Summing Up All Genus Free Energy of ABJM Matrix Model

Sanefumi Moriyama (Nagoya U)

arXiv:1106.4631
with H.Fuji and S.Hirano

M is for Mother

M is for Mystery

Little was known before ABJM

- 11D Supergrav as LowEnergyTheory
- Supergrav Sol for M2- \& M5-branes
- Near Horizon Geometry
- Superconformal Symmetry osp(8|4)
- Action for Single M2-/M5-brane
- DOF $N^{3 / 2} / N^{3}$ for N M2-/M5-branes

cf. D-branes

DOF N^{2} for D-branes

M is for Matrix

A breakthrough by ABJM

- Non-Abelian M2-brane theory by ABJM [Aharony-Bergman-Jafferis-Maldacena]
- Partition Function Localized to CS Matrix [Kapustin-Willett-Yaakov, Hama-Hosomichi-Lee]
- Planar N $N^{3 / 2}$ Behavior Reproduced [Drukker-Marino-Putrov]
- Today: All Genus Sum

Contents

1. Introduction
2. Planar Partition Function
3. All Genus Sum
4. Discussions

Contents

1. Introduction

2. Planar Partition Function
3. All Genus Sum
4. Discussions

$\mathrm{ABJ}(\mathrm{M})$ theory

$U\left(N_{2}\right)_{-k}$
 Gauge Field Gauge Field
 Bifundamental Matter Fields

$N_{1}=N_{2}$: No Fractional M2-branes (ABJM Slice)
Coincident M2-branes on $\mathrm{S}^{7} / \mathrm{Z}_{k}$
Computation of Partition Function?

Localization

$$
Z=\int D \Phi e^{-S[\Phi]}
$$

- Grassmann-odd Symmetry $\delta: \delta S=0$
- Grassmann-odd Quantity $V: \delta^{2} V=0 \quad \delta V \geq 0$

$$
\begin{gathered}
Z(t)=\int D \Phi e^{-S[\Phi]-t \delta V} \\
\frac{d}{d t} Z(t)=-\int_{Z(0)=Z(\infty)} D \Phi \delta\left(V e^{-S[\Phi]-t \delta V}\right)=0
\end{gathered}
$$

- Integration Localized to $\delta V=0$

$$
Z(\infty)=\int d \sigma \frac{\operatorname{det} \Delta_{F}(\sigma)}{\operatorname{det} \Delta_{B}(\sigma)} e^{-S_{\mathrm{cl}}(\sigma)}
$$

Example

$$
\begin{aligned}
& \text {.2. } \\
& \text { 2-2g= } \int_{\mathrm{Mfd}} \mathrm{e}^{-t \delta V}=\# \stackrel{\uparrow}{\leftrightarrows} \\
& \text { (Poincare-Hopf Theorem) }
\end{aligned}
$$

Application to ABJM

- Gauge Field

$$
\left.\frac{\operatorname{det} \Delta_{F}(\sigma)}{\operatorname{det} \Delta_{B}(\sigma)}\right|_{\text {gauge }}=\frac{\operatorname{det}\left(-\Delta+\alpha(\sigma)^{2}\right)}{\operatorname{Pf}\left(i \gamma^{\mu} \nabla_{\mu}+i \alpha(\sigma)-1 / 2\right)}
$$

$$
=\cdots \sim \prod_{\alpha>0} \prod_{n=1}^{\infty}\left(1+\frac{\alpha(\sigma)^{2}}{n^{2}}\right)^{2}=\prod_{\alpha>0}\left(\frac{\sinh \pi \alpha(\sigma)}{\pi \alpha(\sigma)}\right)^{2}
$$

- Matter Field

$$
\ldots=\cosh ^{-2}
$$

Finally, Localized to Matrix Model

$$
\begin{aligned}
& Z=\frac{1}{N_{1}!N_{2}!} \int \prod_{i=1}^{N_{1}} \frac{d \boldsymbol{\mu}_{i}}{2 \pi} \prod_{k=1}^{N_{2}} \frac{d \boldsymbol{\nu}_{2}}{2 \pi} e^{\left.-\left(\sum \boldsymbol{\mu}_{i}\right)^{3}-\sum \boldsymbol{N}_{i}^{2}\right) / 2 g_{s}}
\end{aligned}
$$

$$
g_{s}=2 \pi i / k
$$

If, instead

$$
\begin{aligned}
& \times \prod_{i<j}\left(2 \sinh \frac{(\tan }{2}-\right)^{2} \prod_{k<l}\left(2 \sinh \frac{-(0)}{2}\right)^{2} \\
& \times \prod_{i, k}\left(2 \cosh \frac{-2}{2}\right)^{2}
\end{aligned}
$$

