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Introduction

* There is evidence that string theory has many vacua that
have positive vacuum energy (Landscape of vacua).

* At the level of low-energy effective theory, described by
gravity coupled to field theory whose potential has local

minima. Consider a simple model:
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Basic picture

False vacuum is inflating, and decays through bubble
nucleation.

Bubble nucleation: mechanism for the creation of our
universe (Natural realization of “open inflation”)

Eternal inflation generically occurs: If the nucleation rate
is small, false vacuum does not disappear, and produce
infinitely many bubbles. (Concept of multiverse)

Bubble collisions inevitably occur.



Topics of this talk

 Fluctuations in the universe inside the bubble

— What are the signatures of the false vacuum?
Freivogel, YS, Susskind, Yeh, hep-th/0606204;

See also:
Garriga, Montes, Sasaki, Tanaka, ‘97, '98;
Yamauchi, Linde, Naruko, Sasaki, Tanaka, arXiv:1105.2674.

e Effect of bubble collisions

— Non-trivial topology, “Phases” of eternal inflation
Bousso, Freivogel, YS, Shenker, Susskind, Yang, Yeh, arXiv:0807.1947;
YS, Shenker, Susskind, arXiv:1003.1347.



* Holographic dual description

— Theoretical foundation for the landscape
Freivogel, YS, Susskind, Yeh, hep-th/0606204;
YS, Susskind, arXiv:0908.3844.



Bubble nucleation in de Sitter

* Described by Coleman-De Luccia instanton.

— Euclidean geometry: interpolates between
true vacuum (flat disc) and
false vacuum (de Sitter: S* in Euclidean)

— Rotationally symmetric: SO(4)
e Evolution of the bubble: analytic continuation
— Symmetry: SO(3,1)

— Domain wall constant accelerates.

— Open FRW universe inside the bubble.
Constant time slice: H3.




e Bubbles are nucleated with the rate

F ~ 6_(SCI_SdESitter)

per unit time, unit volume.
 Many bubbles are nucleated in the de Sitter region.

— One bubble does not fill the whole space.

—If T« H* , eternal inflation occurs.

— Bubble collisions are inevitable ; Infinite 4-volume
of false vacuum in the past light cone.

* (For the moment, let us ignore bubble collisions.)


http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

/Gamma/sim e^{-(S_{/rm cl}-S_{/rm de Sitter})}

/end{align*}

Perturbative fluctuations



Universe inside the bubble

Universe is curvature dominated
(i.e. flat spacetime) just after tunneling.

Slow-roll inflation (H; « H,4 ) after tunneling:
At time t ~ H; ' vacuum energy of SR inflation takes over.

a\ 1
Z) = H?2 4
(3) =i+

Tunneling gives the initial condition for SR inflation
(choice of vacuum for the fluctuations).

Constraint on curvature: Qp > 098 = T7TH;' < Reuy

. . z=0 dt
Surface of last scattering: =, :/ & 0.5Reure

z=1100 @


http://maru.bonyari.jp/texclip/texclip.php?s=/[

 /left({/dot{a}/over a}/right)^2=H_I^2+{1/over a^2}

/]


http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

 H_I/ll H_A

 /end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/[

 /Omega_0> 0.98 /quad /Rightarrow/quad 7 H_0^{-1}< R_{/rm curv}  

/]


http://maru.bonyari.jp/texclip/texclip.php?s=/[

 R_{/rm l.s.}=/int^{z=0}_{z=1100} {dt/over a}/sim 0.5 R_{/rm curv}

/]



Functions on hyperboloid

Harmonics:
sin kR
€.g. kaO(Rv Q) — NSiIlhR

Normalizable mode: continuous spectrum (real k)
decays as exp(-R) at large R.

Non-normalizable (supercurvature mode):
e.g. k=i: constant, or arbitrary function finite as R -> «.

