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φScalar fields play an important role in cosmology

Inflation / Dark energy

In this talk, I will describe the (most general extension of the) 
Galileon and its applications to cosmology

The Galileon extends far beyond a specific scalar-field theory!



Talk Plan

1. Introduction to the Galileon

2. G-inflation – Inflation driven by the Galileon field –

3. Galileon models of dark energy



Introduction to the 
Galileon
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Scalar-field Lagrangian

L = −1
2
(∂φ)2 − V (φ)

Euler-Lagrange equation

�φ− Vφ = 0

1st derivative

2nd-order EOM

has higher-order EOM?L = L(φ, ∂φ, ∂2φ, · · · )

–– No, not necessarily

Tensor example: Einstein-Hilbert

R ⊃ ∂Γλ
µν ⊃ ∂2gµν



L ⊃ (∂φ)2�φ

EOM ⊃ (�φ)
2 − (∂µ∂νφ)(∂µ∂νφ)

Example:

∂µφ∂µ�φThe term
is canceled out

2nd-order EOM

(*)

(*) has the Galilean shift symmetry:

φ→ φ + vµxµ + c

Look for scalar-field Lagrangians having:

(i) Galilean shift symmetry;
(ii) 2nd-order EOM

∂µφ→ ∂µφ + vµ

looks like Galilei transformation

(*) appears in an effective description of 
the brane-bending mode in DGP



Galileon (in flat space)
Nicolis, Rattazzi, Trincherini (2009)

L1 = φ,

L2 = (∂φ)2,
L3 = (∂φ)2�φ,

L4 = (∂φ)2
�
(�φ)2 − (∂µ∂νφ)2

�
,

L5 = (∂φ)2
�
(�φ)3 − 3 (�φ) (∂µ∂νφ)2 + 2 (∂µ∂νφ)3

�
.

Only 5 possible Lagrangians that have the two properties:



Covariantization
Coupling to gravity: ∂µ → ∇µ

Deffayet, Esposito-Farese, Vikman (2009)

Forget about Galilean shift symmetry,
maintain 2nd-order equations both for      andφ gµν

δ

δφ

�
(∂φ)2

�
(�φ)2 − (∇µ∇νφ)2

��
⊃ (· · · )µ [�∇µφ−∇µ�φ] ,

(· · · ) [��φ−∇µ�∇µφ]

(· · · )µRµν∇νφ

Computation example:

−Rµν∇µ∇νφ− 1
2
∇µR∇µφ

Add non-minimal coupling such as
so as to cancel higher-derivative terms

[(∂φ)2]2R



Covariant completion of Galileon

X := −1
2
(∂φ)2

L2 = X,

L3 = X�φ,

L4 =
X2

2
R + X

�
(�φ)2 − (∇µ∇νφ)2

�
,

L5 =
X2

2
Gµν∇µ∇νφ

−X

6

�
(�φ)3 − 3 (�φ) (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

�
.

where

Non-minimal coupling to gravity

Deffayet, Esposito-Farese, Vikman (2009)

Galilean shift symmetry is now abandoned...



Question

Can we further generalize the Galileon 
while maintaining the 2nd-order property?

What is the most general Lagrangian of the form

having 2nd-order field equations?

L = L(φ, ∂φ, ∂2φ, ∂3φ, · · · ; gµν , ∂gµν , ∂2gµν , ∂3gµν , · · · )



Answer

Generalized Galileon



Generalized Galileon
L1 = φ

L2 = X

L3 = −G3(φ, X)�φ

L2 = K(φ, X)

L3 = X�φ

L4 = G4(φ, X)R + G4X

�
(�φ)2 − (∇µ∇νφ)2

�

L5 = G5(φ, X)Gµν∇µ∇νφ− 1
6
G5X

�
(�φ)3

−3 (�φ) (∇µ∇νφ)2 + 2 (∇µ∇νφ)3
�

4 arbitrary functions of      andφ X

Deffayet, Gao, Steer, Zahariade (2011)

k-inflation/k-essence



G4Gµν −
1
2
G4XR∇µφ∇νφ− 1

2
G4XX

�
(�φ)2 − (∇α∇βφ)2

�
∇µφ∇νφ−G4X�φ∇µ∇νφ

+G4X∇λ∇µφ∇λ∇νφ + 2∇λG4X∇λ∇(µφ∇ν)φ−∇λG4X∇λφ∇µ∇νφ + gµν (G4φ�φ− 2XG4φφ)

+gµν

�
−2G4φX∇α∇βφ∇αφ∇βφ + G4XX∇α∇λφ∇β∇λφ∇αφ∇βφ +

1
2
G4X

�
(�φ)2 − (∇α∇βφ)2

��

+2
�
G4XRλ(µ∇ν)φ∇λφ−∇(µG4X∇ν)φ�φ

�
− gµν

�
G4XRαβ∇αφ∇βφ−∇λG4X∇λφ�φ

�

+G4XRµανβ∇αφ∇βφ−G4φ∇µ∇νφ−G4φφ∇µφ∇νφ + 2G4φX∇λφ∇λ∇(µφ∇ν)φ

−G4XX∇αφ∇α∇µφ∇βφ∇β∇νφ

+G5XRαβ∇αφ∇β∇(µφ∇ν)φ−G5XRα(µ∇ν)φ∇αφ�φ− 1
2
G5XRαβ∇αφ∇βφ∇µ∇νφ

−1
2
G5XRµανβ∇αφ∇βφ�φ + G5XRαλβ(µ∇ν)φ∇λφ∇α∇βφ + G5XRαλβ(µ∇ν)∇λφ∇αφ∇βφ

−1
2
∇(µ [G5X∇αφ]∇α∇ν)φ�φ +

1
2
∇(µ

�
G5φ∇ν)φ

�
�φ−∇λ

�
G5φ∇(µφ

�
∇ν)∇λφ

+
1
2

�
∇λ

�
G5φ∇λφ

�
−∇α (G5X∇βφ)∇α∇βφ

�
∇µ∇νφ +∇αG5∇βφRα(µν)β −∇(µG5Gν)λ∇λφ

+
1
2
∇(µG5X∇ν)φ

�
(�φ)2 − (∇α∇βφ)2

�
−∇λG5Rλ(µ∇ν)φ +∇α [G5X∇βφ]∇α∇(µφ∇β∇ν)φ

−∇βG5X

�
�φ∇β∇(µφ−∇α∇βφ∇α∇(µφ

�
∇ν)φ +

1
2
∇αφ∇αG5X

�
�φ∇µ∇νφ−∇β∇µφ∇β∇νφ

�

−1
2
G5XGαβ∇α∇βφ∇µφ∇νφ− 1

2
G5X�φ∇α∇µφ∇α∇νφ +

1
2
G5X(�φ)2∇µ∇νφ

+
1
12

G5XX

�
(�φ)3 − 3�φ(∇α∇βφ)2 + 2(∇α∇βφ)3

�
∇µφ∇νφ +

1
2
∇λG5Gµν∇λφ

+gµν

�
−1

6
G5X

�
(�φ)3 − 3�φ(∇α∇βφ)2 + 2(∇α∇βφ)3

�
+∇αG5R

αβ∇βφ

−1
2
∇α (G5φ∇αφ) �φ +

1
2
∇α (G5φ∇βφ)∇α∇βφ− 1

2
∇αG5X∇αX�φ +

1
2
∇αG5X∇βX∇α∇βφ

−1
4
∇λG5X∇λφ

�
(�φ)2 − (∇α∇βφ)2

�
+

1
2
G5XRαβ∇αφ∇βφ�φ− 1

2
G5XRαλβρ∇α∇βφ∇λφ∇ρφ

�



Original derivation by Deffayet et al.

Start with flat space; assume

(1)                                  

(2)       is polynomial in

and then covariantize

L = L(φ, ∂φ, ∂2φ)

Proof in arbitrary dimensions

–– D Lagrangians in D dimensions

Not completely general...

} Strong assumptions

Lagrangians that vanish in flat space 
seem missing (?)

However, at least in 4 dimensions
their result turns out to be the most general!

L ∂2φ

Deffayet, Gao, Steer, Zahariade (2011)

ξ(φ)
�
R2 − 4R2

µν + R2
µνρσ

�



Back in 70’s...

L = L(φ, ∂φ, ∂2φ, ∂3φ, · · · ; gµν , ∂gµν , ∂2gµν , ∂3gµν , · · · )

Horndeski (Lovelock’s student!) determined the most general 
scalar-tensor Lagrangian of the form

that has second-order field equations both for       and         in 4Dφ gµν

–––– The generalized Galileon was already discovered in 70’s ?!



