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Scalar fields play an important role in cosmology

Inflation / Dark energy

In this talk, | will describe the (most general extension of the)
Galileon and its applications to cosmology

The Galileon extends far beyond a specific scalar-field theory!



Talk Plan

1. Introduction to the Galileon

2. G-inflation — Inflation driven by the Galileon field -

3. Galileon models of dark energy



Introduction to the
Galileon



Scalar-field Lagrangian | st derivative

1
i — —5(8@2 — V(o)
Fuler-Lagrange equation " Ind-order EOM
L/
p—Vy=0

L= L(p,00, 0%, - - - ) has higher-order EOM?
— No, not necessarily

Tensor example: tinstein-Hilbert

R > Iy, D 89,



Example; ((*) appears in an effective description ofJ

- the brane-bending mode in DGP
2 N~ _
L5 (0¢)"Uo ()

sy EOM > (00)° — (3,0,6)(0"0"6)

\

2nd-order EOM The term 98,¢0"0¢

IS canceled out

(*) has the Galilean shift symmetry:

¢— ¢+uvt +c ﬁ
Op® — O + vy

looks like Galilel transformation

\

Look for scalar-field Lagrangians having:

(i) Galilean shift symmetry;
(ii) 2nd-order EOM



Nicolis, Rattazzi, Trincherini (2009)

Galileon (in flat space)

Only 5 possible Lagrangians that have the two properties:

Cif= ¢,

L, = (99),

Ly = (99)°0¢,

Ly = (90)*|(06)° — (9,0,9)°

Ly = (9¢) |(@9)° - 3(0¢) (9,0,9)° +2(8,0,9)° |




Deffayet, Esposito-Farese, Vikman (2009)

Covariantization

Coupling to gravity: 9, — V,,

Forget about Galilean shift symmetry,
maintain 2nd-order equations both for ¢ and g..

Computation example:

i{(0¢)2 (00 = (VuVud)’|} D ()" [0V - V068, —» ()" RuV"¢

0
() [H0¢ — V,.00VHg)

, " -
L_~==> ~RV, V¢ — S VIRV 6

Add non-minimal coupling such as [(0¢)°]°R
so as to cancel higher-derivative terms



Deffayet, Esposito-Farese, Vikman (2009)

Covariant completion of Galileon

Galilean shift symmetry is now abandoned...

0)* — (V,V,9)°|,

Non-minimal coupling to gravity

-5 |(09)° = 3(09) (V,V,9) +2(V,V,0)° .



Question

Can we further generalize the Galileon
while maintaining the 2nd-order property?

What is the most general Lagrangian of the form
L= £(¢7 a¢7 82¢7 83¢7 s 9uv ag,uua aQQ,ul/a agg,uua T )

having 2nd-order field equations?



Answer

Generalized Galileon



Deffayet, Gao, Steer, Zahariade (2011)

Generallzed Gallleon

k- mﬂa’uon/k essence

N — )
s P - (52 = (¢ X)
4 arbitrary functions of @ and X " / -
i ([13 — —Gg(@b, ) ¢

J

(54 X)R+ Gux {( ) — (Vu\/u€b)2] \

L5 = G5(6, X)Gpu V'9"6 — < Gsx[(09)°

~3(06) (V,uV00) +2(V,V,0)°| |

_J

_J
~




1 1
GiGy — §G4XRVM¢V,,¢ X 5G4XX (O9)? — (VaVsd)?| VoV, ¢ — Gax0OpV V¢
+Gux VAV, V'V, + 2V\Gax VAV (,0V ¢ — VAGax VOV, Vb + g (Ga0d — 2X Gapg)

L {_2G4¢Xvavﬁ¢v%v% + GuxxVaVrdVVeV9VPe + %G4X (B6)° = (VaVse)*] }

+2 [Gux Ba(u Vi 0V ) — V(,Gax V) d0¢] — guv [Gax RV oV 3¢ — VaGax V> ¢0¢]
+Gax Ruows VeV — GagV V¢ — GapsV 10V + 2Gasx VOV AV (L, 0V, ¢
—G4XXVO‘¢VQVM¢VB¢V5VV¢

