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Hidden sector

• Hidden sector couples to SM sector only 
(nearly) gravitationally.  (Polonyi / Moduli, ...)

• It may determine the structure of SM sector

• It cannot be produced by experiments

• However, it has significant effects on cosmology

• Probe/constrain hidden sector with cosmology
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Polonyi field
SUSY breaking field in gravity-mediation

L ∼
�

d2θ
Z

MP
WaW a ∼ mg̃ g̃g̃

L ∼
�

d4θ
Z†Z

M2
P

|f |2 ∼ m2
f̃
|f̃ |2 mg̃ ∼ mf̃ ∼

FZ

MP

Giving SUSY particle masses through

W = Zµ2 + W0

Z

Super/Kahler potential

K = |Z|2
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Polonyi potential
W = Zµ2 + W0Superpotential

Z

V (Z)

∼MP

mZ ∼ m3/2Polonyi mass ~ gravitino mass

V = eK/M2
P

�
Kij̄(DiW )(Dj̄W̄ )− 3|W |2

M2
P

�
Kahler potential K = |Z|2

2011年8月7日日曜日



Polonyi Problem

Z

V (Z)

∼MP

During inflation, Polonyi is placed anywhere
mZ < H

At H~m, Polonyi begins to oscillate around minimum

Z

V (Z)

∼MP

mZ > H

with typical amplitude ∼MP

cf. curvaton
(T.Takahashi)
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Polonyi Problem
The situation is same if the Polonyi has Hubble mass

Z

V (Z)

∼MP

mZ < H

mZ > H

K ∼ 1
M

2
P

|Z|2|I|2 → −L ∼ H
2|Z|2 I : inflaton

Polonyi begins oscillation at H~m with amplitude ~MP
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Polonyi Problem

Polonyi abundance

ρZ

s
=

1
8
TR

�
Zi

MP

�2

∼ 105GeV
�

TR

106GeV

�

Polonyi lifetime

τZ ∼
�

m3
Z

M2
P

�−1

∼ 104sec
�

1TeV
mZ

�3

Big bang nucleosynthesis constraint
ρZ

s
� 10−14GeV Polonyi Problem !

TR :reheat temperature

[ Coughlan et al. (1983), Ellis et al. (1986),
Goncharov et al. (1986) ]
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Figure 39: Same as Fig. 38, but for mX = 1 TeV.

Figure 40: Same as Fig. 38, but for mX = 10 TeV.

61

Constraint on energy injection from BBN

[ Kawasaki, Kohri, Moroi (2005) ]
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Moduli Problem
Light scalar field in compactification of 

extra dimensions in String theory

E.g.  Kahler moduli in KKLT stabilization 
in type IIB string theory

T

K = −3 ln(T + T †)

W = W0 −Ae−aT

m2
Z ∼ (8π2)m2

3/2
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Moduli Problem

K =
1

M2
P

|Φ|2|Z|2 Φ : SUSY breaking field

V ∼ F 2
Φ

M2
P

|Z|2 ∼ m2
3/2M

2
P

mZ ∼ m3/2

Gravitational coupling

Cosmological effects similar to the Polonyi

Cosmological Polonyi/Moduli Problem
[ Banks et al. (1983), de Carlos et al. (1993) ]
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FIG. 1. Various cosmological upper bounds on the modulus abundance for the case that the

modulus coupling is b = 1. The dotted line represents the upper bound from the overclosure limit
on the abundance of the modulus (or its decay products) for mφ < 200 GeV, and the upper bound
from the BBN speed up effects for mφ > 200 GeV. The dot-dashed line represents the upper bound

from the x(γ)-ray backgrounds. The short dashed line represents the upper bound from the CMBR
spectrum. The long dashed line represents the upper bound from the dissociation of the BBN light
elements. Note that there exist two typical modulus masses; mφ ! 100 MeV (the modulus lifetime

is equal to the age of the universe) and mφ ! 1 GeV (the modulus decay into two gluons starts to
open.) We also show the predicted modulus abundances of φ0 = MG by the solid lines for the case

mφ < ΓϕI
[Eq. (3)] and for the case mφ > ΓϕI

with the reheating temperature TRI = 10 MeV [Eq.
(4)].

Eqs. (3) and (4) with TRI = 10 MeV are also found in those figures. One can easily see that
the string modulus with a mass from 10 eV to 10 TeV is excluded by the various cosmological
observations. Since mφ ! m3/2, the whole gravitino mass region typically predicted by both
GMSB and HSSB models is not cosmologically allowed. This difficulty is often referred as
“cosmological moduli problem”. Here we would like to stress that this problem could not
be solved by choosing the model of the primordial inflation, i.e., even if one assumes the
extremely low reheating temperature TRI ∼ 10 MeV. This is very different from the gravitino
problem. Therefore, we required some extra mechanism to dilute the modulus mass density
sufficiently other than the primordial inflation. In the following, we consider the thermal
inflation model proposed by Lyth and Stewart [18] as such a dilution mechanism.

MeV, Ωφ is regarded as the ratio, (ρφ/s)D/(ρcr/s0), where (ρφ/s)D denotes the ratio of the energy
density of the modulus to the entropy density when the modulus decays.

8

Constraint on the modulus abundance

[ Asaka, Kawasaki (1999) ]

(TR=10MeV)
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Solutions

• 1. Moduli is heavy enough to decay before BBN

• 2. Thermal inflation for diluting moduli

• 3. Adiabatic suppression mechanism
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1. Heavy Moduli
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Heavy moduli
The moduli lifetime τZ ∼

�
m3

Z

M2
P

�−1

∼ 104sec
�

1TeV
mZ

�3

mZ > 100TeV τZ � 1sec : no BBN bound

Typically, mZ ∼ m3/2 (gravitino mass)

m3/2 � 100TeV : anomaly-mediation

m3/2 ∼ 1TeV : gravity-mediation

m3/2 � 100GeV : gauge-mediation

: mirage-mediation
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W = w0 −Ae−aT +
λijk

6
ΦiΦjΦk

K = −3 ln(T + T ∗) + Φ∗
i Φi

Modulus potentialSetup

T : moduli Φi : MSSM fields

T

V(T)

The vacuum is AdS.

T

Add extra uplifting term
(KKLT-type moduli stabilization)

Positive vacuum energy can be obtained.

