Phenomenological Aspects of Polonyi/Moduli Problem

Kazunori Nakayama (University of Tokyo)

Summer Institute 2011@ Fuji-Yoshida (2011/8/9)

Contents

Cosmological Polonyi/Moduli Problem
Solutions to the Polonyi/Moduli problem
I. Heavy Moduli
2. Thermal inflation
3. Adiabatic mechanism

Hidden sector

Hidden sector couples to SM sector only (nearly) gravitationally. (Polonyi / Moduli, ...)
It may determine the structure of SM sector
It cannot be produced by experiments
However, it has significant effects on cosmology
Probe/constrain hidden sector with cosmology

Polonyi field

 $m_{\tilde{g}} \sim m_{\tilde{f}} \sim \frac{F_Z}{M_P}$

- SUSY breaking field in gravity-mediation Z
- Super/Kahler potential

 $W = Z\mu^2 + W_0 \qquad \qquad K = |Z|^2$

Giving SUSY particle masses through

$$\mathcal{L} \sim \int d^2 \theta \frac{Z}{M_P} W_a W^a \sim m_{\tilde{g}} \tilde{g} \tilde{g}$$

$$\mathcal{L} \sim \int d^4\theta \frac{Z^{\dagger}Z}{M_P^2} |f|^2 \sim m_{\tilde{f}}^2 |\tilde{f}|^2$$

Polonyi potential

• Superpotential $W = Z\mu^2 + W_0$ Kahler potential $K = |Z|^2$

 $V = e^{K/M_P^2} \left[K^{i\bar{j}}(D_i W)(D_{\bar{j}} \bar{W}) - \frac{3|W|^2}{M_P^2} \right]$

• Polonyi mass ~ gravitino mass $m_Z \sim m_{3/2}$

Polonyi Problem

During inflation, Polonyi is placed anywhere

 M_P

 $\rightarrow Z$

cf. curvaton (T.Takahashi)

Polonyi Problem

The situation is same if the Polonyi has Hubble mass

 $K \sim \frac{1}{M_P^2} |Z|^2 |I|^2 \to -\mathcal{L} \sim H^2 |Z|^2 \qquad I: \text{inflaton}$

Polonyi begins oscillation at H~m with amplitude ~MP

 $m_Z > H$ V(Z) $m_Z < H$

Polonyi Problem

Polonyi lifetime

[Coughlan et al. (1983), Ellis et al. (1986), Goncharov et al. (1986)]

$$au_Z \sim \left(\frac{m_Z^3}{M_P^2}\right)^{-1} \sim 10^4 \mathrm{sec} \left(\frac{1\mathrm{TeV}}{m_Z}\right)^3$$

Polonyi abundance

 T_R :reheat temperature

$$\frac{\rho_Z}{s} = \frac{1}{8} T_R \left(\frac{Z_i}{M_P}\right)^2 \sim 10^5 \text{GeV} \left(\frac{T_R}{10^6 \text{GeV}}\right)$$

Big bang nucleosynthesis constraint

$$\frac{\rho_Z}{s} \lesssim 10^{-14} \text{GeV}$$

Polonyi Problem !

Constraint on energy injection from BBN

[Kawasaki, Kohri, Moroi (2005)]

Moduli Problem

- Light scalar field in compactification of extra dimensions in String theory
- E.g. Kahler moduli in KKLT stabilization in type IIB string theory $K = -3 \ln(T + T^{\dagger})$ $W = W_0 - Ae^{-aT}$ $\longrightarrow m_Z^2 \sim (8\pi^2)m_{3/2}^2$

Moduli Problem

Gravitational coupling

 $K = \frac{1}{M_P^2} |\Phi|^2 |Z|^2 \qquad \Phi : \text{SUSY breaking field}$ $\longrightarrow V \sim \frac{F_{\Phi}^2}{M_P^2} |Z|^2 \sim m_{3/2}^2 M_P^2 \longrightarrow m_Z \sim m_{3/2}$

Cosmological effects similar to the Polonyi
 Cosmological Polonyi/Moduli Problem
 [Banks et al. (1983), de Carlos et al. (1993)]

Constraint on the modulus abundance

[Asaka, Kawasaki (1999)]

Solutions

I. Moduli is heavy enough to decay before BBN
2. Thermal inflation for diluting moduli
3. Adiabatic suppression mechanism