1
+G5x RagV OV V (,0V )6 — Gsx Ra(u V)¢V ¢1¢ — 5 Gsx RagV oV $V V16

——G5XRMWV%V%D¢ = G5XRQ,\5<M NOVOVEVP ) + Gsx Ranp (W Vo)V V¥V &
1

2V [C5x V8] VoV ,yé06 + §v(ﬂ Gs5V,)0] O — Vi [GssV (,6] V) VA

T
+5 [Va (G56V78) = Va (G5x Vo) VIVI] ViV + VG5V ORa(uns — V(uGsGiya V76

+%V(MG5xvu)¢[(D¢)2—(Vanb)] VAG5 R\ V)¢ + Va [Gsx Vg VIV (,6V V) ¢

—VsGsx [O6VPV (¢ — VOVPOV LV (,0] Voo + §va¢vaG5X O¢V V., — VsV, 6V°V,

6

1 1 1

—§G5XG045VO‘VB¢V”¢VV¢ = §G5XD¢Vavu¢Vavu¢ + §G5X(D¢)2vuvv§b
1 1

+EG5XX [(Dﬁb)g — 30¢(Va V) + Q(Vavﬁgb)ﬂ VoV + §VAG5GW/V)\¢

+guy{—éG5X [(@¢)° = 30¢(VaVs$)? +2(VaVs$)®] + VaG5R* V¢

1 1 1 1
NV (G VNN = =V (G V) VEVPD — — V. Gev VXD -~ - V.. G-+ Va2 XV



Deffayet, Gao, Steer, Zahariade (2011)

Original derivation by Deffayet et al.

s

|

+

Proof in arbitrary dimensions @

— D Lagrangians in D dimensions

Start with flat space; assume ,
(1) L= L(¢,09,0°¢)
(2) L is polynomial in 9%¢
and then covariantize

J

However, at least in 4 dimensions

Not completely general... g

Strong assumptions

Lagrangians that vanish in flat space
seem missing (?)

£(¢) (R°—4R.,+ R, )

uv po

o

their result turns out to be the most general



Back in 70’s...

Horndeski (Lovelock's student!) determined the most general
scalar-tensor Lagrangian of the form

L= L(},00,0%0,0%D, 3 Gy, 09y, 0 Gy, > Gy, -+ )

that has second-order field equations both for ¢ and guv in 4D

—— [he generalized Galileon was already discovered in /0’s /!



International Journal of Theoretical Physics, Vol. 10, No. 6 (1974), pp. 363-384

Revisited recently by Charmousis et al. (2011)

Second-Order Scalar-Tensor Field Equations
in a Four-Dimensional Space

GREGORY WALTER HORNDESKI

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario,
Canada |

Received: 10 July 1973

Not listed in —p Google
Abstract

Lagrange scalar densities which are concomitants of a pseudo-Riemannian metric-tensor,
a scalar field and their derivatives of arbitrary order are considered. The most general
second-order Fuler~Lagrange tensors derivable from such a Lagrangian in a four-
dimensional space are constructed, and it is shown that these Euler-Lagrange tensors
may be obtained from a Lagrangian which is at most of second order in the derivatives
of the field functions.




From Horndeski to the GG

P VA VA v v Vi v

oy

OxF(¢,X) = 2(k3 + 2X kax — K1g)
4 arbitrary functions of ¢ and X W (¢): absorbed into redefinition of F

The two theories are equivalent!

X
K = K9+ 4X/ dX’ (HSqﬁ - 2’i3¢¢) ;
X
Gs = 6Fy; —2Xkg —8XK3zp + 2/ dX/(KJS — 2/433¢)7
Gy = 2F —4Xkg3,

. TK, Yamaguchi, Yokoyama 1105.5723



Particular cases

L — Ko, X) All the k-inflation models

: \ Armendariz-Picon, Damour, Mukhanov (1999)
Example: DBI inflation

i = \/1 —+ f ¢) -+ f — V(¢) Silverstein & Tong (2004)

© Li = Gu(dX)R+Gax [(09) — (VuV.0)’]

2 2
Gy = % —» L, = %R Einstein-Hilbert
Gy = f(¢) —p L4 = f(¢)R Familigr non-minimal

coupling



Particular cases contd.