Source of SUSY breaking

Vlift =
D

(T + T ∗)m

of Mirage-mediation
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SUSY breaking

Modulus mediation ~  Anomaly mediation

mSUSY ∼
FT

T
∼ 1

8π2

Ftotal

MP

m3/2 ∼ (8π2)mSUSY � 1TeV
mT ∼ (8π2)m3/2 ∼ O(103)TeV

Heavy gravitino

Heavy moduli

Ma = M0 +
m3/2

16π2
bag2

ae.g., Gaugino mass :

Heavy moduli significantly affect cosmology.

at dS minimumFT �= 0 Uplifting to break SUSY

Mixed-modulus-anomaly mediation
Choi et al (04),  Endo et al (05),  Choi, Jeong and Okumura (05)
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Heavy moduli scenario
The moduli reheats the Universe with ~ MeV

LSP overproduction problem

Γ(Z → gg) ∼ Γ(Z → g̃g̃) ∼ m3
Z

M2
P

[ M.Endo, F.Takahashi (2008) ]

ρLSP

s
∼ mLSP

mZ
TZ ∼ 10−6GeV

� mLSP

100GeV

�
� 4× 10−10GeV

DM bound

Dilute baryon asymmetry by the moduli decay
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Heavy moduli scenario
Moduli may be much heavier than gravitino

Gravitino production 
from moduli

[ M.Endo, K.Hamaguchi,
F.Takahashi (2006), 

S.Nakamura, M.Yamaguchi (2006) ]

: mirage-mediationmZ ∼ (8π2)m3/2 ∼ 103TeV
3

irrespective of whether the gravitino is stable or unstable.
For B3/2 > 0.2, the gravitinos from the modulus decay al-
ways upset the standard BBN, as long as m3/2

<∼ 20 TeV.
Now we discuss the cases of the stable and unstable

gravitinos separately. First we take up the unstable grav-
itinos, which is the case if the gravitino mass is heavier
than the LSP mass, m3/2 > mLSP. The gravitino-to-
entropy ratio is given by

Y3/2 ≡
n3/2

s
# 2B3/2

3TX

4mX
,

# 2.6 × 10−7 c
1

2 B3/2

( mX

103 TeV

) 1

2

. (14)

The BBN severely constrains Y3/2 [15, 17]. Even if we
adopt the recent analysis on 4He abundance which has
taken account of possible large systematic error [18],
Y3/2 must be smaller than 2 × 10−12 at 95% C.L. for
m3/2 # 30 TeV [15], and the bound becomes much sev-
erer for smaller m3/2. Therefore the branching ratio into
the gravitinos must be extremely small:

B3/2 < 10−5ε c−
1

2

(
103 TeV

mX

) 1

2

, (15)

for mLSP < m3/2 ≤ 30 TeV. Here ε ≤ 1 parameterizes
the BBN bound: ε = 1 for m3/2 # 30 TeV, and 10−5 <∼
ε & 1 for m3/2 < 30 TeV. In addition, the abundance of
the LSPs from the gravitino decay is (cf. [19])

YLSP|ψ3/2
# min

[
Y3/2,

√
45

8π2g∗

1

MP T3/2 〈σannv〉

]
,

(16)
where 〈σannv〉 is the thermally averaged annihilation
cross section of the LSP, and T3/2 is the decay temper-
ature of the gravitino. Since the LSP abundance must
be smaller than the dark matter abundance, we have an-
other constraint on B3/2:

B3/2 < 1.8×10−5c−
1

2

(
100 GeV

mLSP

)(
ΩDMh2

0.13

) (
103 TeV

mX

) 1

2

(17)
for m3/2 > mLSP. Here ΩDM is the density parame-
ter of the dark matter, h is the present Hubble param-
eter in units of 100km/sec/Mpc, and we have assumed
〈σannv〉 < 10−6 GeV−2 and m3/2 < 100 TeV. We can see
that (13), (15) and (17) rule out the unstable gravitinos,
unless B3/2 is extraordinarily small in spite of our result
B3/2 = O(0.01 − 1).

Next we consider the stable gravitinos, which is the
case if the gravitino is the LSP. A constraint then
comes from the requirement that the gravitino abun-
dance should not exceed the dark matter abundance, and
we only have to replace mLSP with m3/2 in (17):

B3/2 < 1.8×10−2c−
1

2

(
100 MeV

m3/2

) (
ΩDMh2

0.13

) (
103 TeV

mX

) 1

2

(18)
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FIG. 1: The cosmological bounds on m3/2 and B3/2. Shaded
regions are excluded by cosmological arguments. See the
text for details. The horizontal dashed line denotes the
BBN bound from the stau NLSP decay into gravitinos for
mNLSP = 100 GeV. We have chosen mX = 103 TeV and
c = 1 as representative values. The bounds become severer
for larger mX .

for the stable gravitino. Furthermore, the bound on the
gravitino abundance is severer by an order of magni-
tude for m3/2

<∼ 100 MeV(mX/103 TeV)−1/2, due to
the present large free-streaming velocity [20]. See Fig. 1.
From (13) and (18), we conclude that large B3/2 encoun-
ters trouble even for the stable gravitinos.

Lastly we comment on the lightest superpartner of the
SM particles, denoted by χ, produced from the mod-
ulus decay through the gauginos. From the discussion
above, the number of χ generated from the decay of
unit quantum of the modulus field is order unity. If χ
is the LSP and stable, it must be electrically neutral. To
satisfy ΩLSPh2 < 0.13, the pair annihilation cross sec-
tion must be large [14, 19], which in turn constrains the
mass spectrum of the SUSY particles. In the case of the
gravitino LSP, there is a strict BBN bound on the abun-
dance and lifetime of the next-to-LSP (NLSP) χ. For
a stau NLSP τ̃ , we find upper bounds on the gravitino
mass, m3/2

<∼ (0.3 − 1) GeV for mX = 103 TeV and
100 GeV <∼ mτ̃

<∼ 1 TeV d. For a neutralino NLSP, the
bound becomes severer.

We summarize the bounds considered above in Fig. 1,
from which we can see how serious the cosmological mod-
uli problem becomes as a result of our finding that B3/2

should be O(0.01−1). Note that the bounds on B3/2 [cf.
(15), (17) and (18)] become severer for heavier modulus
mass and larger c, although the dependence is weak.

d We have used Yτ̃ ! (45/8π2g∗)1/2(MP TX 〈σannv〉)−1 [19]
with 〈σannv〉 <

∼ 10−3m−2
τ̃ [21], BBN bounds from

[15] with τ̃ ’s hadronic branching in [22], and ττ̃ !
6 sec (mτ̃ /100 GeV)−5(m3/2/10 MeV)2. The bound from Ω3/2
(from τ̃) < ΩDM is slightly weaker than the BBN bound.