International Journal of Theoretical Physics, Vol. 10, No. 6 (1974), pp. 363-384 

S econd-O rder S calar-T ensor Field Equations 
in a Four-Dimensional Space 

G R E G O R Y  W A L T E R  H O R N D E S K I  

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, 
Canada 

Received: 10 July 1973 

Abstract 
Lagrange scalar densities which are concomitants of a pseudo-Riemannian metric-tensor, 
a scalar field and their derivatives of arbitrary order are considered. The most general 
second-order Euler-Lagrange tensors derivable from such a Lagrangian in a four- 
dimensional space are constructed, and it is shown that these Euler-Lagrange tensors 
may be obtained from a Lagrangian which is at most of second order in the derivatives 
of the field functions. 

1. Introduction 

Our considerat ions  will be based upon  a real, four-dimensional ,  C = 
dif ferent iable  mani fo ld  M. It  will be assumed that  all field funct ions  are 
def ined global ly;  however ,  our w o r k  will be of  a purely local nature.  By a 
p seudo-Riemann ian  met r ic  for M we shall mean  a C = symmet r i c  (0, 2) tensor  
field on M which  associates a non-degenerate ,  symmet r ic  bil inear fo rm to  each 
fibre o f  the tangent  bundle  o fM.  I f x  (=x z) is a chart  for M the componen t s  o f  
the met r ic  will be deno ted  by gii, where Lat in  indices run f rom 1 to  4. The 
coeff ic ients  o f  the Chris toffel  connec t ion  de te rmined  by gii are 

r / k  = !g  (gjh, k + - gj ,h) 
where ~ h  is the mat r ix  inverse ofgii  and an index k (say) preceded by a 
c o m m a  denotes  a partial  derivative wi th  respect  to the local coord ina te  x x. I f  
yi  denotes  the cgmponen t s  o f  an arbitrary vec tor  field o f  class C 2 then the 
componen t s ,  RhZik, of  the Riemann-Chr i s to f fe l  curvature  tensor  are def ined 
by 

Yilj  k - Yillcj = YhRh~ k 

t The summation convention will be used throughout. 
Copyright © 1974 Plenum Publishing Company Limited. No part of this publication may 
be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, microfilming, recording or otherwise, without 
written permission of Plenum Publishing Company Limited. 
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Revisited recently by Charmousis et al. (2011)

Not listed in



From Horndeski to the GG
LH = δαβγ

µνσ

�
κ1∇µ∇αφR νσ

βγ +
2
3
κ1X∇µ∇αφ∇ν∇βφ∇σ∇γφ

+κ3∇αφ∇µφR νσ
βγ + 2κ3X∇αφ∇µφ∇ν∇βφ∇σ∇γφ

�

+δαβ
µν

�
(F + 2W )R µν

αβ + 2FX∇µ∇αφ∇ν∇βφ + 2κ8∇αφ∇µφ∇ν∇βφ
�

−6 (Fφ + 2Wφ −Xκ8) �φ + κ9

4 arbitrary functions of     andφ X W (φ) : absorbed into redefinition of F

∂XF (φ, X) = 2(κ3 + 2Xκ3X − κ1φ)

K = κ9 + 4X

� X

dX � (κ8φ − 2κ3φφ) ,

G3 = 6Fφ − 2Xκ8 − 8Xκ3φ + 2
� X

dX �(κ8 − 2κ3φ),

G4 = 2F − 4Xκ3,

G5 = −4κ1

The two theories are equivalent!

TK, Yamaguchi, Yokoyama 1105.5723



Particular cases

L4 = G4(φ, X)R + G4X

�
(�φ)2 − (∇µ∇νφ)2

�

G4 =
M2

Pl

2

G4 = f(φ)

L4 =
M2

Pl

2
R

L4 = f(φ)R

Einstein-Hilbert

Familiar non-minimal 
coupling

L2 = K(φ, X) All the k-inflation models

Example: DBI inflation

L = −f(φ)
�

1 + f−1(∂φ)2 + f − V (φ) Silverstein & Tong (2004)

Armendariz-Picon, Damour, Mukhanov (1999)



Particular cases contd.

ξ(φ)
�
R2 − 4R2

µν + R2
µνρσ

�

K = 8ξ(4)X2(3− lnX),
G3 = 4ξ(3)X(7− 3 ln X),
G4 = 4ξ(2)X(2− lnX),
G5 = −4ξ(1) lnX

Even non-minimal coupling to the 
Gauss-Bonnet term can be reproduced

L5 = G5(φ, X)Gµν∇µ∇νφ− 1
6
G5X

�
· · ·

�

G5 = −φ L5 = Gµν∇µφ∇νφ
Integration by parts

Sometimes used in 
inflation and dark 
energy models

e.g., Germani, Kehagias (2010)



Higher-order gravity theories
L = f(R)

f(R) models can be transformed to a scalar-tensor theory

L = f(φ) + fφ(R− φ)

This can also be transformed to a single-scalar theory, with 
non-minimal coupling to the Gauss-Bonnet term

L =
R

2
+ f(G )

G := R2 − 4R2
µν + R2

µνρσ

L =
R

2
+ f(φ) + fφ(G − φ)

Example: R2 inflation R +
R2

6M2
Starobinsky (1980)



Galileon from higher dimensions
Particular cases of the generalized Galileon can be derived from 
a probe brane embedded in a 5D bulk a la DBI

de Rham, Tolley (2010)
Goon, Hinterbicher, Trodden (2011)

ds2 = dy2 + f2(y)gµν(x)dxµdxν

y = φ(x)

qµν = f2gµν + ∂µφ∂νφ

Induced metric

Fixed bulk metric

S = −λ

�
d4x
√
−q

Probe brane action

S = −λ

�
d4x
√
−g f4

�
1 + f−2(∂φ)2

DBI = particular case of

Generalize this to S =
�

d4x
√
−qF (qµν , Rµνσλ,Kµν ,∇µ)

K(φ, X)



Probe brane Lagrangian that gives second-order equations of motion

Gibbons-Hawking

L =
√
−q

�
−λ−M3

5 K +
M2

4

2
R[q]− βKGB

�

Induced gravity Boundary term from 
bulk Gauss-Bonnet 

KGB := −2
3
K3

µν + KK2
µν −

1
3
K3 − 2GµνKµν

∼ L3

∼ L4
∼ L5

Brane is 4D: no higher induced Lovelock terms;
Bulk is 5D: no higher boundary terms



√
−qK =

√
−g

�
−4ff �X + · · · +

�
f2 ln γ

�
�φ

�

Integration by parts

⊂ K(φ, X) ⊂ G3(φ, X)�φ

γ :=
1�

1 + f−2(∂φ)2

√
−qR[q] =

√
−g

�
· · · +

f2

γ
R[g]− γ

�
(�φ)2 − (∇µ∇νφ)2

��

⊂ K, G3�φ ⊂ G4R + G4X [(�φ)2 − (∇µφ∇νφ)2]

√
−qKGB = · · · Minkowski bulk

Non-relativistic limit

f = 1, gµν = ηµν

X � 1

Flat space Galileon
> Shuntaro’s talk



Summary of Part 1
The most general scalar-tensor theory with second-order field 
equations is given by the generalized Galileons (in 4D)

L3 = −G3(φ, X)�φ

L2 = K(φ, X)

L4 = G4(φ, X)R + G4X

�
(�φ)2 − (∇µ∇νφ)2

�

L5 = G5(φ, X)Gµν∇µ∇νφ− 1
6
G5X

�
(�φ)3

−3 (�φ) (∇µ∇νφ)2 + 2 (∇µ∇νφ)3
�



G-inflation
– Inflation driven by the Galileon field –

2



Now we have a framework to deal with

the most general single-field inflation model
Why don’t we study inflation driven by the generalized 
Galileon, (generalized) G-inflation?