© L5 = G5<¢,X>Guyv“vvcp_EGM[...}

Sometimes used In
inflation and dark

(s, — “ L5 = GMVVM¢VV¢ energy models
________________________________ lntegrat'onbyparts e.g., Germani, Kehagias (2010)
K = 8WX?(3—-InX),
Gy = 4¢¥X(7-3InX),
G = 4€(Q)X(2 = In X), Fven non-minimal coupling to the
Gy = —45(1) In X Gauss-Bonnet term can be reproduced

Qs £(6) (B4R, + L)



Higher-order gravity theories

C L=fR) —» L=[(¢) +fs(R—9)

f(R) models can be transformed to a scalar-tensor theory

R2

Example: R? inflation R A VE Starobinsky (1980)
R R
© L= +f@) —> L=5+f0)+ (@9
4 :=R’—4R.,+R., .

This can also be transformed to a single-scalar theory, with
non-minimal coupling to the Gauss-Bonnet term



de Rham, Tolley (2010)
Goon, Hinterbicher, Trodden (2011)

Galileon from higher dimensions

Particular cases of the generalized Galileon can be derived from
a probe brane embedded in a 5D bulk g la DB

Induced metric

— f29w/ - 8,u(/bau¢

Probe brane action
S =\ / d*zv/—q

DBl = particular case of K (¢, X)

Fixed bulk metric

ds? = dy? + P (y)g(@)dards”  § — _) / dia /=g F/T+ [ 2(00)2

Generalize this to S = /d4:1:\/—qF(qW,RWJ>\,KW,VM)



Probe brane Lagrangian that gives second-order equations of motion
2

L =+— ( A — M3K + — ﬂ/CGB

Gibbons-Hawking - / /

~ L3 Induced gravity Boundary term from

~ Ly bulk Gauss-Bonnet

~ Ls

2 1 ,
Kap i= =3 K, + KK, — 2 K° = 2G,, K*

Brane i1s 4D: no higher induced Lovelock terms;
Bulk 1s 5D: no higher boundary terms



1

Integration b!y parts V= \/ 1 1 f ¢)
VK S [ e (P ny) D
CK(¢ X) C Gs(o, X)Uo
; \
ViRl = H{ -+ L Rlg 4 (00 - (9,9,07] |

-/

C K.GsOp C GaR+Gux[(0¢)" — (VuoV. )]

vV—qgKag = - - Minkowski bulk  f =1, gu, = N
Non-relativistic Imit X <« 1

> Shuntaro’s talk .
“ -~ Flat space Galileon



Summary of Part 1

The most general scalar-tensor theory with second-order field
equations Is given by the generalized Galileons (in 4D)

Lo = K(¢7X)
L3 = _G3(¢7X) ¢

Li = Ga(6, X)R + Gax [(06)° ~ (V,V,0)"

L5 = Gs(, X)Gyus V'V"6 — < Gox (D0

—3(06) (V,V,9)° +2(V,uV,9)°|




G-inflation
— Inflation driven by the Galileon field —



Now we have a framework to deal with
the most general single-field inflation model

Why don’t we study inflation driven by the generalized
Galileon, (generalized) G-inflation!?

References
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Background equations
¢ = ¢(t) ds? = —N2%(t)dt? + a?(t)dx?
5 /
Bhes Z/d4x\/jg£i

Corresponding standard equations

C N —» > &= L p—3MZH?=0
1=2 b
> S .

€ da —» Y Pi=0 : p+M§1(2H+3H2):0
1—=2 :

j—l—?)HJ:P¢ . $—|—3H$:—V¢



¢ XKy - K, G4 = M3,/2 reproduces Einstein gravity
Es = 6X¢HG3x —2XGsy, —_*]

Ex = | —6H?Gul+ 24H>X (Gax + XGaxx) — 12HX$Gapx — 6HGGu,
E = 2H3X¢ (5Gsx+2XGsxx) —6H?X (3Gs5¢ + 2XGs4x)
‘732 = .l&?, ll___ D i
; G,
Py = —2X (Gsy+$Gax), ’
Py =2 (3H? 4+ 217) G - 12H? X Gax — 4HX Gax — SHXGax

X Gux + 2 (q'b' T 2Hq5) Gy + 4X Gagy + 4X (qb _ 2H¢) Gisx,

P Yy (2H3q5 +2HHG + 3H2q'5) Gsx — AH2X20Gs x x
HUHX (X — HX) Gagx +2 [2(HX) + 3H2X] Gag + 4H X G
(f L (f L
QOur TM includes _Gu

— Distinction between gravitational and scalar-field parts i1s ambiguous



e X V(o) J— ¢

.