B3/2 =
Γ(Z → ψ3/2)

ΓZ

∼ O(0.1)
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Baryon asymmetry
Create enough asymmetry which survives 

dilution after moduli decay

Affleck-Dine mechanism is perhaps the only way

φ

nB = i(φ̇φ∗ − φ̇∗φ) = |φ|2θ̇

φ : AD field with baryon/lepton number

e.g., (LHu) = φ
2
, (udd) = φ

3

W =
(LHu)2

M
→ VA = A

φ4

M
+ h.c.

Baryon, CP
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FIG. 2: Same as Fig.1, except for mχ = (4π2)m3/2 = (4π2)100TeV.

symmetry. Because the global U(1)B−L symmetry within MSSM is anomaly-free, it can

naturally be extended to local symmetry. But from the viewpoint of baryogenesis, it must

be spontaneously broken at some high energy scale in order to create baryon asymmetry

and not to contradict with terrestrial experiments such as proton decay.

A. The model

We briefly explain the model discussed in Ref. [21]. First, we introduce MSSM singlet

fields which have the superpotential as

W = λX(SS̄ − v2), (45)

where X, S and S̄ have the U(1)B−L charge 0, 2 and −2 respectively, and v denotes the

U(1)B−L breaking scale. They induce the scalar potential given by

V =|λ|2
{

|X|2(|S|2 + |S̄|2) + |SS̄ − v2|2
}

+
g2

2

(

2|S|2 − 2|S̄|2 − q|φ|2
)2

(46)

where g denotes the U(1)B−L gauge coupling constant and q denotes the U(1)B−L charge of

the Affleck-Dine field. The second term comes from the D-term contribution. In the follow-

ing, we consider flat directions which are lifted by n = 6 non-renormalizable superpotential

16

[Kawasaki, KN (2006) ]

W =
1

M3
(udd)2,

1
M3

(LLe)2
AD baryogenesis

through (udd) or (LLe)
flat direction
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Summary of 
heavy moduli 

• Moduli heavier than 100TeV avoids BBN constraint. 

• Anomaly- or Mirage-mediation predict heavy mass.

• LSP/Gravitino production from moduli decay is 
problematic.

• R-parity violation may be needed.

• Baryon asymmetry is diluted. Affleck-Dine mechanism 
may create enough asymmetry.
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2. Thermal inflation
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Thermal inflation
Late time inflation caused by “Flaton” field

V ∼ V0 + (T 2 −m2)|φ|2 + |φ|n

φ

r

Thermal 
inflation

t

ρ

φ

V (φ)
T � m

T � m

[ K.Yamamoto (1985), Lazarides et al (1986), Lyth, Stewart (1995) ]

Moduli are diluted by thermal infaltion
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Suppressing moduli

r

t

ρ

Z
Moduli dominate
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Suppressing moduli

r

t

ρ

Z
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Suppressing moduli

r

t

ρ

Z

φ radiation
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Suppressing moduli

r

Flaton dominate 
(Thermal inflation)

t

ρ

Z

φ radiation
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Suppressing moduli

r

Flaton dominate 
(Thermal inflation)

t

ρ

Z

φ radiation

Suppression
of moduli
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Suppressing moduli
Flaton domination (thermal inflation) 

starts at T ∼ V 1/4
0

Thermal inflation ends at T ∼ m

Duration of thermal inflation : eN ∼ V 1/4
0 /m

m ∼ 1TeV, �φ� ∼ 1010GeV → eN ∼ 103

Moduli abundance is suppressed by e3N ∼ 109

Flaton decay reheats the Universe

Γφ ∼
m3

φ

�φ�2 → Tφ ∼
�

ΓφMP ∼ O(1)GeV
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Thermal inflation model

model, the abundance of the GWs will be well within the observable range.

II. THERMAL INFLATION MODEL

Let us start with the model of thermal inflation. We introduce a gauge singlet superfield

φ which takes the role of the flaton.1 Imposing Zn symmetry, under which φ transforms as

φ → e2πi/nφ, we adopt the following superpotential2

W =
φn

nMn−3
+ kφQQ̄+W0. (1)

Here, Q and Q̄ are additional “quarks” which have quantum numbers for SU(3)QCD; they

are thermalized when φ = 0, and give a thermal mass to φ. In addition, W0 is a constant

which is related to the gravitino mass m3/2 as W0 = m3/2M2
P (with MP being the reduced

Planck scale). In the following, in order to guarantee the flatness of the potential of φ, we

take n ≥ 4. We also comment here that, if W0 = 0, the superpotential has an R-symmetry

under which φ has a charge +2/n. Although such an R-symmetry is explicitly broken by

the constant term W0, we will be interested in the case that the effect of the breaking is

relatively small. Then, in the vacuum where 〈φ〉 %= 0, quasi Nambu-Goldstone boson, which

we call R-axion, shows up.

Including the SUSY breaking effect, the zero temperature potential of the flaton φ takes

the following form :

V = V0 −m2|φ|2 + (n− 3)

(

Aφn

nMn−3
+ h.c.

)

+
|φ|2(n−1)

M2(n−3)
. (2)

If there are no sources for the A-parameter other than W0, we have A = m3/2. The SUSY

breaking mass parameter for φ is represented by −m2 and is assumed to be negative. Here-

after we take A real and positive. In addition, we take A ' m for simplicity. The vacuum

expectation value (VEV) of φ is given by

〈φ〉 ≡ v =

(

mMn−3

√
n− 1

)1/(n−2)

. (3)

1 We use a same symbol for a superfield as its scalar component.
2 Terms like φ2n,φ3n, . . . are also allowed, but they have little effects on the flaton dynamics discussed

below and hence are neglected.

3

model, the abundance of the GWs will be well within the observable range.

II. THERMAL INFLATION MODEL

Let us start with the model of thermal inflation. We introduce a gauge singlet superfield

φ which takes the role of the flaton.1 Imposing Zn symmetry, under which φ transforms as

φ → e2πi/nφ, we adopt the following superpotential2

W =
φn

nMn−3
+ kφQQ̄+W0. (1)

Here, Q and Q̄ are additional “quarks” which have quantum numbers for SU(3)QCD; they

are thermalized when φ = 0, and give a thermal mass to φ. In addition, W0 is a constant

which is related to the gravitino mass m3/2 as W0 = m3/2M2
P (with MP being the reduced

Planck scale). In the following, in order to guarantee the flatness of the potential of φ, we

take n ≥ 4. We also comment here that, if W0 = 0, the superpotential has an R-symmetry

under which φ has a charge +2/n. Although such an R-symmetry is explicitly broken by

the constant term W0, we will be interested in the case that the effect of the breaking is

relatively small. Then, in the vacuum where 〈φ〉 %= 0, quasi Nambu-Goldstone boson, which

we call R-axion, shows up.