References

“G-inflation: Inflation driven by the Galileon field”
TK, Masahide Yamaguchi, Jun'ichi Yokoyama 
Phys. Rev. Lett. 105 231302 (2010) arXiv:1008.0603

“Higgs G-inflation”
Kohei Kamada, TK, Masahide Yamaguchi, Jun'ichi Yokoyama
Phys. Rev. D83 083515 (2011) arXiv:1012.4238

“Primordial non-Gaussianity from G-inflation”
TK, Masahide Yamaguchi, Jun'ichi Yokoyama
Phys. Rev. D83 103524 (2011) arXiv:1103.1740

“Generalized G-inflation: Inflation with the most general second-order field equations”
TK, Masahide Yamaguchi, Jun'ichi Yokoyama
PTP accepted, arXiv:1105.5723



Background

2-1

φ(t) a(t)



Background equations

S =
5�

i=2

�
d4x
√
−gLi

ds2 = −N2(t)dt2 + a2(t)dx2φ = φ(t)

δN

δa

δφ

5�

i=2

Ei = 0

5�

i=2

Pi = 0

J̇ + 3HJ = Pφ

ρ− 3M
2
PlH

2 = 0

p + M
2
Pl

�
2Ḣ + 3H

2
�

= 0

φ̈ + 3Hφ̇ = −Vφ

Corresponding standard equations



E2 = 2XKX −K,

E3 = 6Xφ̇HG3X − 2XG3φ,

E4 = −6H
2
G4 + 24H

2
X(G4X + XG4XX)− 12HXφ̇G4φX − 6Hφ̇G4φ,

E5 = 2H
3
Xφ̇ (5G5X + 2XG5XX)− 6H

2
X (3G5φ + 2XG5φX)

P2 = K,

P3 = −2X

�
G3φ + φ̈G3X

�
,

P4 = 2
�
3H

2 + 2Ḣ

�
G4 − 12H

2
XG4X − 4HẊG4X − 8ḢXG4X

−8HXẊG4XX + 2
�
φ̈ + 2Hφ̇

�
G4φ + 4XG4φφ + 4X

�
φ̈− 2Hφ̇

�
G4φX ,

P5 = −2X

�
2H

3
φ̇ + 2HḢφ̇ + 3H

2
φ̈

�
G5X − 4H

2
X

2
φ̈G5XX

+4HX

�
Ẋ −HX

�
G5φX + 2

�
2 (HX)˙+ 3H

2
X

�
G5φ + 4HXφ̇G5φφ

−G ν
µ“          “

Our “        “ includes “           “T ν
µ −G ν

µ

–– Distinction between gravitational and scalar-field parts is ambiguous

G4 = M2
Pl/2 reproduces Einstein gravity



J = φ̇KX + 6HXG3X − 2φ̇G3φ

+6H
2
φ̇ (G4X + 2XG4XX)− 12HXG4φX

+2H
3
X (3G5X + 2XG5XX)

−6H
2
φ̇ (G5φ + XG5φX)

Pφ = Kφ − 2X

�
G3φφ + φ̈G3φX

�

+6
�
2H

2 + Ḣ

�
G4φ + 6H

�
Ẋ + 2HX

�
G4φX

−6H
2
XG5φφ + 2H

3
Xφ̇G5φX

K = X − V (φ)For J → φ̇

Pφ → −Vφ



Structure of the equations
“Friedmann equation” (00 equation)

(· · · ) + (· · · )H + (· · · )H2 + (· · · )H3 = 0
L2 L3 L4 L5

ij and scalar-field equations

Not diagonal in second derivatives
Ḣ = (· · · )φ̈ + · · ·
φ̈ = (· · · )Ḣ + · · · In general, this mixing cannot be undone 

through conformal transformation

Cf. Usual (k-)inflation

Tij does not contain second derivatives of

gµν

φ

Scalar-field EOM does not contain second derivatives of

“Kinetic gravity braiding”
Deffayet et al. (2010)

~ ~ ~ ~



Background examples

(1) H is supported by potential energy;
(Slow-roll) scalar-field dynamics is modified by the 
G terms.

(2) H is supported by kinetic energy;
Completely different from usual slow-roll dynamics 
(generalization of k-inflation).

How do we get H ~ const?



1. Potential-driven model

Consider slowly rolling φ

K(φ, X) = −V (φ) + K(φ)X + · · ·
Gi(φ, X) = gi(φ) + hi(φ)X + · · ·

Suppose the 4 functions can be expanded in terms of X:

Slow-roll conditions:

� := − Ḣ

H2
� 1, φ̈� Hφ̇, J̇ � HJ, ġi � Hgi, ḣi � Hhi



E2 = 2XKX −K,

E3 = 6Xφ̇HG3X − 2XG3φ,

E4 = −6H
2
G4 + 24H

2
X(G4X + XG4XX)− 12HXφ̇G4φX − 6Hφ̇G4φ,

E5 = 2H
3
Xφ̇ (5G5X + 2XG5XX)− 6H

2
X (3G5φ + 2XG5φX)

“Friedmann equation”

V (φ)− 6H
2
g4(φ) � 0

g4 “1/16πG”φis     -dependent

Scalar-field EOM

3HJ � −Vφ + 12H
2
g4φ

J � (K − 2g3φ) φ̇ + 6
�
Hh3X + H

2φ̇(h4 − g5φ) + H
3
h5X

�
with

Friction term is modified

Application:
Enhance friction so that inflation proceeds even with a steep potential



Enhancing friction
Minimal example: L =

M2
Pl

2
R + X − V − h3(φ)X�φ

J �
�
1 + 3Hh3φ̇

�
φ̇ � −Vφ

� = − Ḣ

H2
=

�
1 + 3Hh3φ̇

�−1
× M

2
Pl

2

�
Vφ

V

�2

Standard expression 
in terms of potential

Suppresses the slope 
if Hh3φ̇� 1

Even when
we still have

Hh3φ̇� 1
V � |h3X�φ|



Chaotic G-inflation
V =

λ

n
φn h3 = − 1

M3

φ

M � = 1

MPl

3H
h3

φ̇ = 1

λ1/3M (n−1)/3
Pl

Std.

Standard inflation 
would not occur

φ

MPl

G-inflation can occur

V

Enhanced fri
ction

Kamada, TK, Yamaguchi, Yokoyama (2011)



Reheating

ln a

V =
λ

4
φ4

H
2

Non-trivial in general

Gi = gi(φ) + hi(φ)X + · · ·

K � X − V (φ)

But... arrange so that

around the minimum of V,

� const � 0

then reheating will proceed in an usual way

|φ|

∝
a −

4



2. Kinetically driven model
Shift symmetry: φ→ φ + c K = K(X), Gi = Gi(X)

Scalar-field EOM: J̇ + 3HJ = 0

J = φ̇KX + 6HXG3X

+6H
2φ̇ (G4X + 2XG4XX)

+2H
3
X (3G5X + 2XG5XX)

de Sitter attractor

5�

i=2

Ei = 0 = φ̇J −
�
K + 6H

2(G4 − 2XG4X)− 4H
3
Xφ̇G5X

�

� �� �

=: F (φ̇,H)→ 0

J(φ̇,H) ∝ a
−3 → 0

“Friedmann equation”

φ̇ = const.
H = const.

J(φ̇,H) = 0
F (φ̇,H) = 0

satisfying

TK, Yamaguchi, Yokoyama (2010, 2011)



φ

φ̇

de Sitter attractor

Stability? –– to be addressed shortly...

How does kinetically driven inflation end?



Exit from kinetically driven 
G-inflation

Shift symmetry                      must be broken in order to end inflation

φ

φ̇

φend

K(φ, X) � K(X)
for φ < φend

φ � φ̇inf t

The situation is essentially 
the same as k-inflation

φ→ φ + c

φ̇ = φ̇inf is no longer
a solution for φ > φend

K(φ, X)

K � X ∝ a−6

~ massless, canonical scalar

Reheating through gravitational 
particle production Ford (1987)

GW spectrum is enhanced at 
high frequencies

Everything in the world, 
including what you don’t 
want, will be produced



Perturbations

2-2 ζ
hij



Tensor perturbation
gij = a2 (δij + hij)

Substitute this to the action and 
expand to second order

S(2)
T =

1
8

�
dtd3x a3

�
GT ḣ2

ij −
FT

a2
(�∇hij)2

�

General quadratic action for tensor perturbations:

FT := 2
�
G4 −X

�
φ̈G5X + G5φ

��

GT := 2
�
G4 − 2XG4X −X

�
Hφ̇G5X −G5φ

��

TK, Yamaguchi, Yokoyama (2011)



S(2)
T =

1
8

�
dtd3x a3

�
GT ḣ2

ij −
FT

a2
(�∇hij)2

�

c2
T := FT /GTPropagation speed: c2

T �= 1 in general

Stability: FT > 0

GT > 0

– avoid gradient instabilities

– avoid ghost instabilities

Normalized mode: z hij =
√

π

2
√
−yH

(1)
ν (−ky)eij

z :=
a

2
(FTGT )1/4 dy :=

cT

a
dt

� = const, sT :=
ċT

HcT
= const, fT :=

ḞT

HFT
= const

Constant (slow) variation parameters

ν :=
3− �− 2sT + fT

2(1− �− sT )



Tensor power spectrum

nT = 3− 2ν

PT = 22ν

����
Γ(ν)

Γ(3/2)

����
2

(1− �− s)
G1/2

T

F3/2
T

H
2

4π2

�����
−ky=1

evaluated at sound horizon crossing

2� + sT + fT < 0nT > 0

In principle, this is possible without causing 
instabilities both in scalar and tensor modes



Curvature perturbation
Unitary gauge: δφ(t,x) = 0

ds2 = −N2dt2 + γij

�
dxi + N idt

� �
dxj + N jdt

�

N = 1 + α, Ni = ∂iβ, γij = a2(t)e2ζδij

S(2)
S =

�
dtd3xa3

�
−3GT ζ̇2 +

FT

a2
(�∇ζ)2 + Σα2

−2Θα
�∇2

a2
β + 2GT ζ̇

�∇2

a2
β + 6Θαζ̇ − 2GT α

�∇2

a2
ζ

�

defined in the next slide...

