Gravitational waves from inflation

Sachiko Kuroyanagi (ICRR, U. of Tokyo)

Summer Institute 2011, Aug. 5th

Contents

Introduction

Basics

- Generation mechanism
- Shape of the spectrum

Observational aspects

- Constraints on inflationary parameters
- Constraints on reheating
- Constraints on the equation of state

Summary

Introduction

Inflation: a phase of accelerated expansion of the universe solves the Horizon/Flatness/Monopole problem

quantum fluctuations in $\Phi \rightarrow$ scalar perturbations

 \rightarrow origin of the large scale structure

quantum fluctuations in space-time \rightarrow tensor perturbations

→ exist as a gravitational wave background

Ongoing efforts to detect the gravitational waves from inflation

WMAP Three Year Polarized CMB Sky (http://wmap.gsfc.nasa.gov/)

CMB B-mode polarization

Planck (launched on 2009) LiteBIRD, CMBpol, COrE (2020?) Ground-based experiments

LISA image (http://lisa.nasa.gov/)

Direct detection

Ground-based experiments LIGO, LCGT

→sensitivity is not enough

BBO (post LISA, 2025-30???) DECIGO (2027?)

> → next generation tools to probe inflation!

Basics of the inflationary gravitational wave background

Generation mechanism

Propagation equation for GWs

The Einstein equation yields

Neglecting the anisotropic stress term and Fourier transforming the equation...

$$\ddot{h}_{\mathbf{k}}^{\lambda} + \underline{3H}\dot{h}_{\mathbf{k}}^{\lambda} + \frac{k^2}{a^2}h_{\mathbf{k}}^{\lambda} = 0$$

- Outside the horizon (H>k/a) $h_k^\lambda \propto \text{const.}$
- Inside the horizon (H<k/a) $h_k^\lambda \propto a^{-1}e^{-ik\tau}$.

 \rightarrow Hubble expansion rate (H) determines how the GW behaves.

Hubble expansion history

Hubble expansion history

Hubble expansion history

see Nakayama et. al. JCAP 06 020 (2008)

k

see Nakayama et. al. JCAP 06 020 (2008)

k

k

Spectrum shape from numerical calculation Inflation $(m^2\Phi^2 \text{ potential})$ matter radiation radiation ($\psi(\Phi)$) dominated dominated

primordial spectrum with tilt

Anisotropic stress is suppressed by the coupling with matter (e^{\pm})

Neutrino anisotropic stress affects GWs as a viscosity when they enter the horizon

After the Universe becomes matter-dominated

The energy density of radiation becomes negligible

Anisotropic stress is suppressed by the coupling with matter (e^{\pm})

After neutrino decoupling (T<2MeV)

Neutrino anisotropic stress affects GWs as a viscosity when they enter the horizon

After the Universe becomes matter-dominated

The energy density of radiation becomes negligible

Other inflation models

Observational aspects of the inflationary gravitational wave background

Ongoing efforts to detect the GWB

Sensitivity curves of future gravitational wave experiments & spectrum of the gravitational wave background

Constraints on inflationary parameters

In CMB observations

Slow-roll parameters $\epsilon \equiv \frac{m_{Pl}^2}{16\pi} \left(\frac{V'}{V}\right)^2$ $\eta \equiv \frac{m_{Pl}^2}{8\pi} \frac{V''}{V}$

 \rightarrow related to observational values

common parametrization of inflation

tilt of the scalar spectrum $n_S - 1 \simeq -6\epsilon - 2\eta$

tensor-to-scalar ratio $r \simeq 16\epsilon$

Constraints on inflationary parameters

In CMB observations

Slow-roll parameters $\epsilon \equiv \frac{m_{Pl}^2}{16\pi} \left(\frac{V'}{V}\right)^2$ $\eta \equiv \frac{m_{Pl}^2}{8\pi} \frac{V''}{V}$

 \rightarrow related to observational values

common parametrization of inflation

tilt of the scalar spectrum $n_S - 1 \simeq -6\epsilon - 2\eta$

tensor-to-scalar ratio $r \simeq 16\epsilon$

Constraints from direct detection

In slow-roll parametrization...

primordial spectrum transfer function

 $\Omega_{\rm GW} = \frac{1}{12} \left(\frac{k}{H_0} \right)^2 \mathcal{P}_T(k) T_T^2(k)$

includes all effects after inflation

Parametrizing the scale dependence in the form of the Taylor expansion around the CMB scale k_{\star}

$$\mathcal{P}_{T}(k) = \mathcal{P}_{T\star} \exp \left[n_{T\star} \ln \frac{k}{k_{\star}} + \frac{1}{2!} \alpha_{T\star} \ln^{2} \frac{k}{k_{\star}} + \cdots \right]$$
normalization at the CMB scale spectral index running
$$\mathcal{P}_{T} = r \mathcal{P}_{S} \qquad n_{T} \simeq -2\epsilon \qquad \alpha_{T} \simeq 4\epsilon \eta - 8\epsilon^{2}$$