J =| $Kx |t 6HXGax — 206G

+6H¢ (Gux +2XGuxx) — 12HX Gupx
+2H°X (3G5x +2XGsxx)
—6H?¢ (G54 + XGsx)

Py = F{ K T 2.X (Gggbgb + q.b.GngX)
+6 (2H? + H) Gag + 6H (X + 2HX ) Gagx
—6H?X G5y + 2H>* X $G54x

P¢ — —V¢




Structure of the equations

“Friedmann equation” (00 equation)

) FCHA ()H A (- )HP =0

“Kinetic gravity braiding”
Deffayet et al. (2010)

Not diagonal in second derivatives

- . In general, this mixing cannot be undone
¢ = ( W )H - through conformal transformation

Cf. Usual (k-)inflation

1;; does not contain second derivatives of 0

Scalar-field EOM does not contain second derivatives of Yuv



Background examples

~

( How do we get H ~ const? |
)

(1) H is supported by potential energy;
(Slow-roll) scalar-field dynamics is modified by the
G terms.

(2) H is supported by kinetic energy;
Completely different from usual slow-roll dynamics
(generalization of k-inflation).



1. Potential-driven model

Suppose the 4 functions can be expanded in terms of X:

K@, X) = —V(p)+K(d)X+---
Gi(d, X) = (@) + hi(d)X +---

Consider slowly rolling ¢

Slow-roll conditions:

ci= 25 <1, < Ho, J < HJ, gi < Hgi, hi < Hh,




“Friedmann equation” | g4 is ¢-dependent “1/167G” |

- - N
Fe V() — 6Hgu(¢) ~ 0
53 b // )_\ - Y,
s e =X Grex)—-12 HX$G4¢X — GHQBG@,

Gl e F2X G x ) —6H-X (3G5p + 2X G54x)

Scalar-field EOM

o

3HJ ~ —Vy + 12H" g4

with J 2 (K = 2g35) ¢ +6 [thX + H2G(hy — g5s) + H3h5X}
\ v,

Friction term is modified

Application:
Enhance friction so that inflation proceeds even with a steep potential



Enhancing friction

2
Minimal example: = %R + X —V — hs(¢) XU

e (l—I—Sthgb)gﬁ: —Vy

Suppresses the slope  Standard expression
if Hhs¢p > 1 in terms of potential

@ Even when Hhsg > 1
we still have V' > |hs Xg|




Kamada, TK, Yamaguchi, Yokoyama (2011)

Chaotic G-inflation

A 1
V o —— o h P o
3 n<b 3 E
T | A\/3 pp(n—1)/3

G-inflation can occur Pl

Standard inflation
would not occur



Reheating

Non-trivial In general

[ e T | But..arrange so that
""" e il
H?2 . | K~ X —V(¢)
T oo Gi=gi(9) +hi(@)X s
A “ y A
V=6 - N\ | ‘ ~ const l ~ (]
- - | In a around the minimum of V,

then reheating will proceed Iin an usual way



2. Kinetically driven model

Shift symmetry: ¢ — ¢ +c¢c —P K =K(X), G, =G;(X)

Scalar-field EOM: J +3HJ =0

o[ J(d, H) x a2 — OJ

J = 6K x + 6HXGsx : de Sitter attractor
6H%¢ (Gax + 2XGaxx) ¢ = const.
+2H°X (3Gsx +2XGsx x) H = const.
“Friedmann equation” SatiSfying
25:& = 0=¢J — [K + 6H?(Ga — 2XGux) — 4H3X¢G5X} J@’ H) o
&% ) ~ ~ F(¢7 H) = 0

(:: F(gb,H) —> Oj




Stability? — to be addressed shortly..

de Sritter attractor

How does kinetically driven inflation end?