δα

δβ

Σα−Θ
�∇2

a2
β + 3Θζ̇ − GT

�∇2

a2
ζ = 0

Θα− GT ζ̇ = 0
Hamiltonian constraint

Momentum constraint

Get quadratic action for ζ

TK, Yamaguchi, Yokoyama (2011)



Σ := XKX + 2X
2
KXX + 12Hφ̇XG3X

+6Hφ̇X
2
G3XX − 2XG3φ − 2X

2
G3φX − 6H

2
G4

+6
�
H

2
�
7XG4X + 16X

2
G4XX + 4X

3
G4XXX

�

−Hφ̇
�
G4φ + 5XG4φX + 2X

2
G4φXX

��

+30H
3φ̇XG5X + 26H

3φ̇X
2
G5XX

+4H
3φ̇X

3
G5XXX − 6H

2
X

�
6G5φ

+9XG5φX + 2X
2
G5φXX

�

Θ := −φ̇XG3X + 2HG4 − 8HXG4X

−8HX
2
G4XX + φ̇G4φ + 2Xφ̇G4φX

−H
2φ̇

�
5XG5X + 2X

2
G5XX

�

+2HX (3G5φ + 2XG5φX)



Θ = −1
6

5�

i=2

∂Ei

∂H

Σ = X

5�

i=2

∂Ei

∂X
+

1
2
H

5�

i=2

∂Ei

∂H

Compact expressions



General quadratic action for curvature perturbation:

S(2)
S =

�
dtd3x a3

�
GS ζ̇2 − FS

a2
(�∇ζ)2

�

Sound speed: c2
s = FS/GS Stability: FS > 0, GS > 0

FS :=
1
a

d
dt

� a

Θ
G2

T

�
− FT

GS :=
Σ
Θ2

G2
T + 3GT

Garriga, Mukhanov (1999)FS = M2
Pl�

k-inflation

L =
M2

Pl

2
R + K(φ, X)

Ḣ > 0 unstable

In more general cases, the sign of
and the stability criteria are not correlated

Ḣ



Phase space of
kinetically driven G-inflation 3

FIG. 1: Schematic phase space diagram of G-inflation. The
line Ḣ = 0 does not coincide with the line c2

s = 0 in general,
and therefore stable violation of the null energy condition is
possible.

TH , they are copiously produced at the end of infla-
tion. Then, their out-of equilibrium decay can lead to
lepton asymmetry, which is converted to baryon asym-
metry through the sphaleron effects. In our scenario, the
decay parameter, which is defined as the ratio of the de-
cay rate of N1 to the Hubble parameter when N1 becomes
non-relativistic, is significantly suppressed compared to
the standard thermal leptogenesis scenario [11] because
the universe is dominated not by radiations but by the
inflaton. Thus, the wash out processes are significantly
suppressed and sufficient lepton (baryon) asymmetry is
easily produced.

The phase space diagram of G-inflation is depicted in
Fig. 1. It is interesting to note that in G-inflation the
null energy condition may be violated, i.e., 2M2

PlḢ =
−(ρ + p) > 0. The null energy condition violation can
occur stably [12, 13], in the sense that the squared sound
speed (to be defined shortly) is positive. We stress that
this can never occur in k-inflation because the sound
speed vanishes when ρ + p = 0 for the Lagrangian
Lφ = K(φ, X) [4].

We now move on to study scalar perturbations in this
model. The convenient gauge is such that the metric is
written as

ds2 = −(1 + 2α)dt2 + 2a2∂iβdtdxi + a2(1 + 2Rφ)dx2,(18)

and the fluctuation of the scalar field, δφ, vanishes (the
unitary gauge). In this gauge we have δT 0

i = −FX φ̇3∂iα,
and hence the δφ = 0 gauge does not coincide with the
comoving gauge δT 0

i = 0. Consequently, Rφ in gen-
eral differs from the comoving curvature perturbation Rc.
This point highlights the difference between the present
model and the standard k-inflationary model described
simply by Lφ = K(φ, X) [14]. It will turn out that the
variable Rφ is subject to an analogous wave equation to
the familiar Sasaki-Mukhanov equation.

Expanding the action (2) to second order in the pertur-
bation variables and then substituting the Hamiltonian
and momentum constraint equations to eliminate α and
β, we obtain the following quadratic action for Rφ:

S(2) =
1
2

∫
dτd3x z2

[
G(R′

φ)2 − F((∇Rφ)2
]
, (19)

where

z :=
aφ̇

H − FX φ̇3/2M2
Pl

, (20)

F := KX + 2FX

(
φ̈ + 2Hφ̇

)
− 2

F 2
X

M2
Pl

X2

+2FXXXφ̈ − 2 (Fφ − XFφX) , (21)

G := KX + 2XKXX + 6FXHφ̇ + 6
F 2

X

M2
Pl

X2

−2 (Fφ + XFφX) + 6FXXHXφ̇, (22)

and the prime represents differentiation with respect to
the conformal time τ . The squared sound speed is there-
fore c2

s = F/G. To avoid ghost and gradient instabilities
we require the conditions F > 0 and G > 0. One should
note that the above equations have been derived without
assuming any specific form of K(φ, X) and F (φ, X).

It is now easy to check whether a given G-inflation
model is stable or not. In the simplest class of models
(8), we have

F = −KX

3
+

XK2
X

3K
, G = −KX + 2XKXX − XK2

X

K
,(23)

where the “slow-roll” suppressed terms are ignored. For
the previous toy model (10) one obtains F = x(1 −
x)/6(1 − x/2) and G = 1 − x + (1 − x/2)−1. Since
0 < x < 1, both F and G are positive. In this
model, the sound speed is smaller than the speed of light:
c2
s ≤ (4

√
2 − 5)/21 % 0.031 < 1.

In the superhorizon regime where O((∇2) terms can be
neglected, the two independent solutions to the pertur-
bation equation that follows from the action (19) are

Rφ = const,
∫ τ dτ ′

z2G . (24)

The latter is a decaying mode in the inflationary stage
and in the subsequent reheating stage in our model, and
hence can be neglected. In this limit one can show that
Rφ coincides with the comoving curvature perturbation.

The power spectrum of Rφ generated during G-
inflation can be evaluated by writing the perturbation
equation in the Fourier space as

d2uk

dy2
+

(
k2 − z̃,yy

z̃

)
uk = 0, (25)

where dy = cs dτ , z̃ := (FG)1/4 z, and uk := z̃Rφ,k. Let
us again focus on the class of models (8). It is interesting

L =
R

2
−X +

X2

2M3µ
− X

M3
�φ

Stable violation of
the null energy condition



Normalized mode: z ζ =
√

π

2
√
−yH

(1)
ν (−ky)

z :=
√

2a (FSGS)1/4
dy :=

cs

a
dt ν :=

3− �− 2s + fS

2(1− �− s)

Constant (slow) variation parameters

� = const, s :=
ċs

Hcs
= const, fS :=

ḞS

HFS
= const

Power spectrum

Pζ = 22ν−4

����
Γ(ν)

Γ(3/2)

����
2

(1− �− s)
G1/2

S

F3/2
S

H
2

4π2

�����
−ky=1

ns − 1 = 3− 2ν
Approximately scale-invariant if ν � 3

2



Consistency relation

r = 16
FS

FT

cs

cT

(                     , Slow-variation parameters << 1)

Canonical inflation r = 16� = −8nT

k-inflation r = 16�cs = −8nT cs

r = PT /Pζ



Consistency relation in potential-driven G2

K(φ, X) = −V (φ) + K(φ)X + · · ·
Gi(φ, X) = gi(φ) + hi(φ)X + · · ·

FS � X

H2

�
K + 6H

2
h4

�
+

4φ̇X

H

�
h3 + H

2
h5

�

GS � X

H2

�
K + 6H

2
h4

�
+

6φ̇X

H

�
h3 + H

2
h5

�

FT � GT � 2g4

c2
s � 1

r � −8nT r � −32
√

6
9

nT

c2
s �

2
3

Usual consistency relation
New consistency relation

c2
T � 1



Non-Gaussianity

fNL

2-3



Let’s focus on the minimal example

L =
R

2
+ K(φ, X)−G(φ, X)�φ,

and evaluate �ζk1ζk2ζk3�

TK, Yamaguchi, Yokoyama (2011)

MPl = 1



Key quantities

c2
s :=

FS

GS

Recall the quadratic action –––

Sound speed

reduces to

in standard (k-)inflation (G=0)

σ �= � , not necessarily slow-roll 
suppressed in (kinetically driven) G2

r = 16σcs

Tensor-to-scalar ratio

� (= −Ḣ/H
2)

σ := FS

S =
�

dtd3x a3 σ

�
1
c2
s

ζ̇2 − 1
a2

(∂ζ)2
�



No new shapes beyond k-inflation...