 \rightarrow can be related to the parameters for CMB

$$n_S - 1 \simeq -6\epsilon - 2\eta$$
$$r \simeq 16\epsilon$$

Constraints from direct detection

Direct detection mainly tightens the constraint on tensor-to-scalar ratio (r)

Testing the consistency relation

tensor-to-scalar ratio: $r \simeq 16\epsilon$

tilt of the tensor spectrum: $n_T\simeq -2\epsilon$

Consistency relation: $r = -8n_T$

\rightarrow test of the inflation theory

Testing the consistency relation

tensor-to-scalar ratio: $r \simeq 16\epsilon$

tilt of the tensor spectrum: $n_T\simeq -2\epsilon$

Consistency relation: $r = -8n_T$

 \rightarrow test of the inflation theory

2011年8月6日土曜日

r

Testing the consistency relation

Effect of higher order terms

Effect of higher order terms

Effect of higher order terms

Effect of higher order terms

Effect of higher order terms

$$\mathcal{P}_{T}(k) = \mathcal{P}_{T\star} \exp\left[n_{T\star} \ln \frac{k}{k_{\star}} + \frac{1}{2!} \alpha_{T\star} \ln^{2} \frac{k}{k_{\star}} + \frac{1}{3!} \beta_{T\star} \ln^{3} \frac{k}{k_{\star}} + \frac{1}{4!} \gamma_{T\star} \ln^{4} \frac{k}{k_{\star}} + \frac{1}{5!} \delta_{T\star} \ln^{5} \frac{k}{k_{\star}} + \frac{1}{6!} \theta_{T\star} \ln^{6} \frac{k}{k_{\star}} + \cdots\right]$$

coefficient parameters of higher order terms $\propto O(\epsilon^n)$ large slow-roll parameter \rightarrow large overestimation

- = large tensor to scalar ratio $~r\simeq 16\epsilon$
- → more important in case where inflationary gravitational waves are detectable by experiments

 \rightarrow numerical approach is better?

→ Need to know the inflation model

Constraints on specific inflation model

Suppose that future observations support the chaotic inflation

Chaotic inflation (Φ^2 potential)

2 model parameters m: mass of the scalar field N: e-folding number constraint on N? connecting to Reheating temperature?

Some constraints from WMAP

Martin and Ringeval, PRD 83, 043505 (2011)

Mortonson et al. PRD 83, 043505 (2011)

Constraint on length of inflation

Constraint on length of inflation

Constraint on length of inflation

Shift of initial Φ slightly changes the value of slow-roll parameters \rightarrow can correspond to observables

→ depends on inflation model

Relation with reheating temperature

Relation with reheating temperature

Constraint from direct detection

Parameter degeneracy

Direct detection detects GWs with a very narrow bandwidth

- \rightarrow has sensitivity only to the amplitude of the spectrum at 0.1–1Hz
- → cannot distinguish models which gives the same amplitude

→ Direction of the degeneracy

Parameter degeneracy

Effect of higher order terms

$\mathcal{P}_{T}(k) = \mathcal{P}_{T\star} \exp\left[n_{T\star} \ln\frac{k}{k_{\star}} + \frac{1}{2!} \alpha_{T\star} \ln^{2}\frac{k}{k_{\star}} + \frac{1}{3!} \beta_{T\star} \ln^{3}\frac{k}{k_{\star}} + \frac{1}{4!} \gamma_{T\star} \ln^{4}\frac{k}{k_{\star}} + \frac{1}{5!} \delta_{T\star} \ln^{5}\frac{k}{k_{\star}} + \frac{1}{6!} \theta_{T\star} \ln^{6}\frac{k}{k_{\star}} + \cdots\right]$

Direct detection has power to improve the constraint from next-generation CMB experiments!

Another probe of reheating

Matter dominated phase during reheating induces "dip" in the spectrum

Another probe of reheating

Matter dominated phase during reheating induces "dip" in the spectrum

Constraint on reheating temperature

If the reheating temperature is $\sim 10^7$ GeV, it may be possible to detect the signature of reheating (could be only evidence of reheating!) and give a constraint on the reheating temperature.

Constraint on the equation of state

Gravitational wave background traces the Hubble expansion history of the early universe.

Constraint on the equation of state

W

Constraint on the equation of state

Summary

Gravitational waves generated during inflation have potential to be a powerful observational tool to probe the early universe.

- If detected, they surely provide generous information about inflation.
- Combination of CMB and direct detection helps to constrain inflationary parameters more.
- May give some implication about reheating.
- Also about the equation state of the universe.
- We should note that the common analytic expression for the spectrum (= the Taylor expansion in terms of log(k)) may give poor estimation of the amplitude of the spectrum, and it causes wrong parameter estimation.