Exit from kinetically driven
G-inflation

Shift symmetry @ — @ + ¢ must be broken in order to end inflation

The situation Is essentially
the same as k-inflation

gﬁ = gﬁinf IS no longer
a solution for @ > @end

>

K(¢, X) Reheating through gravitational
particle production  Ford (1987)

O Oi0 1
—6 -
K~X xa @ GW spectrum Is enhanced at

~ massless, canonical scalar high frequencies

6 Everything in the worldq,
4 ¢ including what you don't
¢end want, will be produced




< C
h Z] Perturbations




TK, Yamaguchi, Yokoyama (2011)

- Tensor pertu rbation

Substitute this to the action and
expand to second order

gij — CL2 (523 Al hij) sl

General quadratic action for tensor perturbations:

1 P Fr =
St = 2 /dtdga’; a’ |Grh;, " (Vhiz)?
fT ==t 2 G4 — X ($G5X + G5¢)}

Gr = 2|Gy—2XGix — X (HoGsx — Gy )|



1 -
Séﬂz) — §/dtd33§' CLS gTh?]

Propagation speed: C?F = Fr/Gr —p C?F # 1 in general

Stability: JF7 > (0 —avoid gradient instabilities

Gr > (0 —avoid ghost instabilities

Normalized mode:  z h;; = \/_\/ F&)\\ ky)ei;
¢ / i —€—2s7+ Jr

= — (.7’:TQT)1/4 dy := _dt
2 1 — € — ST)
Constant (slow) variation parameters
¢ F
€ = const, sy = T — const fr = L — const

HCT ’ o HfT



lensor power spectrum

c PT il 22V P(V)

['(3/2)

v, Npie='0 — 2V

np > 0

2

(1 —€—s)

gq{/Z H2

}“;/2 42

—ky:lﬁ

evaluated at sound horizon crossing

— 2¢e + s+ fr <0

In principle, this Is possible without causing
iNnstablilities both In scalar and tensor modes



TK, Yamaguchi, Yokoyama (2011)

Curvature perturbation

Unitary gauge: d¢(t,x) = 0

ds® = —N?dt* + ;5 (da* + N'dt) (dz? + N7 dt)
RS ] = a, Nz — 7;6, ’Yij — aQ(t)eQCéij

SSSQ) g, /dtdea [ 3QTC +ﬁ VC |( )2 defined in the next slide...

2 2 . =2
00T 4 261¢ T+ @~ 20 Ty S

Get quadratic action for (

V& \VE
EO&—@ ﬂ+3@€ QT C—O

@a—ngzo

Momentum constraint



XKx +2X%Kxx +12HpXGsx
F6HPX?Gaxx — 2X Gy — 2X2Gsyx — 6H? Gy

+6| H? (TXGax +16X2Gaxx +4X Gaxxx)

~H¢ (G4q§ +5XGapx + 2X2G4¢XX)}

+30H30 X Gsx + 26H3 0 X?Gsx x
+AH? X Gsx xx — 6H* X (6G5y
+9X Gspx + 2X°Gspxx)

= —0XGs5x +2HG, — 8HXGyx
—SHX%Gyxx + ¢Gap + 2X G upx
—H?¢ (5XG5x +2X*Gsxx)
+2HX (3G54 + 2XG54x)



Compact expressions




General quadratic action for curvature perturbation:

Séz) :/dtdSCIZCLS Gg(?

1d

. = adt( gT)_
by

Ge. = @g%+3gT

Sound speed: ¢t = Fs/Gs Stability:  Fg >0, Gg >0

k-inflation | H > 0 4> unstable l
M2

L = 2P1R + K(¢p,X) —Pp Fqg = M]__—2>1€ Garriga, Mukhanov (1999)

In more general cases, the sign of H
and the stability criteria are not correlated



Phase space of
kinetically driven G-inflation

Stable violation of

the null energy condition ¢
A

H <0
/ Z EMd 0][ LWZ' /d?f(ﬁl/l




N ilized mode: 2 ( = \/_\/ F,é(\ ky
/ —€— 25+ fg

2 := V2a (FsGs)'/ dy—c—sd .
2(1 —e—s)
Constant (slow) variation parameters
= const, s := e _ const, fg:= Fs = const
B HOc, " ‘" HFs
Power spectrum
2 1/2 7792
g 7) AW 221/—4 F(V) (1 — € — S) QS H
k '(3/2) 73/2 472