Including the SUSY breaking effect, the zero temperature potential of the flaton φ takes

the following form :

V = V0 −m2|φ|2 + (n− 3)

(

Aφn

nMn−3
+ h.c.

)

+
|φ|2(n−1)

M2(n−3)
. (2)

If there are no sources for the A-parameter other than W0, we have A = m3/2. The SUSY

breaking mass parameter for φ is represented by −m2 and is assumed to be negative. Here-

after we take A real and positive. In addition, we take A ' m for simplicity. The vacuum

expectation value (VEV) of φ is given by

〈φ〉 ≡ v =

(

mMn−3

√
n− 1

)1/(n−2)

. (3)

1 We use a same symbol for a superfield as its scalar component.
2 Terms like φ2n,φ3n, . . . are also allowed, but they have little effects on the flaton dynamics discussed

below and hence are neglected.

3

The flaton superpotential (Z_n symmetry)

The flaton scalar potential

Heavy quark Q are massless at phi = 0 and 
they are in thermal bath.
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FIG. 6. Same figure as Fig. 4 for the case II: mφ ≥ ΓϕI
≥ HTI .

We show the obtained lower bound on the total abundance of the modulus in Fig. 6. It
is found that since the primordial inflation does dilute the energy of the big-bang modulus,
the lower bound becomes weaker than the previous case I and the allowed modulus mass
regions are mφ

>∼ 1 GeV and mφ # 10 keV–1 MeV. Therefore, the gravitino mass region
predicted by the HSSB scenario can be cosmologically viable and it should be noted that
small window for the gravitino mass range in the GMSB models does appear. This feature
is crucially different from the previous results.

However, when we take the cutoff scale of the original thermal inflation model as M∗ >
Mcr ∼ MG, this new window is disappeared as shown in Fig. 7. The lower bound on
the total abundance of the modulus becomes more stringent for mφ

<∼ 1 GeV where the
abundance of the thermal-inflation modulus is always larger than the big-bang modulus one
and then the limit is the same as Eq. (74) in the previous case. Therefore, in order that the
original thermal inflation dilutes sufficiently the light modulus of mass mφ # 10 keV–1 MeV
in GMSB models, the extremely low cut off scale as M∗ ∼ 106–1010 GeV is required. On
the other hand, the allowed region for mφ

>∼ 1 GeV still exists even for the case M∗
>∼ MG.

C. Case III: For the case mφ ≥ HTI ≥ ΓϕI

Finally we consider the case mφ ≥ HTI ≥ ΓϕI
where the reheating process of the pri-

mordial inflation completes after the thermal inflation ends and its reheating temperature
becomes extremely low. In this case the present abundance of the big-bang modulus is given
by [see Appendix B]

25

[ Asaka, Kawasaki (1999) ]

Observational 
bound

Moduli abundance
after TI
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Problems with TI

model, the abundance of the GWs will be well within the observable range.

II. THERMAL INFLATION MODEL

Let us start with the model of thermal inflation. We introduce a gauge singlet superfield

φ which takes the role of the flaton.1 Imposing Zn symmetry, under which φ transforms as

φ → e2πi/nφ, we adopt the following superpotential2

W =
φn

nMn−3
+ kφQQ̄+W0. (1)

Here, Q and Q̄ are additional “quarks” which have quantum numbers for SU(3)QCD; they

are thermalized when φ = 0, and give a thermal mass to φ. In addition, W0 is a constant

which is related to the gravitino mass m3/2 as W0 = m3/2M2
P (with MP being the reduced

Planck scale). In the following, in order to guarantee the flatness of the potential of φ, we

take n ≥ 4. We also comment here that, if W0 = 0, the superpotential has an R-symmetry

under which φ has a charge +2/n. Although such an R-symmetry is explicitly broken by

the constant term W0, we will be interested in the case that the effect of the breaking is

relatively small. Then, in the vacuum where 〈φ〉 %= 0, quasi Nambu-Goldstone boson, which

we call R-axion, shows up.

Including the SUSY breaking effect, the zero temperature potential of the flaton φ takes

the following form :

V = V0 −m2|φ|2 + (n− 3)

(

Aφn

nMn−3
+ h.c.

)

+
|φ|2(n−1)

M2(n−3)
. (2)

If there are no sources for the A-parameter other than W0, we have A = m3/2. The SUSY

breaking mass parameter for φ is represented by −m2 and is assumed to be negative. Here-

after we take A real and positive. In addition, we take A ' m for simplicity. The vacuum

expectation value (VEV) of φ is given by

〈φ〉 ≡ v =

(

mMn−3

√
n− 1

)1/(n−2)

. (3)

1 We use a same symbol for a superfield as its scalar component.
2 Terms like φ2n,φ3n, . . . are also allowed, but they have little effects on the flaton dynamics discussed

below and hence are neglected.

3

The flaton superpotential (Z_n symmetry)

Z_n symmetry is spontaneously broken after TI

Domain walls appear after thermal inflation

Thermal inflation also dilutes the baryon asymmetry.

How to create baryon asym. after TI ?
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Unstable DW
Introduce explicit Z_n breaking terms

W = �φ�/M �−3 DWs becomes unstable

Even without such  a term, DW is unstable because
Z_n symmetry is anomalous at the quantum level

W = kφQQ̄ (Needed for thermal mass for flaton)
V� ∼ Λ4

QCDBias

DWs decay at T ∼ ΛQCD

T.Moroi and KN, 1105.6216
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GWs from DWs

FIG. 2: Contours of ΩGW (solid line), fedge (dotted line) and TR (dashed line) for n = 4 (top) and

n = 5 (bottom). The regions explored by LISA, SKA and advanced LIGO are also shown. DECIGO

may cover the whole parameter region with ΩGW ! 10−18. Here we have taken m = 1TeV,

A = 100GeV and c = 1.
12
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Baryogenesis
Baryogenesis through Affleck-Dine after TI

Baryogenesis through Affleck-Dine leptogenesis

W =
φ

2

M
HuHdFlaton affects the Higgs dynamics

W =
1
M

LHuLHuHiggs affects the slepton dynamics

Angular motion of LHu direction 
corresponds to lepton number

[ Stewart, Kawasaki, Yanagida (1996), Kawasaki, KN (2006), 
Felder et al. (2007), Kim, Park, Stewart (2008) ]
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Refs. [28] and [29], an ad hoc large damping term was put
by hand under assumption that the flaton field quickly
decays through parametric resonance. In this work, we
have not made any such artificial assumption. The only
non-trivial input for computing the dynamics is initial
condition. As the initial condition, we set the initial val-
ues of all fields at around 1TeV as homogeneous part, as
is expected for thermal fluctuations at the end of ther-
mal inflation. Our simulation is performed with one-
dimensional lattice with 128 grid points. Initial fluctu-
ations come from quantum fluctuation around the ho-
mogeneous mode. We apply the method used in LAT-
TICEEASY [34] for including these quantum fluctuation.
In order to eliminate unphysical effect due to large quan-
tum fluctuations at short distance, we have cut the initial
quantum fluctuations with mode k > m, although this
does not much affect the result (for more detail about
initial condition for tachyonic potential, see [35] ).