Time-dep. of each mode during curvature domination is

. 3. .
Pr + ;fbk — (k* + 1)y, = 0, pp ~ tTIEW


http://maru.bonyari.jp/texclip/texclip.php?s=/[

/ddot{/phi}_k+{3/over t}/dot{/phi}_k-(k^2+1)/phi_k=0,

/qquad /phi_k/sim t^{-1/pm ik}

/]



Calculation of correlation function

e Euclidean (Hartle-Hawking) prescription:
Compute the correlator in Euclidean space, and
analytically continue.
dsyy = a*(X) (dX? + d6* + sin® 0d3) (00 < X < 00)

Hy'

cosh X

—

a(X)=Hi'e* (flat), a(X) = (de Sitter)

* Analytic continuation to FRW:
X 5T+ g@ 9 — iR
ds* = a*(T)(—dT?* + dR* + sinh® RdQ3)
Early time: a(T) ~ H ge”
e (Analytic cont. to the “center” region):
6 — g +ir, ds*=a*(X) (dX* —dr* + cosh? 7dQ3)




Euclidean correlator

e e.o.m. for a minimally coupled scalar:
i ) i
—0% + — V% 4+ m?a?| (ap) =0
a

e Calculation of the correlator is essentially
a 1-dimensional scattering problem
(c.f. Garriga, Montes, Sasaki, Tanaka, ‘98):

, o a" ) 5 , V(X) =d"/a (in the thin-wall limit)
-0y + — + ma”| ug(X) = (k° + Dug(X)
a Flat de Sitter (sphere)
V(X)=1 V(X)=1-2/cosh® X
1
el
|/ X
Delta fn at
domain wall



http://maru.bonyari.jp/texclip/texclip.php?s=/[

 /left[-/partial_X^2+{a''/over a}-/nabla_S^2+m^2 a^2/right](a/phi)=0

/]



* Using the solutions to the 1D scattering,

(B(X,0)8(X',0)) = =

50 fdkuk(X)UZ(X!)Gg(ﬁ)Jr (bound state)

where (v 1 (k2 1+ 1)] Gy(8) = 6(6)/sin6,  Gy(6) = sinh k(r — 0)

sinh k7 sin @

e Correlator can be written in terms of reflection coeff.

(6(X,0)6(X",0)) = HEe~X+X) /C dk(eik(x—){’) i
sinh k(7 — 0)

+R(k)e—%"f<X+X’>)

. . >
sinh k7 sin 6

>

3

e Bound state exists when mass in the false
vacuum is small compared to H,.

— Taken into account by deforming the contour.
— Mode localized near the domain wall.


http://maru.bonyari.jp/texclip/, 0)/rangle 

&=&/tilde{H}_A^2 e^{-(X+X')}

/int_{C_1} dk /Big( e^{ik(X-X')}/

&&+{/cal R}(k)e^{-ik(X+X

Correlator in open FRW

e At early time (curvature dominated era),
GT. RO(T,0) = [T3e ™) [

Ch

+R(k)e—‘“f(T+T’>)

dk (eik(T_T!) cosh km

sin kR
sinh k7 sinh R

(R: Geodesic distance on f73 )

e 1st term: “Flat space piece” (Minkowski correlator
written in hyperbolic slicing: Initial condition usually
assumed for inflation)

e 2nd term: Effect of the ancestor vacuum. (



http://maru.bonyari.jp/texclip/, 0)/rangle 

&=&/tilde{H}_A^2 e^{-(T+T')}

/int_{C_1} dk /Big( e^{ik(T-T')}/cosh k/pi/

&&+{/cal R}(k)e^{-ik(T+T

Time-dependence: In terms of scaling
dimensions

The 15t term gives the scale invariant spectrum
with square amplitude H,?

The 2" term has different time-dependence:

Hie—(T+T")€—z‘k(T+T”)

KK KKK KPR AKX XX

The k-integral is given as a sum over poles.
2b
At the onset of SR inflation T ~ log(H4/H;) , H} (ﬂ)

The term with the smallest b decays the least.
Super-curvature mode (b<0) is most important, if exists.



Characteristic features of the spectrum
(see also Yamauchi et al, 2011)

* The effect of the false vacuum (if there is any) is
exponentially peaked at low | (since f(_ibim) ~ R"):

R 21
CI( aaaaa tor) -~ (5) ( when R < 1)

* For scalar (inflaton), there is small effect,
at least in one field model: Mass in false vacuum
is large, and there is no supercurvature mode.

* For extra fields (isocurvature perturbations), the effect
could be large: There could be field with small mass in
the false vacuum.


http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

 C_l^{(/rm ancestor)}/sim /left({R/over 2}/right)^{2l}/quad (/mbox{ when }R<1)

 /end{align*}

Tensor modes

* Generically, small effect on temperature fluctuations
LU [ aorhun(T. R(T). )
There is no supercurvature mode, leading dimension is

b~a=(reHa)?
When a <« 1 , effect could be large,

H2 HI 2b
hrphpp) ~ —1

* The effect in the B-mode polarization will be small
(since the above mode is “parity-even”).