I. Heavy Moduli

Heavy moduli

• The moduli lifetime $\tau_Z \sim \left(\frac{m_Z^3}{M_D^2}\right)^{-1} \sim 10^4 \mathrm{sec} \left(\frac{1\mathrm{TeV}}{m_Z}\right)^3$

 $m_Z > 100 \text{TeV} \longrightarrow \tau_Z \ll 1 \text{sec}$:no BBN bound

• Typically, $m_Z \sim m_{3/2}$ (gravitino mass) $m_{3/2} \ll 100 \mathrm{GeV}$: gauge-mediation $m_{3/2} \sim 1 \mathrm{TeV}$: gravity-mediation $m_{3/2} \gtrsim 100 \text{TeV}$: anomaly-mediation : mirage-mediation

2011年8月7日日曜日

SUSY breaking Uplifting to break SUSY $F_T \neq 0$ at dS minimum $m_{\text{SUSY}} \sim rac{F_T}{T} \sim rac{1}{8\pi^2} rac{F_{\text{total}}}{M_P}$ e.g., Gaugino mass : $M_a = M_0 + rac{m_{3/2}}{16\pi^2} b_a g_a^2$ Mixed-modulus-anomaly mediation Choi et al (04), Endo et al (05), Choi, Jeong and Okumura (05)

 $m_{3/2} \sim (8\pi^2) m_{\rm SUSY} \gg 1 {
m TeV}$ Heavy gravitino $m_T \sim (8\pi^2) m_{3/2} \sim O(10^3) {
m TeV}$ Heavy moduli

Heavy moduli significantly affect cosmology.

Heavy moduli scenario

- The moduli reheats the Universe with ~ MeV
- LSP overproduction problem

$$\begin{split} \Gamma(Z \to gg) &\sim \Gamma(Z \to \tilde{g}\tilde{g}) \sim \frac{m_Z^3}{M_P^2} \quad \text{[M.Endo, F.Takahashi (2008)]} \\ \frac{\rho_{\text{LSP}}}{s} &\sim \frac{m_{\text{LSP}}}{m_Z} T_Z \sim 10^{-6} \text{GeV} \left(\frac{m_{\text{LSP}}}{100 \text{GeV}}\right) \gg 4 \times 10^{-10} \text{GeV} \\ &\uparrow \\ \text{DM bound} \end{split}$$

Dilute baryon asymmetry by the moduli decay

Heavy moduli scenario

• Moduli may be much heavier than gravitino $m_Z \sim (8\pi^2) m_{3/2} \sim 10^3 \text{TeV}$: mirage-mediation

 Gravitino production from moduli

$$B_{3/2} = \frac{\Gamma(Z \to \psi_{3/2})}{\Gamma_Z}$$
$$\sim O(0.1)$$

[M.Endo, K.Hamaguchi, F.Takahashi (2006), S.Nakamura, M.Yamaguchi (2006)]

Baryon asymmetry

- Create enough asymmetry which survives dilution after moduli decay
- Affleck-Dine mechanism is perhaps the only way

 ϕ :AD field with baryon/lepton number

e.g.,
$$(LH_u) = \phi^2$$
, $(udd) = \phi^3$

$$n_B = i(\dot{\phi}\phi^* - \dot{\phi}^*\phi) = |\phi|^2\dot{\theta}$$

$$W = \frac{(LH_u)^2}{M} \to V_A = A \frac{\phi^4}{M} + \text{h.c.}$$

Barvon. \mathcal{C}

• AD baryogenesis through (udd) or (LLe) $W = \frac{1}{M^3} (udd)^2, \frac{1}{M^3} (LLe)^2$ flat direction

[Kawasaki, KN (2006)]

Summary of heavy moduli

- Moduli heavier than 100TeV avoids BBN constraint.
- Anomaly- or Mirage-mediation predict heavy mass.
- LSP/Gravitino production from moduli decay is problematic.
- R-parity violation may be needed.
- Baryon asymmetry is diluted. Affleck-Dine mechanism may create enough asymmetry.