It is found that the dynamics is rather sensitive to
the model parameters. However, since there are many
parameters in the model and full parameter search is be-
yond the scope of this paper, we have performed the sim-
ulations fixing the most of parameters as mφ = 180 GeV,
mHu

= 700 GeV, mHd
= 800 GeV, mL = 640 GeV,

λφ = 4, Aµ = 450 GeV, Aν = 200 GeV, Aφ = 20 GeV,
and arg(λφλ∗

µ) = −π/4. We also take M = MP . All A-
terms are taken to be real by field redefinition and hence
the only remaining parameter associated with CP angle
is arg(λµλ∗

ν). The other parameters are varied in each of
the following analysis.

First, we show the typical motion of the field l in Fig. 1
when only the homogeneous mode is taken into account.
We can see that first l rolls down to the displaced mini-
mum and then pull back to the origin, as explained in the
previous section. In this process, l is kicked to angular
direction, and finally the field rotates around the origin
with constant angular momentum (i.e., conserved lepton
number), in the complex plane.

From Fig. 1 it is obvious that lepton number is really
generated. However, the present universe (or at BBN or
recombination epoch) contains large number of causally
disconnected regions at the era of thermal inflation. This
means that the real baryon number is average over many
regions with different initial values of l field. The initial
values of l is determined by the thermal fluctuations at
the end of thermal inflation. Thus, the initial values of
phase of l is random and |l| also fluctuates around 〈|l|〉 ∼
T . Taking fluctuations of l into account, we perform the
simulations varying the initial phase of l with initial |l|
fixed. As for the initial value of φ, we fix its phase, but
we have confirmed that initial angular dependence of the
φ field does not much affect the subsequent dynamics.
We show in Fig. 2 the relation between the initial angle
arg(l) and the resultant baryon asymmetry. From this
figure it is seen that the average baryon number is really
non-zero. Fig. 3 shows the time evolution of the baryon
number. From this figure we can clearly see the baryon
number is finally conserved.

FIG. 1: Typical motion of the field l in the complex plane.
Here we write only zero mode. The field value is normalized
by 109GeV. We take |λµ| = 35, |λν | = 104, arg(λµλ∗

ν) = π/16.

FIG. 2: Initial angular dependence of baryon asymmetry
nB/s, when we take TR = 1GeV. The same parameters as
in Fig.1 are taken.

As explained in previous section, whether or not the
net baryon asymmetry is generated depends on CP
phase. The phase of the flaton field takes the value that
minimizes the potential of the angular direction deter-
mined by the term Aφλφφ4/M in the interested time
scale. The relevant potential of angular direction for
LHu comes from the term Aνλν l2h2

u initially, and sub-
sequent dynamics depends on the terms λµλ∗

νφ2hdl∗2h∗

u
and λφλ∗

µφ3φ∗h∗

uh∗

d. Initially, the angular minimum lies
in the direction arg(lhu) = π/2 and 3π/2. The angular
minimum is unchanged when arg(λµλ∗

ν) = π/4 and 5π/4
so the net baryon number expected to become zero. This
is seen in Fig. 4.

Finally, we fix arg(λµλ∗

ν) = π/16 and choose freely the
absolute value of λµ and λν . Each of these parameters is

[ Kawasaki, KN (2006) ]
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and soft SUSY breaking terms. We can parameterize the
flat directions LHu and HuHd as

L =

(

0
l

)

, Hu =

(

hu

0

)

, Hd =

(

0
hd

)

. (9)

The F -term potential is given by VF =
∑

ψ |∂W/∂ψ|2,
where ψ runs all scalar fields included in the superpoten-
tial, explicitly,

VF =
1

M2

{

|λφφ3 + 2λµφhuhd|
2 + |λν lh2

u|
2

+ |λµφ2hd + λν l2hu|
2 + |λµφ2hu|

2
}

.
(10)

The D-term contribution is written as

VD =
g2

2

(

|hu|
2 − |l|2 − |hd|

2
)2

. (11)

Finally, the soft SUSY breaking terms including soft
masses and A-terms are

VSB =V0 − m2
φ|φ|

2 + m2
L|l|

2 − m2
Hu

|hu|
2 + m2

Hd
|hd|

2

+
{Aφλφ

4M
φ4 +

Aµλµ

M
φ2huhd +

Aνλν

2M
l2h2

u + c.c.
}

(12)

Note that we assume that m2
φ > 0 and m2

L −m2
Hu

< 0 so
that the flaton φ and the flat direction LHu rolls away
from the origin of the potential and create baryon num-
ber after thermal inflation. Justification of these ansatz
is rather non-trivial [32], but it is possible to obtain valid
parameter space [29]. In this model, as explained below,
the most stringent constraint comes from the require-
ment that the true vacuum must break the electroweak
symmetry spontaneously. This implies that mass matrix
of the Higgs fields at the origin must have the negative
determinant,

(|µ|2 − m2
Hu

)(|µ|2 + m2
Hd

) < |Bµ|2, (13)

where B is given by

B = Aµ + 2λ∗

φ
φ∗3

0

Mφ0

(14)

from eqs. (10) and (12). Note that Hubble parameter H
is sufficiently smaller than the typical scale appearing in
the dynamics and negligible in the interested regime.