I := XKXX +
2X

2

3
KXXX + Hφ̇GX + 6X

2
G

2
X

+5Hφ̇XGXX + 6X
3
GXGXX + 2Hφ̇X

2
GXXX

−2X

3
(2GφX + XGφXX)

Cubic action
S3 =

�
dtd

3
x a

3

�
C1

H
ζ̇3 + C2ζζ̇2 +

C3

a4H2
∂2ζ(∂ζ)2 +

C4

a2H2
ζ̇2∂2ζ + C5Hζ2ζ̇

+
C6

a4H
∂2ζ(∂ζ · ∂χ) +

C7

a4
∂2ζ(∂χ)2 +

C8

a2
ζ(∂ζ)2 +

C9

a2
ζ̇(∂ζ · ∂χ) +

2
a3

f(ζ)
δL

δζ

����
1

�

χ :=
a2σ

c2
s

∂−2ζ̇

C1 = −H

Θ
σ

c2
s

�
1 + 2

I
G

�
− 2φ̇X (GX + XGXX)

Hσ

c2
sΘ2

+
H

2σ

c4
sΘ2

,

C2 =
σ

c2
s

�
3− H

2

c2
sΘ2

�
3 + � +

2Θ̇
HΘ

��
,

C3 = −H
2φ̇XGX

Θ3
,

C4 =
2H

2φ̇X (GX + XGXX)
Θ3

,

C5 =
σ

2c2
sH

d

dt

�
H

2δ

c2
sΘ2

�
,

C6 =
2Hφ̇XGX

Θ2
,

C7 =
σ

4
− φ̇XGX

Θ
,

C8 = −σ +
H

2

Θ2

σ

c2
s

�
1− �− 2s− 2Θ̇

HΘ

�
,

C9 =
σ

c2
s

�
−2H

Θ
+

σ

2

�
,

σ

σ σ

σσ

σ

σ
σ

σ

�σ instead of

Creminelli et al. (2011); Reneux-Petel (2011)

at most four derivatives
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FIG. 1: The non-Gaussian amplitude A(1, k2/k1, k3/k1)(k2/k1)
−1(k3/k1)

−1 as a function of k2/k1 and k3/k1 for kinematicallly
driven G-inflation. The amplitude is normalized to unity at an equilateral configuration, k2/k1 = k3/k1 = 1. The parameters
are given by σ = 0.36, cs = 0.03, " = 1, and I/G = 1, so that r ! 0.17. The size of non-Gaussianity is fNL ! 210.

FIG. 2: The non-Gaussian amplitude A(1, k2/k1, k3/k1)(k2/k1)
−1(k3/k1)

−1 as a function of k2/k1 and k3/k1 for kinematicallly
driven G-inflation. The amplitude is normalized to unity at an equilateral configuration, k2/k1 = k3/k1 = 1. The parameters
are given by σ = 0.1, cs = 0.1, " = 60, and I/G = 1. The size of non-Gaussianity is fNL ! 204.

where ci, di, and M are arbitrary in principle. Given ν = φ̇XGX/H and # = φ̇X2GXX/H, the former is related to
XKX/K through the background equations, which in turn fixes the value of σ. The latter is related to c2

s , but since
the expression for c2

s contains both of the second derivatives KXX and GXX , c2
s can be chosen independently of #.

Third derivatives KXXX and GXXX appear only in the function I. In summary, in the case of kinematically driven
G-inflation, the non-Gaussian amplitude in the de Sitter limit is completely determined by the four parameters

σ, cs, #,
I
G . (102)

The four parameters can be written in terms of ci, di, and M , but in practice the expressions are quite involved. We
plot in Figs. 1–3 the shapes of non-Gaussianity for different parameters.

Another example of the non-Gaussian shapes we explicitly compute is given by potential driven G-inflation [16] in
the slow-roll approximation. In this case we have σ ! 4ε/3, c2

s ! 2/3, Θ ! H (1 − ε/3), and

I = −gHφ̇ + 6g2X2 +
4
3
Xgφ

! 1
6
G. (103)

Evaluating Non-Gaussianity

�ζk1ζk2ζk3� = −i

� t

t0

dt
��[ζ(k1, t)ζ(k2, t)ζ(k3, t),Hint(t�)]�

in-in formalism

Hint(t) = −
�

d3
x a

3

�
C1

H
ζ̇
3 + C2ζζ̇

2 + · · ·
�

�ζk1ζk2ζk3� = (2π)7δ(3)(k1 + k2 + k3)P2
ζ

A
k3
1k

3
2k

3
3

f equi
NL = 30

Ak1=k2=k3

(k1 + k2 + k3)3

A peaks at k1=k2=k3 (except in the 
case of fine-tuned parameters)



Size of Non-Gaussianity

f equi
NL = O

�
σ̃2

c2
s

�
+O

�
σ̃2 XGXX

GX

�
+O

�
σ̃
I

GS

�
, σ̃ := max{1,σ}

I := XKXX +
2X

2

3
KXXX + Hφ̇GX + · · ·C.f. r = 16σcs

k-inflation

r = 16�csfNL ∼
1
c2
s

Large fNL (r) Small r (fNL)

G-inflationσ = �

Both fNL and r can be large

σ �= �

Say,                 with
is possible in kinetically driven 
models

fNL = 210 r = 0.17

k1

k2

k3



The most general case

More complicated expressions for coefficients...

10

appeared in the second order action (41); and the remainder we call λi, (i = 1, · · · , 5), whose explicit expressions are:

λ1 = −
12Hφ′

a2
G(3)

,XX, (73)

λ2 = 1 + 2
[

G(2) − 4X
(

G(2)
,X +XG(2)

,XX

)]

+
12Hφ′

a2
X

(

5G(3)
,X + 2XG(3)

,XX

)

− 12X
(

2XG(3)
,Xφ + 3G(3)

,φ

)

, (74)

λ3 = 1 +
φ′

H
X

(

3G(1)
,X + 2XG(1)

,XX

)

+2
[

G(2) − 2X
(

5G(2)
,X + 2X

(

7G(2)
,XX + 2XG(2)

,XXX

))]

+
φ′

H

(

4X2G(2)
,XXφ + 8XG(2)

,Xφ +G(2)
,φ

)

+
6Hφ′

a2
X

[

25G(3)
,X + 4X

(

6G(3)
,XX +XG(3)

,XXX

)]

− 12X
(

4X
(

XG(3)
,XXφ + 4G(3)

,Xφ

)

+ 9G(3)
,φ

)

, (75)

λ4 = 1 + 2
(

G(2) + 4X2G(2)
,XX

)

−
12Hφ′

a2
X

(

3G(3)
,X + 2XG(3)

,XX

)

+ 12X
(

2XG(3)
,Xφ +G(3)

,φ

)

, (76)

λ5 = 1 +
a2

3H2

[

K − 2X
(

K,X + 6XK,XX + 4X2K,XXX

)]

+
2φ′

H
X

[

9G(1)
,X + 4X

(

4G(1)
,XX +XG(1)

,XXX

)]

−
2a2

3H2
X

(

4X2G(1)
,XXφ + 8XG(1)

,Xφ +G(1)
,φ

)

+2
[

G(2) − 4X
(

7G(2)
,X + 4X

(

10G(2)
,XX + 7XG(2)

,XXX +X2G(2)
,XXXX

))]

+
2φ′

H

(

8X3G(2)
,XXXφ + 36X2G(2)

,XXφ + 26XG(2)
,Xφ +G(2)

,φ

)

+
4Hφ′

a2
X

(

125G(3)
,X + 218XG(3)

,XX + 84X2G(3)
,XXX + 8X3G(3)