Lens Space Matrix Model

If, further simplified

$$
\begin{aligned}
Z & =\frac{1}{N!} \int \prod_{i=1}^{N} \frac{d \boldsymbol{\mu}_{i}}{2 \pi} e^{-\sum \omega_{i}^{3} / 2 g_{s}} \\
& \times \prod_{i<j}\left(2 \sinh \frac{\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{\boldsymbol{i}}}{2}\right)^{2}
\end{aligned}
$$

Chern-Simons Matrix Model

The simplest one

$$
\begin{aligned}
Z=\frac{1}{N!} \int & \prod_{i=1}^{N} \frac{d \mu_{i}}{2 \pi} e^{-\sum \mu_{i}^{2} / 2 g_{s}} \\
& \left.\times \prod_{i<j}\left(\mu_{i}\right)-\boldsymbol{\mu}_{i}\right)^{2}
\end{aligned}
$$

Gaussian Matrix Model

Matrix Model

- Eigenvalue Density Wanted

$$
\rho(z)=\frac{1}{N} \sum_{i=1}^{N}\left\langle\delta\left(z-z_{i}\right)\right\rangle
$$

- Definition - Resolvent -

$$
\omega(z)=\frac{1}{N} \sum_{i=1}^{N}\left\langle\frac{1}{z-z_{i}}\right\rangle
$$

- Planar Limit $\omega(z) \rightarrow \omega_{0}(z) \quad F \rightarrow F_{0}$

Properties of Resolvent

1. $z \rightarrow \infty$ Behavior

$$
\omega(z) \sim \frac{1}{z}
$$

2. Dispersion Relation $\frac{1}{z+i \epsilon}=\frac{1}{z}-i \pi \delta(z)$

$$
\rho(z)=-\frac{1}{2 \pi i}\left(\omega_{0}(z+i \epsilon)-\omega_{0}(z-i \epsilon)\right)
$$

3. EOM ••• Discontinuity Eq

$$
\text { Force }=\frac{1}{2}\left(\omega_{0}(z+i \epsilon)+\omega_{0}(z-i \epsilon)\right)
$$

Integration Contour

Z

Resolvent $\omega_{0}(z) \Longrightarrow$ Partition Func $F_{0}(\lambda)$

Chern-Simons Matrix Model

- Resolvent

$$
\omega(z)=g_{s}\left\langle\sum_{i=1}^{N} \operatorname{coth} \frac{z-z_{i}}{2}\right\rangle
$$

- Asymptotic Behavior

$$
\omega_{0}(z) \rightarrow \pm 2 \pi i \lambda \quad \text { as } \quad z \rightarrow \pm \infty
$$

- Discontinuity Eq from EOM

$$
z=\frac{1}{2}\left(\omega_{0}(z+i \epsilon)+\omega_{0}(z-i \epsilon)\right)
$$

Chern-Simons Matrix Model

- A Regular Function [Halmagyi-Yasnov]

$$
g(Z)=e^{\omega_{0} / 2}+Z e^{-\omega_{0} / 2} \quad Z=e^{z}
$$

- Asymptotic Behavior

$$
\lim _{Z \rightarrow \infty} g(Z)=Z e^{-\pi i \lambda} \quad \lim _{Z \rightarrow 0} g(Z)=e^{-\pi i \lambda}
$$

- Determined!

$$
g(Z)=(Z+1) e^{-\pi i \lambda}
$$

Lens Space Matrix Model

- Same Tech as Chern-Simons Matrix Model
- Two Cuts Instead

$$
g_{\mathrm{LS}}(Z)=Z^{2}-\zeta Z+1
$$

ABJM Matrix Model

- Analytic Cont from Lens Space Matrix Model

$$
\lambda_{1}=N_{1} / k \quad \lambda_{2}=-N_{2} / k
$$

- Result (for ABJM Slice)

$$
\begin{aligned}
\lambda & =\frac{\kappa}{8 \pi}{ }_{3} F_{2}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} ; 1, \frac{3}{2} ;-\frac{\kappa^{2}}{16}\right) \\
& =\frac{\log ^{2} \kappa}{2 \pi^{2}}+\frac{1}{24}+\mathcal{O}\left(1 / \kappa^{2}\right)
\end{aligned}
$$

$$
\partial_{\lambda} F_{0}=2 \pi^{2} \log \kappa+\frac{4 \pi^{2}}{\kappa^{2}}{ }_{4} F_{3}\left(1,1, \frac{3}{2}, \frac{3}{2} ; 2,2 ;-\frac{16}{\kappa^{2}}\right)
$$

$$
=2 \pi^{2} \log \kappa+\mathcal{O}\left(1 / \kappa^{2}\right)
$$

Result

- Result

$$
Z_{0}=g_{s}^{-2} F_{0}=\frac{\sqrt{2} \pi}{3} k^{2}\left(\lambda-\frac{1}{24}\right)^{3 / 2}+\mathcal{O}\left(e^{-\sqrt{\lambda-1 / 24}}\right)
$$