Raemine o —3 — 2v

' ST 3
Approximately scale-invariant if v o~ 5



Consistency relation

fSCs

= 16
- Frer

(r = Pr /P, Slow-variation parameters << |)

Canonical inflation r = 10e = —8nr

k-inflation r = 16ec, = —8nrcg



Consistency relation in potential-driven G-

—V(¢) + K(@)X + -

Fr~Gr~2g9y —p c5~1

New consistency relation

Usual consistency relation

2
2
ce ~ —
cgzl > 3
32/6
r~ —8&nr r o nr




Non-Gaussianity

N L




Let’s focus on the minimal example

R
L= K(6,X) - G(6.X)06
and evaluate (Ck, Ck,Cks) My —

TK, Yamaguchi, Yokoyama (2011)




Key quantities

Recall the quadratic action —

- / dtd*z af o = (

<

ad F.
o Js Cz — g—S Sound speed
S

[Etices o e (= —H/H?)

in standard (k-)inflation (G=0) Iensorto-scalar ratio

0 # €, not necessarily slow-roll
suppressed in (kinetically driven) G?




Cubic action

8°C(0¢)* + (20%¢ + CsH(?C

oL = /dtd%a[ iy R

4H2 2H2

oL

Cr
P PC(OC - 9X) + S 0PC(OX) + SC(O0) + 3E(DC - D) + 5 F(Q)

}

at most four derivatives

@j

2HOXGx
/. . Ho H?c Co =
o= _@<1 +2§) ~ 26X (Gx + XGxx) g5 + gy 6 oz
q H? 20 Cr =
CQ = c: 3_6262 <3+€—|—H—@> 06
3 e H2¢XGX CS == 1—6—2S—H—@>
3 T3 R @3 9
2H2¢X (Gx—I—XGxx) Co = )
C4 = )
@3
d\ (26 2X? :
CRA Q% (62@2)’ : XKxx+TKXXX+H¢Gx+6X2G§(

o
No new shapes beyond k- (2Gox + XGoxx)

Creminelli et al. (2011); Reneux-Petel (2011)



Evaluating Non-Gaussianity

IN-N formalism

<Ck1<k2Ck3> G _7’/ dt/<[g(k17t)<(k27t)C(k37t)7Hint(t,)]>

to

—/dgxa?’ [%63+C2C62+'°'

(GG ies) = (27)70" (k1 + ko + Ks) PE e

A peaks at ki=k;=k3 (except in the
case of fine-tuned parameters)

BTN, St

A A
i AT
*ifﬁgﬁ

A
s
ARy
o g##‘!#;##-‘-

o,
"‘ i‘-l .
E‘#ﬁ# ATy

equi _ 30 Ak1=k2=k3
L (]{71 S kz e k’g)g




Size of Non-Gaussianity

equi 5-2 B XGXX NI _
N(i = ((3?) | O<0'2 GX >+O(Ug—s>, g = max{l,a}

| o ax2 |
Ot il O0C, klAkg [Z = XKxx + TKXXX + HpGx + - j

k-Inflation = € - G-inflation o # €

NL, ~ o r = 106ec, Both fnL and r can be large

G
Say, fnr =210 with r =0.17
Large fnL (1) — Small r (fae) s possible In kinetically driven
models




The most general case

G4 S G4(¢7X)7 G5 — G5(¢7X)

SlCl = / dnd’za® { L Ao+ Mo (010)° + S0P + AsCOCO + Agd™C (D10’

0L

A o A . o
g [P°C(00)" = 0105 (0¢0 Q)| + 57 [0°C0r¢0" v — €10, (0°¢07w)] + F (0) 32

HZ

)

Gao & Steer 1107.2642

ead

See also De Felice & Tsujikawa 1107.3917

No new operators beyond k-inflation Reneux-Petel (2011)

More complicated expressions for coefficients...