,XXXX

)

−12X
(

8X3G(3)
,XXXφ + 60X2G(3)

,XXφ + 98XG(3)
,Xφ + 27G(3)

,φ

)

. (77)

where again, λi are properly normalized. We wish to emphasize that (72) is exact— no approximationwas made in its derivation.
At this point, it is useful to recall the k-essence model values of λi’s, which are given by

λ1 = 0, λ2 = λ3 = λ4 = 1, (78)

λ5 = 1 +
a2

3H2

[

K − 2X
(

K,X + 6XK,XX + 4X2K,XXX

)]

. (79)

Using the background equations of motion, in k-inflation models, λ5 can alternatively be written as λ5 = − 4a2

H2 λ, where

λ = X2K,XX +
2

3
X3K,XXX ,

which is the “popular” combination which was introduced (e.g.) in [36] (note the original definition of λ has dimension asH2).
Thus λ5 is the natural generalization of λ in the Galileon model (6), whereas λ1, λ2, λ3 and λ4 are new parameters in Galileon
model, which are trivial in k-essence models. It is interesting to note that in G-inflation, λ1 = 0, λ2 = λ4 = 1 as in k-essence
model. Their corrections arise only when higher order Galileon terms, i.e. G(2) etc are included.
Finally, we can eliminateα and β in (72) using the constraint solutions (49)-(50). After another set of cumbersome integration-

by-parts, the number of cubic interaction terms surprisingly reduces from 25 to 10 and we obtain

S(3)[ζ] =

∫

dηd3xa2
{

Λ1

H
ζ′3 + Λ2ζ

′2ζ + Λ3ζ (∂iζ)
2 +

Λ4

H2
ζ′2∂2ζ + Λ5ζ

′∂iζ∂
iψ + Λ6∂

2ζ (∂iψ)
2

+
Λ7

H2

[

∂2ζ (∂iζ)
2 − ζ∂i∂j

(

∂iζ∂jζ
)

]

+
Λ8

H
[

∂2ζ∂iζ∂
iψ − ζ∂i∂j

(

∂iζ∂jψ
)]

+ F (ζ)
δL2

δζ

∣

∣

∣

∣

1

}

, (80)

with

ψ ≡ ∂−2ζ′. (81)
Gao & Steer 1107.2642

No new operators beyond k-inflation

G4 = G4(φ, X), G5 = G5(φ, X)

See also De Felice & Tsujikawa 1107.3917

Reneux-Petel (2011)



Summary of Part 2
The generalized Galileon offers a framework to study 
the most general single-field inflation model

We now have the most general quadratic (and cubic) 
actions for curvature and tensor perturbations, which can 
be used to determine stability and compute 2-(and 3-)
point functions of all the single-field inflation models

Non-Gaussianity: No new shapes beyond k-inflation, 
but large r and large fNL are compatible in more general 
models than k-inflation



Talk Plan

1. Introduction to the Galileon

2. G-inflation – Inflation driven by the Galileon field –

3. Galileon models of dark energy



Galileon models of 
dark energy

3



Many dynamical dark energy models and modified gravity models 
are described in a generic, unified manner by

√
−g

5�

i=2

Li +
√
−gLm

Most general scalar-tensor theory
= generalized Galileon

Ordinary matter:
dark matter, photons, baryons, ...

Assume matter is coupled to        , and not directly togµν φ

If you want to consider matter coupled to                       ,
a conformal transformation brings your theory to the above form

g̃µν = A(φ)gµν

* f(R) gravity is also in this class



Solar-system constraints on
scalar-mediated force

Severe constraint on Brans-Dicke theory (prototype example of ST theories)

θ
θ = 1.75��(1 + γ)/2

|γ − 1| < 10−4

L = φR− ω

φ
(∂φ)2 + Lm

ds2 = −(1 + 2Φ)dt2 + (1− 2Ψ)dx2

T00 = Mδ(3)(x)

Gravitational field around a point mass

γ =
Ψ
Φ

=
1 + ω

2 + ω

γ = 1Cf. General Relativity

Light bending

Will gr-qc/0103036



Screening mechanisms
Scalar d.o.f. must be screened somehow in the vicinity of matter

(1) Scalar d.o.f. is effectively massive
in the vicinity of matter
–– not fluctuate

(2) Scalar d.o.f. is effectively weakly coupled
in the vicinity of matter
–– fluctuate, but do not care

5�

i=2

Li ⊃ −V (φ)

5�

i=2

Li ⊃ (∂φ)2�φ, · · ·

Potential term at work

Non-linear derivative interaction 
at work

Chameleon mechanism

Vainshtein mechanism

Mota, Barrow (2004)
Khoury, Weltman (2004)

Vainshtein (1992)



Improving BD theory

L = φR− ω

φ
(∂φ)2 + f(φ)(∂φ)2�φ + Lm

G3 = 2f(φ)X

Schematically,

�φ ∼ φR ∼ ρ G3�φ ∝ ρ(∂φ)2

Large kinetic term at high densities

ω � ωeff ∝ ρ

Add Galileon-type interaction to BD theory



Scalar-mediated force
L = φR− ω

φ
(∂φ)2 + f(φ)(∂φ)2�φ + Lm

φ ∼ G−1

Around a point mass,

f ∼ G2r2
c

∂rφ

M2
Pl

=
3 + 2ω

4
r

r2
c

�
1−

�

1 +
8

(3 + 2ω)2
rSr2

c

r3

�

Cf. gravitational force ∂rΦ ∼ rS/r2

Fφ ∼ O

�
1

3 + 2ω

�
Fgrav

Fφ ∼ O

�
r3/2

r3/2
V

�
Fgrav � Fgrav

r � rV := (rSr2
c )1/3

r � rV

rV

Fφ � Fgrav

Fφ ∼ Fgrav

rc ∼ H
−1
0For

rV ∼ 10 pc
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Some Galileon models for late-time 
acceleration
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Cosmology of BD +

G3 = 2f(φ)X, f(φ) =
r2
c

φ2

�
2φ

M2
Pl

�α

∝ φα−2

BD + L3 + LmTwo-parameter model

ω

α

L3

Early-time behavior

Late-time behavior

H � r
−1
c

3H
2 � 8πGρ Standard cosmology is not destroyed

1 + weff →
α

3

�
−2 + α±

�
−6ω − (2− α)(4 + α)
ω + 2− α

�

> 0 for α > 0
= 0 for α = 0
< 0 for α < 0

H � r
−1
c

Chow, Khoury (2009); Silva, Koyama (2009); TK, Tashiro, Suzuki (2010); TK (2011)
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FIG. 1: Dimensionless physical distance for ω = −500 and
various α.
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FIG. 2: Effective equation of state weff as a function of z for
ω = −500 and various α.

where

s :=
−(2 − α) ±

√
−6ω − (2 − α)(4 + α)

ω + 2 − α
. (12)

In order for s to be real, we require ω < −(2−α)(4+α)/6.
This includes the parameter range in which the scalar
field would be a ghost in the usual Brans-Dicke theory,
i.e., ω < −3/2, but the situation is drastically changed by
the introduction of the non-linear derivative interaction
and the model does not suffer from the pathology (see
the Appendix). For negatively large ω, we have s ∼
O(|ω|−1/2) # 1 and hence |Ḣ/H2| # 1, leading to a
quasi-de-Sitter expansion. The Hubble rate is explicitly
given by H = (αst + C)−1, where C is an integration
constant. Equation (4) with ρm = 0 gives λ2(σ)H2 =
(2 + s)/s3. The scale rc must be tuned to satisfy this
relation.

The solution (11) is our candidate for the future
asymptotic solution. In order to work out the background
evolution from the beginning of the matter-dominated

stage and to see the future asymptotic behavior of the
cosmological solution, Eq. (5) and (6) are solved numeri-
cally with the initial conditions given by the above early-
time solution. In Fig. 1 we show the dimensionless phys-
ical distance, r(z) := H0

∫ z
0 dz′/H(z′), for ω = −500 and

various α. Here, z is the redshift and the present time
t0 is determined from ρm/3M2

PlH
2|t=t0 = Ωm0, where we

use Ωm0 = 0.3 throughout the paper. We see that the
cosmic expansion histories in the Galileon models mimic
that of the ΛCDM model, and the difference is less than
5 percent for the plotted examples. A closer look shows
that Galileon cosmology is more similar to phantom dark
energy models at the background level, as is obvious also
from the behavior of the effective equation of state weff

that will be investigated shortly. One can confirm that
the initial deviation of σ̇ from the value given by Eq. (9)
does not change the result.