2. Thermal inflation

Thermal inflation

- Late time inflation caused by "Flaton" field
- Moduli are diluted by thermal infaltion

[K.Yamamoto (1985), Lazarides et al (1986), Lyth, Stewart (1995)]

Suppressing moduli Flaton domination (thermal inflation) starts at $T \sim V_0^{1/4}$ • Thermal inflation ends at $T \sim m$ Duration of thermal inflation : $e^N \sim V_0^{1/4}/m$ $m \sim 1 \text{TeV}, \langle \phi \rangle \sim 10^{10} \text{GeV} \rightarrow e^N \sim 10^3$ • Moduli abundance is suppressed by $e^{3N} \sim 10^9$ Flaton decay reheats the Universe $\Gamma_{\phi} \sim \frac{m_{\phi}^3}{\langle \phi \rangle^2} \to T_{\phi} \sim \sqrt{\Gamma_{\phi} M_P} \sim O(1) \text{GeV}$

Thermal inflation model

The flaton superpotential (Z_n symmetry)

$$W = \frac{\phi^n}{nM^{n-3}} + k\phi Q\bar{Q} + W_0.$$

The flaton scalar potential

$$V = V_0 - m^2 |\phi|^2 + (n-3) \left(\frac{A\phi^n}{nM^{n-3}} + \text{h.c.}\right) + \frac{|\phi|^{2(n-1)}}{M^{2(n-3)}}.$$

 Heavy quark Q are massless at phi = 0 and they are in thermal bath.

2011年8月7日日曜日

[Asaka, Kawasaki (1999)]

Problems with Tl

The flaton superpotential (Z_n symmetry)

$$W = \frac{\phi^n}{nM^{n-3}} + k\phi Q\bar{Q} + W_0.$$

Z_n symmetry is spontaneously broken after TI
 Domain walls appear after thermal inflation
 Thermal inflation also dilutes the baryon asymmetry.
 How to create baryon asym. after TI ?

Unstable DW

Introduce explicit Z n breaking terms $W = \epsilon \phi^{\ell} / M^{\ell-3} \longrightarrow \mathsf{DWs}$ becomes unstable • Even without such a term, DW is unstable because Z n symmetry is anomalous at the quantum level T.Moroi and KN, 1105.6216 $W = k\phi Q \overline{Q}$ (Needed for thermal mass for flaton) \longrightarrow Bias $V_{\epsilon} \sim \Lambda_{\rm QCD}^4$ \longrightarrow DWs decay at $T \sim \Lambda_{\rm QCD}$

GWs from DWs

Baryogenesis

- Baryogenesis through Affleck-Dine after TI
- Flaton affects the Higgs dynamics $W = \frac{\phi^2}{M} H_u H_d$
- Higgs affects the slepton dynamics $W = \frac{1}{M}LH_uLH_u$
- Angular motion of LHu direction corresponds to lepton number
- Baryogenesis through Affleck-Dine leptogenesis

[Stewart, Kawasaki, Yanagida (1996), Kawasaki, KN (2006), Felder et al. (2007), Kim, Park, Stewart (2008)]

$$W = y^{u}QH_{u}u + y^{d}QH_{d}d + y^{e}LH_{d}e + \frac{\lambda_{\phi}}{4M}\phi^{4} + \frac{\lambda_{\nu}}{2M_{\nu}}(LH_{u})(LH_{u}) + \frac{\lambda_{\mu}}{M}\phi^{2}H_{u}H_{d}.$$

$$V_{F} = \frac{1}{M^{2}} \Big\{ |\lambda_{\phi}\phi^{3} + 2\lambda_{\mu}\phi h_{u}h_{d}|^{2} + |\lambda_{\nu}lh_{u}^{2}|^{2} + |\lambda_{\mu}\phi^{2}h_{d} + \lambda_{\nu}l^{2}h_{u}|^{2} + |\lambda_{\mu}\phi^{2}h_{u}|^{2} \Big\}.$$

$$V_{SB} = V_{0} - m_{\phi}^{2}|\phi|^{2} + m_{L}^{2}|l|^{2} - m_{H_{u}}^{2}|h_{u}|^{2} + m_{H_{d}}^{2}|h_{d}|^{2} + \Big\{ \frac{A_{\phi}\lambda_{\phi}}{4M}\phi^{4} + \frac{A_{\mu}\lambda_{\mu}}{M}\phi^{2}h_{u}h_{d} + \frac{A_{\nu}\lambda_{\nu}}{2M}l^{2}h_{u}^{2} + c.c. \Big\}$$

Very complicated

scalar dynamics

What's flaton?

