} H^{2}}
\end{aligned}
$$

Wang, Steinhardt (1998) Linder (2005)
Linder, Cahn (2007)

$\mathrm{BD}+\mathcal{L}_{3}$ model

artifact of definition

TK (2011)

Integrated Sachs-Wolfe effect

$$
\dot{\Phi}+\dot{\Psi}=0
$$

CMB photon
Blue shift = Red shift

$\dot{\Phi}+\dot{\Psi} \neq 0$ in the accelerating Universe
Late ISW - powerful dark energy probe

Difficult to measure ISW because:
\checkmark SW >> ISW
\checkmark Cosmic variance

This problem can be evaded:

\checkmark ISW is correlated with matter density through potential
\checkmark Primary CMB is generated long before and is not correlated
w/ Rampei Kimura, Kazuhiro Yamamoto (Hiroshima), to appear

ISW in KGB

Kimura-Yamamoto model:

$$
\mathcal{L}=\frac{R}{2}-X-G(X) \square \phi, \quad G \propto X^{n}
$$

Quasi-static approximation is insufficient; need full perturbation analysis

Slide by Rampei Kimura

Galaxy-LSS Cross-correlation

Data from Giannantonio et al. '08

$$
n \gtrsim 10^{4}
$$

(95\% C.L.)

Summary of Part 3

Dark energy and modified gravity models with a single scalar degree of freedom (in addition to metric) are described by the generalized Galileon

Need screening mechanism:
Chameleon / Vainshtein

Implications for cosmological observations are interesting
Growth of matter perturbations / ISW / ...

Conclusion

The Galileon extends far beyond a specific scalar-field theory
The generalized Galileon is the most general scalartensor theory with second-order field equations (equivalent to Horndeski's theory)

The generalized Galileon is a useful framework to study inflation and dark energy models in a generic/unified/systematic way

New models and new scenarios, as well as all the previous examples proposed so far in the single-field context

Large GWs / large non-Gaussianity / $\dot{H}>0$......