The effective equation of state, weff := −ρ̇eff/3Hρeff −
1, is shown in Fig. 2 for ω = −500 and various α. We
plot the range t ! t0 so that we can see the asymptotic
behavior 1 + weff → −2Ḣ/3H2 ≈ αs/3. A phantom-
like behavior is found at low z, but 1 + weff gets posi-
tive eventually for α > 0, crossing the phantom divide.
Therefore, the phantom-like behavior is temporary and
the big rip singularity can be avoided in this case. In con-
trast, 1 + weff remains negative in the future for α < 0,
leading to the singular fate of the universe, H → ∞.

Since ρeff ∝ H ≈ 2/3t at early times, we have weff →
−1/2 as z → ∞. The effective dark energy density is neg-
ative initially and evolves into ρeff > 0 at lower z, which
implies that ρeff crosses zero at some z = z∗ and we have
weff → ±∞ as z → z±∗ . However, this divergence is an
artifact of the definitions of ρeff and weff and no anomaly
is seen in the evolution of H(z). The whole behavior of
weff is most similar to what is found in the normal branch
of the DGP braneworld with the additional cosmological
constant or a quintessence field on the brane [26–28].

III. DENSITY PERTURBATIONS

A. Some preliminaries

In various dark energy models and modified gravity
models the governing equations for the homogeneous
background and the cold dark matter density perturba-
tion δ can often be written in the form

3M2
PlH

2 = ρm + ρeff , (13)

δ̈ + 2H δ̇ =
ρm

2M2
Pl

ξδ. (14)

Here, ξ = ξ(t) represents the ratio of the effective grav-
itational coupling “Geff” to G [:= 1/(8πM2

Pl)], which in

ω = −5001 + weff = − ρ̇eff

3Hρeff

TK (2011)



Shift-symmetric scalar
–– Recall kinetically driven G-inflation

5�

i

Ei

� �� �
+ρ = 0

= φ̇J����−F (φ̇,H)

J(φ̇,H) ∝ a
−3

“Friedmann equation”

K = K(X), Gi = Gi(X)

Scalar EOM

Along the attractor,

F (φ̇,H) = ρ

J(φ̇,H) = 0

de Sitter

Recent applications

“Kinetic gravity braiding”

“Purely kinetic coupled gravity”

Gubitosi, Linder (2011)

Deffayet et al. (2010)
Kimura, Yamamoto (2011)

can mimic phenomenological models 
of modified Friedmann equation

F̃ (H) = ρ

G3 ∝ Xn

Gµν∂µφ∂νφ G4 ∝ X



Kimura, Yamamoto (2011)

Along the attractor,

J = −φ̇ + 6HXG3X = 0

K = −X, G3 ∝ Xn

3M
2
PlH

2 −
�
X + φ̇J

�
= ρ

Friedmann equation

�
H

H0

�2

=
Ωm0

a3
+ (1− Ωm0)

�
H

H0

�α

α = − 2
2n− 1

Reproduce the phenomenological 
model of Dvali and Turner (2003)

n = 1
n =∞

– covariant Galileon

– LCDM

n!5
n!2
n!1
"CDM
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Figure 1. Left panel: The effective equation of state weff as a function of redshift for ΛCDM (solid
curve) and the kinetic braiding mode with n = 1 (dashed curve), n = 2 (dash-dotted curve), and
n = 5 (dotted curve), respectively. Right panel: The comoving distance χ(z), normalized by H0, as
a function of redshift for ΛCDM and this model.

where

κ(a) = KX +KXX φ̇2 − 2Gφ −GXφφ̇
2

+ 6GXHφ̇+ 3GXXHφ̇3 + 12πGG2
X φ̇4, (2.31)

β(a) = KX − 2Gφ +GXφφ̇
2 + 2GX(φ̈+ 2Hφ̇)

+GXX φ̇2φ̈− 4πGG2
X φ̇4. (2.32)

To avoid ghost and instability, we require κ(a) > 0 and c2s = β(a)/κ(a) > 0, respectively.
One of the attractor solution, φ̇ = 0, has obviously ghostly perturbation since κ = −1 < 0
in our model. Using the attractor condition (2.17), κ(a), β(a), and c2s(a) can be written in
terms of Ωm(a) and Ωr(a) as

κ(a) = (2n − Ωm(a)− Ωr(a)), (2.33)

β(a) =
n(5Ωm(a) + 6Ωr(a))− (Ωm(a) + Ωr(a))2

3(2n − Ωm(a)− Ωr(a))
, (2.34)

c2s(a) =
n(5Ωm(a) + 6Ωr(a))− (Ωm(a) + Ωr(a))2

3(2n − Ωm(a)− Ωr(a))2
. (2.35)

Throughout the evolution of the universe, the matter density parameter Ωm(a) is always less
than unity, therefore, we require n > 1/2 to avoid ghost instability, κ > 0. In figure 2, the
evolution of the sound speed of perturbations is plotted. The asymptotic behavior of the
sound speed is given by

c2s "











6n − 1

3(2n − 1)2
(radiation − dominated era),

5n − 1

3(2n − 1)2
(matter − dominated era).

(2.36)

It is worthy to note the fact that the sound speed of the galileon field perturbation
becomes zero for n = ∞. In section 4, we show that the linear cosmological perturbation
reduces to that of the ΛCDM model. In a case of large but finite value of n, the time-
dependence of the galileon field perturbation will become important even on sub-horizon
scales. For a case of small value of n, e.g., n <∼ 10, we can use the quasi-static approximation
safely on small scales, which is demonstrated in section 4.
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Density perturbations
3-2

The aim: test/distinguish different models of
 dark energy and modified gravity



Density perturbations in
the most general ST theory

TK, to appear

For all the ST theories with second-order field equations, the sub-
horizon evolution of the density perturbation is described by

4πGeff
δ̈ + 2H δ̇ =

ξ(t; k)
2

ρmδ

This can be shown by using the quasi-static approximation

∂t ∼ H � ∂i

a



ds
2 = −(1 + 2Φ)dt

2 + a
2(t)(1− 2Ψ)dx2

, Q = H
δφ

φ̇

ij equation

FT Ψ− GT Φ =

�
ĠT

H
+ GT − FT

�
Q Cf. GR Ψ− Φ = 0

00 equation

GT
∇2

a2
Ψ +

�
GT −

Θ
H

�
∇2

a2
Q � 1

2
ρδ

�
Θ̇
H2

+
Θ
H

+ FT − 2GT − 2
ĠT

H
− E + P

2H2

�
∇2

a2
Q + m

2 X

H2
Q

−
�
ĠT

H
+ GT − FT

�
∇2

a2
Ψ−

�
GT −

Θ
H

�
∇2

a2
Φ � 0

Scalar-field equation

m2 := −Kφφ

∇2

a2
Φ =

ξ

2
δρ

ξ :=

�
Θ̇ + HΘ

�
FS +

�
ĠT − Θ̇GT /Θ

�2
+ FT

�
(E + P)/2 + Xa

2
m

2
/k

2
�

Θ2FS + G2
T [(E + P)/2 + Xa2m2/k2]

∇µTµ(m)
ν = 0 Evolution equation for δ



Schematically...
δ/a

a

ξ � 8πGN

ξ � 8πGN

ξ > 8πGN

Accelerating UniverseMatter dominant Universe

δ ∝ a

LCDM

ξ < 8πGN



BD +       modelL3
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Α � 4

ω = −500

Geff(t) > G at late times



Characterizing growth history

Wang, Steinhardt  (1998)
Linder (2005)
Linder, Cahn (2007)

Growth factor :

Growth rate:

Growth index:

g = δ/a

f =
d ln δ

d ln a

f = [Ωm(a)]γ , Ωm(a) =
ρm

3M
2
PlH

2

γ � 0.55

γ � 0.69

γ

γ

Useful discriminant for distinguishing 
different models

LCDM

DGP

f(R) small
Gannouji, Moraes, Polarski (2009); Tsujikawa, Gannouji, 
Moraes, Polarski (2009); Narikawa, Yamamoto (2009);
Motohashi, Starobinsky, Yokoyama (2010); ...

approximately constant



BD +       modelL3
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9 � 16

6 � 11
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ω = −500
artifact of definition

TK (2011)



Integrated Sachs-Wolfe effect

Blue shift = Red shift

Blue shift ≠ Red shift

Φ̇ + Ψ̇ = 0

Φ̇ + Ψ̇ �= 0

CMB photon

δT

T
�

δT

T

�

ISW

=
�

dη [Φ� + Ψ�]



Late ISW –– powerful dark energy probe

Φ̇ + Ψ̇ �= 0 in the accelerating Universe

ISW

Difficult to measure ISW because:

✓ SW >> ISW
✓ Cosmic variance

This problem can be evaded:

✓ ISW is correlated with matter density through potential
✓ Primary CMB is generated long before and is not correlated

CMB-galaxy cross-correlation Crittenden, Turok (1995)



ISW in KGB
w/ Rampei Kimura, Kazuhiro Yamamoto (Hiroshima), to appear

L =
R

2
−X −G(X)�φ, G ∝ Xn

Kimura-Yamamoto model:

Quasi-static approximation is insufficient; need full perturbation analysis

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.8

1.0

1.2

1.4

1.6

z

!

n"1

Figure 3: n = 1で数値的に解いたΦの進化。赤い点線は準静的近似のもとで計算したもの。実
線は下から k = 0.0001, 0.00023, 0.00056, 0.0013, 0.0031, 0.0074, 0.017, 0.042, 0.1 hMpc−1。

3.2.3 Full cosmological perturbations

• 準静的近似は定量的にどの程度正しいのか？

• ISWなどの大スケールで現れる効果を正しく評価するためにも必要

アインシュタイン方程式、上から 00, 0i, ijトレース部分:

−6H
(
Φ̇ + HΦ

)
+ 2

∇2

a2
Φ = κ (δρ + δρφ) , (3.37)

−2
(
Φ̇ + HΦ

)
= κ (δq + δqφ) , (3.38)

2
[
Φ̈ + 4HΦ̇ +

(
3H2 + 2Ḣ

)
Φ

]
= κ (δp + δpφ) , (3.39)
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Figure 4: n = 5000。あとは Fig.3と同じ。

ここで

δρφ =
(
KX + 2KXXX − 2Gφ − 2GφXX + 6HGXX φ̇X

)(
φ̇Q̇ − 2XΦ

)

−2GXX
∇2

a2
Q +

(
2KφXX − Kφ + 6HGφX φ̇X − 2GφφX

)
Q

+18HGXXQ̇ − 24HGXXφ̇Φ − 6GX φ̇XΦ̇, (3.40)

δqφ = −
(
KX φ̇ + 6HGXX − 2Gφφ̇

)
Q + GX φ̇

(
φ̇Q̇ − 2XΦ

)
, (3.41)

δpφ =
(
KX − 2Gφ − 2XGφX − 2GXX φ̈X

) (
φ̇Q̇ − 2XΦ

)

+
(
Kφ − 2GφX φ̈X − 2GφφX

)
Q

−2GXẊQ̇ + 8GX φ̈XΦ + 2GX φ̇XΦ̇ − 2GXXQ̈. (3.42)

スカラー場の運動方程式:

GQ̈ +
[
Ġ + 3HG − κGX φ̇X (3F + G)

]
Q̇ − F∇2

a2
Q + M2Q

− (3F + G) φ̇Φ̇ −
[
φ̇Ġ + (2φ̈ + 3Hφ̇)G + 3φ̇HF − 2κGXX2 (3F + G)

]
Φ

= κGXX (δρ + 3δp) . (3.43)
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k = 0.0001 hMpc−1

k = 0.1 hMpc−1k < k∗ : Φ̇ + Ψ̇ < 0
k > k∗ : Φ̇ + Ψ̇ > 0
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Large n Large k*

Φ + Ψ

z



Galaxy-LSS Cross-correlation
Data from Giannantonio et al. ’08

3

2MASS
-2.0

-1.0

0

1.0

C
C
F
(θ
)
[µ
K
]

SDSS galaxies LRG

NVSS

0 5 10

θ [deg]

-0.5

0

0.5

C
C
F
(θ
)
[µ
K
]

n = 1
n = 10

HEAO

0 5 10

θ [deg]

n = 100
n = 1000

QSO

0 5 10

θ [deg]

n = 5000
ΛCDM

FIG. 1: The cross correlation function theoritically calculated
by using Eq. (11) and the data obtained in [26]. Eash curve
shows the cross correlation function of ΛCDM model, KGB
model with n = 1, n = 10, n = 100, n = 1000, and n = 5000,
from the top to bottom. The cosmological parameters are the
values of WMAP 7 year and bias is also fixed at the value of
ΛCDM model.

cross correlation function for the kinetic gravity braid-
ing model with large n approaches that for the ΛCDM
model. This is because the sound speed of the galileon
field becomes zero in the limit of n → ∞ [17]. Another
important feature in the Fig. 1 is the anti-correlation in
the kinetic gravity braiding model with small n. The
enhancement of the effective gravitational constant Geff

leads to the growth of the gravitational potential. Thre-
fore, the sign of the function dUk(z)/dz would change
differently from the ΛCDM model. On the other hand,
measurements of the cross correlation function in each
catalog indicate a positive cross-correlation function. Al-
though the values of the galaxy bias are for the ΛCDM
model, the background evolution for the kinetic gravity
braiding model with n > 100 is almost identical to the
ΛCDM model. In addition, the growth of density pertur-
bations is similar for n > 1000 and we expect that the
power spectrum is also identical to the ΛCDM model for
n > 1000. Therefore, the kinetic gravity braiding model
with large n approximately has the same value of the
galaxy bias for the ΛCDM model. For small n, which
corresponds to n < 100, the cross-correlation is negative,
therefore it does not matter when constraining the model
parameter because it is already ruled out.
The total chisquared is given by

χ2
total =

∑

i,j

(cobsi − ctheoi )C−1
ij (cobsj − ctheoj ), (14)

where cobsi is the cross-correlation function obtained from
observations, ctheoi is the cross-correlation function theo-

2MASS

1 2 3 4 5

logn

0

10

20

χ
2

SDSS galaxies

1 2 3 4 5

logn

25

50

χ
2

LRG

1 2 3 4 5

logn

0

10

20

χ
2

NVSS

1 2 3 4 5

logn

0

50χ
2

χ
2

HEAO

1 2 3 4 5

logn

0

50χ
2

1σ

QSO

1 2 3 4 5

logn

0

25

χ
2

2σ

FIG. 2: χ2 for the six galaxy catalogues as a function of the
model paramter. The dashed curve and solid curve are the
1σ and 2σ confidence levels, respectively.

retically predicted from Eq. (11), and C−1
ij is the inverse

of the covariance matrix obtained from [26]. Fig. 2 shows
the χ2 for the six galaxy catalogues as a function of the
model paramter. The best-fit value for the model param-
eter n is log n = 4.1+0.9

−0.4 and χ2
total = 49. As we expected

from Fig. 1, the kinetic gravity braiding model with small
n is obviously ruled out, and the kinetic gravity braiding
model with large n is favored by observations.

In addition to the KGB model, we present the obser-
vational contraints on the parametrized model, whose ef-
fective gravitational constant is given by Eq. (8). Fig. 3
shows Contour of ∆χ2 on the g1 − g2 plane. We
used the cosmological parameters from WMAP 7 year
[31], and the background expansion are assumed to be
the ΛCDM model. For each parameter, we assume
that the galaxy bias is determined by the amplitude of
the power spectrum of the matter distribution, b(i) =

D1(z
(i)
∗ )/D(ΛCDM)

1 (z(i)∗ ), where z(i)∗ is the mean redshift
of the i-th catalog. The result shows that the deviation
of effective gravitational constant from the Newton’s con-
stant has to be very small, as expected in [30]. The stan-
dard galileon model can be expressed as g1 ∼ 0.6 − 1.0
and g2 = 3 − 4 and obviously these paramter range is
ruled out.

CONCLUSION

In this paper, we focus on observational constrains
on the kinetic gravity braiding model from the cross-
correlation function betwween the galaxy distribution
and the Integrated Sachs-Wolfe effect. We found that the
correlation function of the kinetic gravity braiding model
with small n has a negative and these behavior is not fa-

n >∼ 104 (95% C.L.)

n=1
n=10

n=100
n=1000

ΛCDM
n=5000

Slide by Rampei Kimura



Summary of Part 3
Dark energy and modified gravity models with a single scalar 
degree of freedom (in addition to metric) are described by 
the generalized Galileon

Implications for cosmological observations are interesting

Growth of matter perturbations / ISW / ...

Need screening mechanism:
Chameleon / Vainshtein



Conclusion

The generalized Galileon is the most general scalar-
tensor theory with second-order field equations 
(equivalent to Horndeski’s theory)

The generalized Galileon is a useful framework to study inflation 
and dark energy models in a generic/unified/systematic way

The Galileon extends far beyond a specific scalar-field theory

New models and new scenarios, as well as all the previous 
examples proposed so far in the single-field context

Large GWs / large non-Gaussianity /             ......Ḣ > 0