It gives mu-term (Higgsino mass) through Kim-Nilles

 $W = \frac{\phi^2}{M} H_u H_d \longrightarrow \mu = \frac{\langle \phi \rangle^2}{M} \quad \text{[Kim, Nilles (1984)]}$

Peccei-Quinn scalar can take role of flaton
 [Chun, Comelli, Lyth (1999), Kim, Park, Stewart (2008)]

• $U(1)_{\rm PQ}$ forbids NR terms like ϕ^n

Summary of thermal inflation

- It is possible to solve the moduli problem.
- Domain walls are necessarily formed. QCD anomaly effect may solve DW problem.
- Baryon asymmetry is also diluted.
 Baryogenesis after thermal inflation may be possible through modified Affleck-Dine.
- Both mechanisms are possible only for limited parameter ranges. It is still unclear all of them are consistent.

3. Adiabatic Suppression

Adiabatic suppression

 Linde (1996) proposed that moduli oscillation amplitude is exponentially suppressed if it has large Hubble mass term.

$$-\mathcal{L} = m_Z^2 (Z - Z_0)^2 + c^2 H^2 Z^2 \qquad c \gtrsim \mathcal{O}(10)$$

Large Hubble mass?

- Is it natural to have large Hubble mass ?
- Planck-suppressed coupling $\longrightarrow C \sim 1$

$$K \sim \frac{1}{M_P^2} |Z|^2 |I|^2 \to -\mathcal{L} \sim H^2 |Z|^2 \qquad I : \text{inflaton}$$

- Strong dynamics at Planck scale $\longrightarrow C \sim \mathcal{O}(10)$ [F.Takahashi, T.Yanagida (2010)]
- Enhanced coupling for some reason?

- Moduli amplitude is suppressed for large c
- Suppression factor :

$$\frac{3\sqrt{2p\pi}}{4}C^{\frac{3p+1}{2}} \exp\left(-\frac{C\pi p}{2}\right)$$

• $C \gg 10$ —

solve moduli problem without entropy production

Adiabaticity

$$-\mathcal{L} = m_Z^2 (Z - Z_0)^2 + c^2 H^2 Z^2 \longrightarrow Z_{\min} = \frac{C^2 H^2}{C^2 H^2 + m_Z^2} Z_0$$

Adiabaticity is violated at

$$\left|\frac{\dot{Z}_{\min}}{Z_{\min}}\right| > m_Z^{\text{eff}} \qquad m_Z^{\text{eff}} \equiv \sqrt{m_Z^2 + C^2 H^2}$$

• If $C \sim 1$ adiabaticity is violated at $H \sim m_Z$ \longrightarrow moduli are produced

 If C >> 1 adiabaticity is never violated except for at the end of inflation [KN, F.Takahashi, T.Yanagida, in prep.]

• Moduli oscillation at $H \sim m_Z/C$

 $C \sim 1$

$$Z_{\min} = \frac{C^2 H^2}{C^2 H^2 + m_Z^2} Z_0 \qquad \dot{Z}_{\min} = -\frac{3m_Z^2 H}{m_Z^2 + C^2 H^2} Z_0$$

Moduli oscillation is exponentially suppressed for large C

t

 $C \gg 10$

• Moduli oscillation at $H \sim H_{inf}$

Moduli oscillation induced at the end of inflation

The end of inflation involves non-adiabatic process Moduli are necessarily produced at inflation end.

Even in the adiabatic solution, there is model dependent lower bound on the moduli abundance [KN, F.Takahashi, T.Yanagida, in prep.]

Thermal Moduli

 Moduli are also produced scattering of particles in thermal bath, similar to gravitino

 $\sim C^2$

 If moduli also couple to SM sector strongly, the abundance is enhanced by the factor

• If so, the moduli lifetime becomes shorter by $\sim C^2$

Constraint on reheating temperature in adiabatic suppression scenario

[KN, F.Takahashi, T.Yanagida, in prep.]

Summary of adiabatic suppression

- If moduli obtain large Hubble mass, the moduli amplitude is significantly suppressed.
- However, moduli oscillation is induced at the end of inflation. Only Single-field inflation is allowed.
- Moduli are also produced from thermal scatter.
- Still there is stringent upper bound on reheating.
- There is no need for entropy production.

Summary

- Polonyi/Moduli controls the visible sector.
 Moduli cosmology : highly non-trivial and important.
- A way to probe/constrain string theory.
- Let's discuss !