Three-point functions
(work in progress, w/ Daniel Park)

* Tree diagram for minimally coupled scalar

* Integrate the vertex over the whole Euclidean space:
SN

3
/dX0a4(X0)/dSQO 1 1 {o(Xr1,Q1)o(Xo, Qo)) ‘ ’
I=1
e Where

(p( X1, Q1)o(Xo, Qo))
1 ik(X7—Xo) —ik(X;+X0) sinh k(m — 010)
- =Xo) 1 R(k X Xo < X
a(X71)a(Xo) jdk(e + Rik)e )Sinhk'frsint?m (Xo < Xpw)
B 1
a(X1)a(Xo)

: inh k(w — 0
/dkT(k)ezk(XI—Xo) SI-Il (ﬂ- - IO) (XDW < XO)
sinh k7 sin g

(the H4 — 0 limit for simplicity)
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* First do the X integral:

XDVV 3 ' ‘ '
Clikaks (X1, X2, X3: Xpw) = / dXoa(Xo) H e~ k1 Xo (k1 X1 L R (k)= ik Xr)
- I=1
3

—I—/ dXoa(Xo) H ¢~ R XoT (fp) etk X
Xpw I—1

.
—1

* Analytically continue external points: ; — iR;, X; — Ty + >

* Then, deform contour for €y integral:

1: real, 0< 6y < ’3
2: 0 — 1Ry, 0< Rp< oo
3: 6y — By + 100,  Can be neglected ? )
4: g —m+ 1Ry, 0< Ry < oo
1
* We turn integral over S° to integral over H?



Three-point function in open universe:

(o(Th, Ri,w1)¢(In, Ro,w2)o(15, R3, w3))

3
1 1 -
— dk Cr. 1o (Th.Th. Ta: X
H(G(TI)./ ISiIlhkj?T) klakQakS( 1,425,413, DW)

> . - kl RlO sin ]{,‘QRQQ sin ]CgRgo
dRosinh? Ry | d2wo—
8 A 05t 0 / 0 sinh R1p sinh R9g sinh R3g



Bubble Collisions:
Phases of eternal inflation,
Non-trivial topology



Outline

* There are three phases of eternal inflation, depending on
the nucleation rate.

* Phases are characterized by the existence of percolating
structures (lines, sheets) of bubbles in global de Sitter.
(First proposed by Winitzki, ‘01)

* The geometry of the true vacuum region is qualitatively
different in each phase.

22



Distribution of bubbles: view from future infinity

 Consider conformal future of de Sitter.
(future infinity in comoving coordinates)

—dn? +dz?
H2p?2

ds® ~ (—o0 <7 < 0)

* A bubble: represented as a sphere cut out
from de Sitter.

e “Scale invariant” distribution of bubbles

Bubbles nucleated earlier:
appear larger: radius ~ H=3p?
rarer: volume of nucleation sites ~ |n|™*



http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

/sim H^{-3}|/eta|^3

/end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

/sim |/eta|^{-3}

/end{align*}

Model for eternal inflation

 Mandelbrot model (Fractal percolation)

— Start from a white cell.

(White: inflating, Black: non-inflating

Cell: One horizon volume)

— Divide the cell into cells E ]

with half its linear size.

(The space grows by a factor of 2.
Time step: At =H 'In2 )

— Paint each cell in black with probability P.

pins
L

Picture of the 2D version

(P~ I'V}..At = nucleation rate per horizon volume: constant)

— Subdivide the surviving (white) cells, and paint cells
in black w/ probability P. Repeat this infinite times.

24


http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

/textcolor[rgb]{1,0.4,0.4}{/Delta t=H^{-1}/ln 2}

/end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

/textcolor[rgb]{1,0.4,0.4}{/Gamma V_{/rm hor}/Delta t}

/end{align*}

Mandelbrot model defines a fractal

e IfP>1-(1/2)3=7/8, the whole space turns black, since
(the rate of turning black) > (the rate of branching).
(No eternal inflation)

e |f P<7/8, white region is a fractal. Non-zero fractal
dimension d; (rate of growth of the cells):

Neells = 27, dp =3 — |log(1 — P)|/log?2
(n : # of steps)
Physical volume of de Sitter region grows.
(Eternal inflation)

* Fractals in eternal inflation: c.f. Vilenkin, Winitzki, ... =


http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

&N_{/rm cells}=2^{nd_{F}}, /quad d_{F}=3-|/log(1-P)|//log 2 // 

&(n:{/rm /

Three phases of eternal inflation

From the result on the 3D Mandelbrot model
[Chayes et al, Probability Theory and Related Fields 90 (1991) 291]

In order of increasing P (or I'), there are
(white = inflating, black = non-inflating)

e Black island phase: Black regions form isolated clusters;
" percolating white sheets.