- Neglecting Worldsheet Instanton

$$
Z_{0}=\frac{\sqrt{2} \pi}{3} k^{1 / 2}\left(N-\frac{1}{24} k\right)^{3 / 2}
$$

- $N^{3 / 2}$ Reproduced and More

Interpretation

- Charge Shift [Aharony-Hashimoto-Hirano-Ouyang]

$$
N \rightarrow N-\frac{1}{24}\left(k-\frac{1}{k}\right)
$$

from Euler Coupling

$$
\frac{1}{24} \int C_{3} \wedge I_{8}=\frac{1}{24} \chi\left(S^{7} / Z_{k}\right)=\frac{1}{24}\left(k-\frac{1}{k}\right)
$$

- Match in Planar Case

Furthermore, Non-Planar Prediction

- Renormalization of 't Hooft coupling

$$
\lambda_{\text {ren }}^{-1}=\frac{(\lambda-1 / 24)^{-1}}{1+(1 / 24) k^{-2}(\lambda-1 / 24)^{-1}}
$$

- Or in terms of $x=1 / \log \kappa$

$$
g_{s} y=\frac{g_{s} x}{\sqrt{1+g_{s}^{2} x^{2} / 48}}
$$

Contents

1. Introduction

2. Planar Partition Function
3. All Genus Sum
4. Discussions

Higher Genus Behavior from Duality

- Chern-Simons Theory on Lens Space S^{3} / Z_{2}
(String Completion)
- Open Top A-model on $T^{*}\left(\mathrm{~S}^{3} / Z_{2}\right)$
(Large N Duality)
- Closed Top A on Hirzebruch Surface $\mathrm{F}_{0}=\mathrm{P}^{1} \times \mathrm{P}^{1}$ (Mirror Symmetry)
- Closed Top B on Spectral Curve $u v=H(x, y)$

Holomorphic Anomaly Eq

- General Case [Bershadsky-Cecotti-Ooguri-Vafa]

Determined by F_{0}

$$
\begin{aligned}
\partial F_{g} & =\frac{1}{2} C_{\bar{I} \bar{J} \bar{K}} G^{J \bar{J}} G^{K \bar{K}} \\
& \times\left[D_{J} D_{K} F_{g--}+\sum_{r=1}^{g-1} D F_{r} D_{K-r}\right]
\end{aligned}
$$

Application to ABJM

- One Modulus $\lambda=$ Ordinary Differential Eq
- 2 Cuts = Torus

Derivative

- $2^{\text {nd }}$ Derivative

Elliptic F

$$
\frac{i}{4 \pi^{3}} \partial_{\lambda}^{2} F_{0}(\lambda)+1=i \frac{K^{\prime}(i \kappa / 4)}{K(i \kappa / 4)}=\tau
$$

- $3^{\text {rd }}$ Derivative (Yukawa Coupling)

$$
\frac{1}{4} C_{\lambda \lambda \lambda}=\partial_{\lambda}^{3} F_{0}(\lambda)=(2 \pi i)^{3} \frac{2}{\vartheta_{2}(\tau)^{2} \vartheta_{4}(\tau)^{4}}=(2 \pi i)^{3} \xi
$$

Ansatz \& Reduction

- Ansatz for Partition Function

$$
F_{g}(\tau)=\xi^{2 g-2} f_{g}(\tau) \quad f_{g}(\tau)=f_{g}\left[E_{2}, E_{4}, E_{6}\right]
$$

- Eisenstein Series
$E_{2}(\tau, \bar{\tau})=E_{2}(\tau)-\frac{3}{\operatorname{Im} \tau} \quad E_{4}=E_{4}(\tau) \quad E_{6}=E_{6}(\tau)$
- Reduced HAE [Drukker-Marino-Putrov]
$\frac{d f_{g}}{d E_{2}}=-\frac{1}{3}\left[d_{\xi}^{2} G_{g-1}+\frac{1}{3} \frac{\partial_{\tau} \xi}{\xi} d_{\xi} f_{g-1}+\sum_{r=1}^{g-1} d f_{r} g_{\xi} f_{g-}\right]$
- Covariant Derivative $\quad d_{\xi}=\partial_{\tau}+(k / 3) \partial_{\tau} \xi / \xi$