Here we briefly describe outline of the dynamics of this
model. As mentioned above, at the end of thermal in-
flation, the flaton φ and LHu flat direction begin to roll
away from the origin. If the LHu direction first rolls
away, the minimum of LHu is determined by the term
Aνλν l2h2

u/2M in eq. (12). As φ rolls down the potential
and increases its field value, LHu begins to feel the posi-
tive mass from the term |λµφ2hu|2/M2 in eq. (10) and at
the same time, the term λµλ∗

νφ2hdl∗2h∗

u/M2 + h.c. gives
LHu direction the angular kick. The minimum of the an-
gular direction determined by this term is different from

the initial one, which is source of CP violation. If the
following condition

m2
L − m2

Hu
+ |µ|2 > 0 (15)

is satisfied, the potential for the LHu direction is stabi-
lized at the origin and finally sit down there. However,
it is not clear whether U(1) conserving terms dominate
the potential at this epoch. If not, LHu direction re-
ceives angular kick repeatedly and we lose the ability for
predicting the resultant baryon number. Since the whole
dynamics at this stage is quite complicated, we perform
a numerical calculation based on lattice simulation.

C. Reheating and baryon-to-entropy ratio

Before going into the detailed analysis of the numeri-
cal calculation, we comment on the reheating and entropy
production in our model. The final reheating tempera-
ture is determined by the flaton decay rate Γφ as

TR ∼
( 5

4π3g∗

)
1

4
√

ΓφMP (16)

where g∗ denotes the effective degree of freedom at TR.
Let us denote the epoch at which baryon asymmetry is
generated as tB (which is almost the same time as the
end of thermal inflation) and at which φ decays as tφ.
The final baryon to entropy ratio is given by

nB(tφ)

s(tφ)
∼

nB(tB)TR

m2
φφ2

0

. (17)

Of course, it is lepton number that this process generates
but the electroweak sphaleron effect quickly converts the
B − L into B number [33].

Next we estimate the flaton decay rate. In the present
model, φ can decay into two Higgs bosons or higgsinos if
kinematically allowed. The decay rate is estimated as

Γφ ∼ C
|λµ|2φ2

0mφ

M2
(18)

where C is a constant of order 10−1 ∼ 10−2. If we assume
M ∼ MP , this gives TR ∼ 1GeV. But note that even if
the above decay modes are kinematically forbidden, the
flaton can decay into two photons or gluons through the
one loop diagrams associated with the particles in the
thermal bath required for thermal inflation [25]. These
processes also give decay rate that is roughly the same
order as eq. (18). It should be noted that the natural
range of the final reheating temperature is much lower
than the electroweak scale.

III. NUMERICAL ANALYSIS OF THE
DYNAMICS

We have investigated the full dynamics with poten-
tial (10), (11) and (12) using lattice simulation. In

3

and soft SUSY breaking terms. We can parameterize the
flat directions LHu and HuHd as

L =

(

0
l

)

, Hu =
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hu

0

)

, Hd =
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0
hd

)

. (9)

The F -term potential is given by VF =
∑

ψ |∂W/∂ψ|2,
where ψ runs all scalar fields included in the superpoten-
tial, explicitly,

VF =
1

M2

{

|λφφ3 + 2λµφhuhd|
2 + |λν lh2

u|
2

+ |λµφ2hd + λν l2hu|
2 + |λµφ2hu|

2
}

.
(10)

The D-term contribution is written as

VD =
g2

2

(

|hu|
2 − |l|2 − |hd|

2
)2

. (11)

Finally, the soft SUSY breaking terms including soft
masses and A-terms are

VSB =V0 − m2
φ|φ|

2 + m2
L|l|

2 − m2
Hu

|hu|
2 + m2

Hd
|hd|

2

+
{Aφλφ

4M
φ4 +

Aµλµ

M
φ2huhd +

Aνλν

2M
l2h2
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}

(12)

Note that we assume that m2
φ > 0 and m2

L −m2
Hu

< 0 so
that the flaton φ and the flat direction LHu rolls away
from the origin of the potential and create baryon num-
ber after thermal inflation. Justification of these ansatz
is rather non-trivial [32], but it is possible to obtain valid
parameter space [29]. In this model, as explained below,
the most stringent constraint comes from the require-
ment that the true vacuum must break the electroweak
symmetry spontaneously. This implies that mass matrix
of the Higgs fields at the origin must have the negative
determinant,

(|µ|2 − m2
Hu

)(|µ|2 + m2
Hd

) < |Bµ|2, (13)

where B is given by

B = Aµ + 2λ∗

φ
φ∗3

0

Mφ0

(14)

from eqs. (10) and (12). Note that Hubble parameter H
is sufficiently smaller than the typical scale appearing in
the dynamics and negligible in the interested regime.

Here we briefly describe outline of the dynamics of this
model. As mentioned above, at the end of thermal in-
flation, the flaton φ and LHu flat direction begin to roll
away from the origin. If the LHu direction first rolls
away, the minimum of LHu is determined by the term
Aνλν l2h2

u/2M in eq. (12). As φ rolls down the potential
and increases its field value, LHu begins to feel the posi-
tive mass from the term |λµφ2hu|2/M2 in eq. (10) and at
the same time, the term λµλ∗

νφ2hdl∗2h∗

u/M2 + h.c. gives
LHu direction the angular kick. The minimum of the an-
gular direction determined by this term is different from

the initial one, which is source of CP violation. If the
following condition

m2
L − m2

Hu
+ |µ|2 > 0 (15)

is satisfied, the potential for the LHu direction is stabi-
lized at the origin and finally sit down there. However,
it is not clear whether U(1) conserving terms dominate
the potential at this epoch. If not, LHu direction re-
ceives angular kick repeatedly and we lose the ability for
predicting the resultant baryon number. Since the whole
dynamics at this stage is quite complicated, we perform
a numerical calculation based on lattice simulation.

C. Reheating and baryon-to-entropy ratio

Before going into the detailed analysis of the numeri-
cal calculation, we comment on the reheating and entropy
production in our model. The final reheating tempera-
ture is determined by the flaton decay rate Γφ as

TR ∼
( 5

4π3g∗

)
1

4
√

ΓφMP (16)

where g∗ denotes the effective degree of freedom at TR.
Let us denote the epoch at which baryon asymmetry is
generated as tB (which is almost the same time as the
end of thermal inflation) and at which φ decays as tφ.
The final baryon to entropy ratio is given by

nB(tφ)

s(tφ)
∼

nB(tB)TR

m2
φφ2

0

. (17)

Of course, it is lepton number that this process generates
but the electroweak sphaleron effect quickly converts the
B − L into B number [33].