Summary of Part2

The generalized Galilleon offers a framework to study
the most general single-field inflation model

VWe now have the most general quadratic (and cubic)
actions for curvature and tensor perturbations, which can
be used to determine stability and compute 2-(and 3-)
point functions of all the single-field inflation models

Non-Gaussianity: No new shapes beyond k-inflation,

but large r and large fnL are compatible iIn more general
models than k-inflation



Talk Plan

1. Introduction to the Galileon

2. G-inflation — Inflation driven by the Galileon field -

3. Galileon models of dark energy



Galileon models of
dark energy



Many dynamical dark energy models and modified gravity models
are described in a generic, unified manner by

5 74% Dark Energy
V —9 Z Lz + vV _gﬁm
] \
Most general scalar-tensor theory Ordinary matter:
= generalized Galileon dark matter, photons, baryons, ...

*f(R) gravity Is also in this class

Assume matter is coupled to guv, and not directly to @

If you want to consider matter coupled to Jur = A(®)guv,
a conformal transformation brings your theory to the above form



Solar-system constraints on
scalar-mediated force

Severe constraint on Brans-Dicke theory (prototype example of ST theories)

L=¢R— = (0¢)* + Lun

¢
Gravitational field around a point mass Cf. General Relativity v = 1
Too = M&¥ (x) | v 14w
ds? = —(1 + 2®)dt? + (1 — 20)dx> ¢ 24w

0 =1.75"(1+~)/2

Light bending |y — 1| < 10™*

Will gr-qc/0103036




Screening mechanisms

Scalar d.o.f. must be screened somehow in the vicinity of matter

. ! . Mota, Barrow (2004)
(1) Scalar d.o.f. is effectively massive Khoury, Weltman (2004)

in the vicinity of matter

— not fluctuate | Chameleon mechanism l

5
Z L, 01—V (0) Potential term at work
ey

(2) Scalar d.o.f. is effectively weakly coupled Vainshtein (1992)

in the vicinity of matter

— fluctuate, but do not care | Vainshtein mechanism I
5

2 Non-linear derivative interaction
EﬁEiD(@qb) b, - '
e at work




Improving BD theory

Add Galileon-type interaction to BD theory

L=9R— —(09)" + [(9)(99)°D¢ + L

Gs3 = 2f(¢)X

Schematically,

p~¢R~p —» G300 x p(0d)?

| Large kinetic term at high densities
g g

W K Weff X P
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Some Galileon models for late-time
acceleration



Chow, Khoury (2009); Silva, Koyama (2009); TK, Tashiro, Suzuki (2010); TK (2011)

Cosmology of BD + L3

wo-parameter model BD + L3+ L, @

Ga=21(0X, 1) =% (17 ) w0

Early-time behavior H > !

3H? ~ 81Gp Standard cosmology is not destroyed

Late-time behavior H < frc_l >0 for a>0

: | =0 for aa=0

. —2+04:\/—6W—(2—04)(4+04)1< <0 for a<0
3 W+ 2 — «
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TK (2011)



Shift-symmetric scalar

K =K(X), G; =G;(X) — Recall kinetically driven G-inflation

5}
“Friedmanpeqiation” N\ "€ 1 4 - 0 Along the attractor,
can mimic phenomenological models | :
of modified Friedmann equation » F(p,H) = p
. b ) —
F(H) = a J@H) =0

-——> de Sitter

Recent applications
“Kinetic gravity braiding”
Deffayet et al. (2010) Gg x X"

Kimura, Yamamoto (2011)
“Purely kinetic coupled gravity”
Gubitosi, Linder (2011)

G'L”/au¢ay¢ <""M G4 X X



Kimura, Yamamoto (2011) Reproduce the phenomenological
R model of Dvali and Turner (2003)
B X o X

. . n =1 — covariant Galileon 9
Friedmann equation o =
n=oo —LCDM 2n — 1
3MZ2 H? — (X 4 qBJ) =p N
Along the attractor, H)® _ o (1 — Qo) LAS
& , H() N CL3 | m0 HO

J=—¢+6HXG3x =0

k[xxxx[ T T T T T
—1.0 | s 0
i TUNL T T ] g
_1.2* N ] qo!
i > I
~ L \\ i . —_—
< —l4r —  ACDM™. 12
ot ; . 1 o0
i . (-
= —16[ -~ n=l 13
i N i O
i n=2 SN 1 &
—1.8j Sso 10
C - n=5 - __ 1 O
_2.0%1111111111111111111111117_14




Density perturbations

The aim: test/distinguish different models of
dark energy and modified gravity




Density perturbations in
_the most general ST theory

TK, to appear

For all the ST theories with second-order field equations, the sub-
horizon evolution of the density perturbation is described by

5+ 2H§ =

(L k)
9 ,Om5 47TGeff

This can be shown by using the quasi-static approximation
0;

a

o ~ H K



ds® = —(1 +2®)dt* + a?(t)(1 — 2¥)dx?, Q = i2?