Higher Genus Behavior

$$
\begin{aligned}
& F_{0}=\frac{2}{3 x^{3}} \\
& F_{1}=\frac{\log x^{\prime}}{2}+\frac{1}{6 x} \quad x^{\prime}=\frac{\pi}{2} x \\
& F_{2}=\frac{5 x^{3}}{48}-\frac{x^{2}}{24}+\frac{x}{144} \\
& F_{3}=\frac{5 x^{6}}{64}-\frac{5 x^{5}}{192}+\frac{x^{4}}{288}-\frac{x^{3}}{5184} \\
& F_{4}=\frac{1105 x^{9}}{9216}-\frac{5 x^{8}}{128}+\frac{25 x^{7}}{4608}-\frac{x^{6}}{2592}+\frac{x^{5}}{82944}
\end{aligned}
$$

Resume 1

$$
\begin{aligned}
& F_{0}^{\prime}=\frac{2}{3 y^{3}}=\frac{2}{3 x^{3}}+g_{s}^{2} \frac{1}{6 x}+g_{s}^{4} \frac{x}{144}-g_{s}^{6} \frac{x^{3}}{5184}+\cdots \\
& F_{1}^{\prime}=\frac{\log y^{\prime}}{2}=\frac{\log x^{\prime}}{2}-g_{s}^{2} \frac{x^{2}}{24}+g_{s}^{4} \frac{x^{4}}{288}-g_{s}^{6} \frac{x^{6}}{2592}+\cdots \\
& F_{2}^{\prime}=\frac{5 y^{3}}{48}=\frac{5 x^{3}}{48}-g_{s}^{2} \frac{5 x^{5}}{192}+g_{s}^{4} \frac{25 x^{7}}{4608}+\cdots \\
& F_{3}^{\prime}=\frac{5 y^{6}}{64}=\frac{5 x^{6}}{64}-g_{s}^{2} \frac{5 x^{8}}{128}+\cdots \\
& F_{4}^{\prime}=\frac{1105 y^{9}}{9216}=\frac{1105 x^{9}}{9216}+\cdots
\end{aligned}
$$

Resum 2

- The Top Term

$$
F_{g} \sim \frac{A_{g}}{3 g-3} x^{3 g-3}+\cdots
$$

- Recursion Relation (cf. SW theory [Huang-Klemm])

$$
A_{g} \sim(3 g-3) A_{g-1}+\sum_{r=2}^{g-2} A_{r} A_{g-r}
$$

- Translated into Differential Eq
- Solved by Modified Bessel Functions

Airy Function Result

- Result [Fuji-Hirano-M]

$$
\begin{aligned}
Z & =g_{s}^{-2} F_{0}^{\prime}+F_{1}^{\prime}+g_{s}^{2} F_{2}^{\prime}+\cdots \\
& =\operatorname{Ai}\left(\left[\frac{\pi}{\sqrt{2}} \frac{1}{k^{2}}\right]^{2 / 3} \lambda_{\text {ren }}\right)
\end{aligned}
$$

- Airy Function

$$
\operatorname{Ai}(z)=\frac{1}{2 \pi i} \int_{C} \exp \left(-z t+\frac{1}{3} t^{3}\right)
$$

Contents

1. Introduction

2. Planar Partition Function
3. All Genus Sum
4. Discussions

Discrepancy?

- Lots of Conventional Factors? ex: Yukawa Coupling / 4
- $\operatorname{SU}(N) \times S U(N)$ instead of $U(N) \times U(N)$?

Another Superconformal Theory by ABJM SU(N) instead of $U(N)$ for D3-branes

Airy Function

- Modified Bessel Functions Everywhere as for Loop Operator VEV [Drukker-Gross]
- Cubic Integral Reminiscent of Chern-Simons
- Airy Function in Other Setups of M theory "Wave Function of the Universe"
[Ooguri-Vafa-Verlinde]
- Corrections to Quantum Gravity? Max SUSY • . - No Corrections?

Future Directions [work in progress]

- Relation to Superalgebra $U(N \mid N)$
- Airy Function Beyond ABJM Slice
- Other Analysis (Surgery?) for WS Instanton