Next we estimate the flaton decay rate. In the present
model, φ can decay into two Higgs bosons or higgsinos if
kinematically allowed. The decay rate is estimated as

Γφ ∼ C
|λµ|2φ2

0mφ

M2
(18)

where C is a constant of order 10−1 ∼ 10−2. If we assume
M ∼ MP , this gives TR ∼ 1GeV. But note that even if
the above decay modes are kinematically forbidden, the
flaton can decay into two photons or gluons through the
one loop diagrams associated with the particles in the
thermal bath required for thermal inflation [25]. These
processes also give decay rate that is roughly the same
order as eq. (18). It should be noted that the natural
range of the final reheating temperature is much lower
than the electroweak scale.

III. NUMERICAL ANALYSIS OF THE
DYNAMICS

We have investigated the full dynamics with poten-
tial (10), (11) and (12) using lattice simulation. In

2

existing baryon asymmetry. Even Affleck-Dine mecha-
nism can not generate the enough baryon number which
survives from thermal inflation [26]. Thus, the baryon
number should be regenerated after thermal inflation.
Since thermal inflation ends at about T ∼ 1 TeV, baryo-
genesis mechanism which works at sufficiently low en-
ergy is required. One possible candidate is electroweak
baryogenesis [27], but for the typical reheating tempera-
ture after flaton decay is lower than 100GeV, this mech-
anism may not work. Another possibility is modified
version of Affleck-Dine baryogenesis with LHu flat direc-
tion which takes place after thermal inflation [28]. In
Refs. [28, 29] it was shown that the modified Affleck-
Dine baryogenesis works by solving simplified dynamics
of the scalar fields. However, actual dynamics of the
scalar fields in this model is much complicated and it is
not clear whether the proper amount of baryon number
is created or not when one solves full dynamics including
all the relevant scalar fields. In this paper, therefore, we
study the full dynamics of the scalar fields using lattice
simulation. We adopt the model proposed in [29].

This paper is organized as follows. In Sec.II we de-
scribe our model and overview of the dynamics, in par-
ticular how the baryon asymmetry is generated in this
model naturally. In Sec.III we show the results of lattice
simulation and constraints on the neutrino mass and µ-
term to obtain enough baryon number. In sec.IV we give
our conclusions.

II. THE MODEL

A. µ-term and flaton field

We start with the MSSM superpotential,

WMSSM = yu
ijQiHuuj +yd

ijQiHddj +ye
ijLiHdej +µHuHd,

(2)
where y’s are Yukawa couplings, i is the index of genera-
tion and SU(2) or SU(3) index is omitted. The last term
of (2) is called µ-term where µ is the only dimensionful
parameter in the MSSM. Hereafter, we also omit the gen-
eration indices for simplicity. Furthermore, we add the
following non-renormalizable superpotential which is re-
sponsible for neutrino mass:

Wν =
λν

2Mν
(LHu)(LHu), (3)

where Mν denotes some cut-off scale. This term is re-
garded as Majorana mass term for left handed neutrino
when Hu has the VEV, and also be regarded as the term
which lifts the potential of LHu flat direction [30]. We
also introduce a singlet field φ which couples with HuHd

as

Wµ =
λµ

Mn
φn+1HuHd. (4)

Then this term explains the natural value of µ with the
expectation value of φ [31],

µ = λµ
φn+1

0

Mn
, (5)

where φ0 denotes the VEV of φ. Since the required value
of µ is around electroweak scale, this relation determines
φ0. In our scenario the most attractive choice is n = 1,
because if we assume M ∼ MP and λµ ∼ O(1) eq.(5)
would give φ0 ∼ 1010GeV, which is required for flaton
field [23]. Therefore, in this model, the singlet field φ,
which is introduced to solve the naturalness of µ-term,
can be naturally regarded as flaton which leads to ther-
mal inflation. In order to stabilize the flaton potential,
we add the self coupling of the flaton field given by

Wφ =
λφ

4M
φ4, (6)

where λφ ∼ O(1).
To summarize, our superpotential is written as

W =yuQHuu + ydQHdd + yeLHde +
λφ

4M
φ4

+
λν

2Mν
(LHu)(LHu) +

λµ

M
φ2HuHd.

(7)

We can forbid the other possible terms in the above su-
perpotential using R-parity and some discrete symmetry,
such as Z4 symmetry, under which each field transforms
non-trivially [29]. Furthermore, by gauging Z4 symme-
try we can avoid the domain wall problem associated with
discrete minima of the potential. Here we only assume
this problem can be avoided by some mechanism which
does not affect the dynamics we are interested in.

Note that since the origin of neutrino mass term and
flaton sector depend on different physics at high energy,
cut-off scale M and Mν which appear in eq.(7) do not
need to coincide with each other. In order to obtain a
phenomenologically viable neutrino mass mν ! 1eV, The
Mν satisfies

Mν " λν × 1013 GeV, (8)

which suggests that Mν # MP for the O(1) coupling.
However, in this paper, we set M = Mν ∼ MP and
take λν as a free parameter. Then the natural parameter
range for λν is expected to be rather large compared with
λµ or λφ.

B. Scalar field dynamics after thermal inflation

During thermal inflation all fields are trapped to the
origin due to thermal effects, and when thermal inflation
ends at temperature T ∼ 100 GeV, the flaton field φ and
LHu flat direction begin to roll down to the instant min-
imum of their potential. The full scalar potential in our
model consists of the F -term associated with (7), D-term

Very complicated
 scalar dynamics
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What’s flaton?
It gives mu-term (Higgsino mass) through Kim-Nilles

W =
φ

2

M
HuHd µ =

�φ�2

M [ Kim, Nilles (1984) ]

Peccei-Quinn scalar can take role of flaton
[ Chun, Comelli, Lyth (1999), Kim, Park, Stewart (2008) ]

U(1)PQ φnforbids NR terms like
U(1)PQ is anomalous under QCD

Axionic domain wall problem
Needs models avoiding DW problem NDW = 1
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Summary of 
thermal inflation

• It is possible to solve the moduli problem.

• Domain walls are necessarily formed.  QCD 
anomaly effect may solve DW problem.

• Baryon asymmetry is also diluted. 
Baryogenesis after thermal inflation may be 
possible through modified Affleck-Dine.

• Both mechanisms are possible only for limited 
parameter ranges. It is still unclear all of them 
are consistent.
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3. Adiabatic Suppression
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Adiabatic suppression
Linde (1996) proposed that moduli oscillation  
amplitude is exponentially suppressed if it has 

large Hubble mass term. 

−L = m
2
Z(Z − Z0)2 + c

2
H

2
Z

2 c � O(10)

Z

V (Z)

∼MP

mZ < cH

mZ > cH
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Large Hubble mass?
Is it natural to have large Hubble mass ?