% : B ¢
jj equation
Gr
o e M e o B CrGR ¥ —® = (
00 equation Scalar-field equation

© 0 Gr E+P
eI B T YT

; 2 2
—(g—T—l—gT—fT) %\P_(QT_9> %(I)ZO

V2 5 X
29T R

H H

(@ = H@) RS, (QT = @gT/@)Q + Fr [(E+P)/2+ Xa*m?/k?|
K O2Fs + GZ[(€ + P)/2 + Xa2m?2/k?]




Schematically...

o/a 4
f = 87TGN
> 8GN
i \
~ &81(G N
LCDM
£ < 8nGn
Matter dominant Universe Acceler’ating Universe




BD + L5 model

0 /OACDM

1.12]
1.10f
1.()8f
106,
1.04f
1.02f

1.00L

w = —0o00




Characterizing growth history

G0 iifactor: g = 0/a

dlno Useful discriminant for distinguishing
dlna different models

Growth rate: —

Growth index:

Om Wang, Steinhardt (1998)
— 5 Linder (2005)
3MP1H2 Linder, Cahn (2007)

FEDNMR. sy = 0.9

e > approximately constant
DGP Rtz

.o

Gannouji, Moraes, Polarski (2009); Tsujikawa, Gannouiji,
f(R) fy Sma” Moraes, Polarski (2009); Narikawa, Yamamoto (2009);
Motohashi, Starobinsky, Yokoyama (2010); ...



BD + L5 model

artifact of definition

w = —0o00

Z TK (201T)



Integrated Sachs-Wolfe effect

¢+ V=0
CMB photon Blue shift = Red shift

O+ U £ (
Blue shift #+# Red shift

N(),- foeo]




® + U £ 0 in the accelerating Universe

Late ISVW — powerful dark energy probe

Multipole moment [

o 10 100 500 1000
Difficult to measure ISW because: 2 5000 Fr 9
C 5 J “ 3
2 4000 | :
© ; 3
¢ SW>>ISW Ll PV ]
v Cosmic variance e | \ o
§ 4 \ W \"‘!' - T 5
:é) 1000 _ See .'_,--".;‘/ ‘ *
= ¥ <l s
. ‘ ]
0 L. 1 1 .
. 90 2° 0.5° 0.2
This problem can be evaded: Angular Size

v ISW is correlated with matter density through potential
v Primary CMB Is generated long before and is not correlated

— CMB-galaxy cross-correlation Crittenden, Turok (1995)



w/ Rampei Kimura, Kazuhiro Yamamoto (Hiroshima), to appear

ISW N KGB

Kimura-Yamamoto model:

Ez?—X—G@)@ G ox X"

Quasi-static approximation is insufficient; need full perturbation analysis

o 1 \If i n=5000
L . — 66— .

A ‘ Largen — Large k= '

20 k=0.1hMpc*

L
....
by
....
-------------------

1.0+

k = 0.0001 hMpc~!
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CCF (0) [pK]
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Galaxy-LSS Cross-correlation

Slide by Rampei Kimura

Data from Giannantonio et al.’08
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Summary of Part3

Dark energy and modified gravity models with a single scalar
degree of freedom (In addition to metric) are described by
the generalized Galileon

Need screening mechanism:
Chameleon /Vainshtein

Implications for cosmological observations are interesting

Growth of matter perturbations / ISW / ...



Conclusion

The Galileon extends far beyond a specific scalar-field theory

The generalized Galileon I1s the most general scalar-
tensor theory with second-order field equations
(equivalent to Horndeski's theory)

The generalized Galileon is a useful framework to study inflation
and dark energy models in a generic/unified/systematic way

New models and new scenarios, as well as all the previous
examples proposed so far in the single-field context

Large GWs / large non-Gaussianity / H > 0 ...