K ∼ 1
M

2
P

|Z|2|I|2 → −L ∼ H
2|Z|2 I : inflaton

Planck-suppressed coupling C ∼ 1

Strong dynamics at Planck scale C ∼ O(10)

[ F.Takahashi, T.Yanagida (2010) ]

Enhanced coupling for some reason?
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Figure 1: Oscillations of the moduli field in the theory (2) in the radiation dominated universe
(p = 1/2). Fig. 1a corresponds to C = 1, Fig. 1b shows the same process for C = 5.
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Figure 1: Oscillations of the moduli field in the theory (2) in the radiation dominated universe
(p = 1/2). Fig. 1a corresponds to C = 1, Fig. 1b shows the same process for C = 5.
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c=1

c=5

[ A.D.Linde (1996) ]

Moduli amplitude
is suppressed

for large c

where µ = −3(1 − p)/2 and ν2 = −C2p2 + (3p − 1)2/4.

It was noted in [11] that this solution has a rather weak dependence on C2 and p, and for
p = 1/2 or 2/3 one has to a good approximation

φ ∼
4

3
φ0

(

p

mφt

)

3p
2

sin

(

mφt +
(2 − 3p)π

4

)

. (5)

Thus, as one could expect, the field φ oscillates with the amplitude proportional to φ0, the factor
(

p
mφt

)

3p
2 taking care of the decrease of the initial amplitude due to the expansion of the universe.

The behavior of the field φ for the case C ∼ 1 is illustrated by Fig. 1 a.

However, in fact the solution (4) has a weak dependence on C only for C ∼ 1. Meanwhile,
if one takes C # 1, the behavior of the solution changes dramatically, see Fig. 1b. The field φ
follows the position of the time-dependent minimum of the effective potential, and its oscillations
about this position are rather small. To see these oscillations more clearly, one should subtract
from the actual value of the field φ its slowly changing mean value φ̄(t) corresponding to the
position of the time-dependent minimum of the effective potential. The result of this subtraction
is shown on Fig. 2, simultaneously with the solution (4), which has the following asymptotic
form1 for large C:

φ ∼
√

2pπ φ0 C
3p+1

2 exp
(

−
Cπp

2

)

(

p

tmφ

)

3p
2

sin

(

mφt +
(2 − 3p)π

4

)

. (6)

Fig. 2 shows numerical solution and the analytical solution (6) being superimposed. It is clearly
seen that both functions coincide at large t, which serves as an independent verification of the
validity of numerical and analytical results.

The solution (6) has an amplitude which is smaller than the amplitude of the solution (5) for
C ∼ 1 by the factor

3
√

2pπ

4
C

3p+1

2 exp
(

−
Cπp

2

)

. (7)

To reduce the amplitude of oscillations, say, by the factor 10−10, which would be sufficient to
solve the cosmological moduli problem, one needs C ∼ 30 for p = 1/2. For p = 2/3 (universe
dominated by nonrelativistic matter) it would be enough to have C ∼ 20. Whereas this may
look as a rather tough requirement, we remind that we do not really know the true value of this
parameter.

The situation is similar but somewhat better for the toy model considered in [13]:

V = −
1

2
(m2

φ + C2

1H
2)φ2 +

1

4M2
p

(m2

φ + C2

2H
2)φ4 . (8)

1 I am very grateful to Ewan Stewart for the discussion of this asymptotic form of their solution (4) at large
C.

5

Suppression
factor :

C � 10

solve moduli 
problem without

entropy production
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Adiabaticity
−L = m

2
Z(Z − Z0)2 + c

2
H

2
Z

2
Zmin =

C
2
H

2

C2H2 + m
2
Z

Z0

�����
Żmin

Zmin

����� > meff
Z m

eff
Z ≡

�
m

2
Z + C2H2

Adiabaticity is violated at

C � 1If

If C ∼ 1 adiabaticity is violated at H ∼ mZ

moduli are produced
adiabaticity is never violated

[ KN, F.Takahashi, T.Yanagida, in prep. ]

except for at the end of inflation
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Figure 5: The “adiabaticity parameter” f(H)/mz(zmin) as a function of H/mz for c2 = 1
and 10. The modulus potential is given by Eq. (1) (top panel) and Eq. (13) ((a) in the
bottom panel) and Eq. (16) ((b) in the bottom panel). Here f(H) ≡ |żmin/zmin|. The
adiabaticity is violated when the curve exceeds f(H)/mz(zmin) = 1.
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Figure 3: The dependence of the modulus energy density on the initial condition Hi for c =
20 (top) and c = 30 (bottom). Numerical solutions are compared with analytic estimate
based on (2), labeled as “analytic1”, and that based on (16), labeled as “analytic2”. We
have taken Γφ = 10−2.5mz and results are plotted at t = 20Γ−1

φ .
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inflation scale

The end of inflation involves non-adiabatic process
Moduli are necessarily produced at inflation end.

Standard moduli

Inflationary moduli

Moduli abundance (C=30)

[ KN, F.Takahashi, T.Yanagida, in prep. ]

Even in the adiabatic solution, there is model 
dependent lower bound on the moduli abundance 
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Thermal Moduli
Moduli are also produced scattering of 

particles in thermal bath, similar to gravitino

YZ ∼ Y3/2 ∼ 2× 10−12

�
TR

1010GeV

�

Y ≡ n

s

If moduli also couple to SM sector strongly, 
the abundance is enhanced by the factor ∼ C2

If so, the moduli lifetime becomes shorter by ∼ C2

Z

g

g

q

q

L ∼
�

d2θC
Z

MP
WaW a
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Figure 10: Same as Fig. 9 but for c2 = 30 and c3 = 1 (top) and c2 = 30 and c3 = 5
(bottom) with c5 = 1. In the top (bottom) panel, LSP is the bino (gravitino).

31

Constraint on reheating temperature in 
adiabatic suppression scenario

[ KN, F.Takahashi, T.Yanagida, in prep. ]
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Summary of adiabatic 
suppression

• If moduli obtain large Hubble mass, the moduli 
amplitude is significantly suppressed.

• However, moduli oscillation is induced at the end 
of inflation. Only Single-field inflation is allowed.

• Moduli are also produced from thermal scatter.

• Still there is stringent upper bound on reheating.

• There is no need for entropy production.
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Summary

• Polonyi/Moduli controls the visible sector.

• Moduli cosmology : highly non-trivial and 
important.

• A way to probe/constrain string theory.

• Let’s discuss !

2011年8月7日日曜日