* Tubular phase: Both regions form tubular network;
" percolating black and white lines.

 White island phase: White regions are isolated;
" percolating black sheets.

26
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Courtesy of Vitaly Vanchurin
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Geometry of the true vacuum region

 Mandelbrot model: the picture of the de Sitter side.
(de Sitter region outside the light cone of the
nucleation site is not affected by the bubble.)

e To find the spacetime in the non-inflating region
inside (the cluster of) bubbles, we need to understand
the dynamics of bubble collisions.

* |n the following, we study this using the intuition
gained from simple examples of bubble collisions.

28



Black island phase (isolated cluster of bubbles)

Small deformations of open FRW universe. Q&

* Basic fact: A collision of two bubbles (of the
same vacuum) does not destroy the bubble
[c.f. Bousso, Freivogel, Yang, ‘07]

— Residual symmetry SO(2,1): spatial slice has H? factor
— Negative curvature makes the space expand.
— Spatial geometry approaches smooth H3 at late time.

29



Collision of two bubbles

De Sitter space: hyperboloid in &"'

~ XS+ X7+ X3+ X3+ X5 =17

One bubble: plane at Xy = const. = /2 — 13

Second bubble: plane at X3 = const. = /¢2 — 73
Residual sym: SO(2,1)

Parametrization of de Sitter w/ manifest H? factor :

ds* = —f71(t)dt* + f(t)dz* + t*dH;
ft)=14+*/02, (0< 2z <2x/)

(Xa_ =tH, (a=0,1,2), X3=+vVt2+cos(z/l), Xq=Vt*?+1 sin(z/é.’))


http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

X_3={/rm const.}=/sqrt{/ell^2 -r_0^2}

/end{align*}

Parametrization of flat space:
ds® = —dt* + dz* + t*dH,

Profile of domain wall in (t, z) space ( H* is attached)

flat | flat 2 o :
/\ dspy = —d7” + R°(7)dH, (R(7) =

Energy on the domain wall decays at late time

= po/t* (for dust wall)

The spatial geometry approach smooth H?3

) ( o
pa




Tubular phase

* True vacuum region form tubular network.

* In the late time limit, negatively curved space which
has a boundary with non-trivial topology:

ds® = —dt* + t*dsty

— ds%/r . H3 modded out by discrete elements of
iIsometry

— Boundary genus = # of elements


http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

ds^2=-dt^2+t^2ds^2_{H//Gamma}

/end{align*}

Example: toroidal boundary

Space: bulk of a torus

Infinite distance to get to the boundary i
Non-contractible circle in the bulk has finite length.

Can be constructed by identification of H3 by

dx? + dy? + dz?
2

dS 3 —
H A

(z,9,2) ~ Az, y, 2)
There are geodesics can come back to the original
point (generically once; comes in from boundary and

goes out to boundary).

//////4////////////////%/
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http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

ds_{H^3}^2={dx^2+dy^2+dz^2/over z^2}

/end{align*}

e Simpler example: true vacuum with toroidal boundary
[Bousso, Freivogel, YS, Shenker, Susskind, Yang, Yeh, ‘08]

— Ring-like initial configuration of bubbles
(with the hole larger than horizon size)

— Solve a sequence of junction conditions

Nz
~

- _f( )dtz + f_l (t)dzz —I_ tdeQQ \\\\\ \\\\\>(3/\A/\\\\>:3,,>:\\\,\/\3,»:\‘\,\/3// ////
(f) =1+ t2/* (de Sitter) “2727 27 27 2
( A 1/\ 1/\ 1/\\ 1,\\

t)=1—tu/t (in region n; t,: const.) /\ 0,?\ 0,?\ 0\/\ \

— Approaches flat spacetime at late time.
(Negatively curved spatial slice with toroidal boundary)



White island phase (isolated inflating region)

An observer in the black region is “surrounded” by the white
region (contrary to the intuition from Mandelbrot model).

* Simple case: two white islands (with S? symmetry)

[Kodama et al ‘82, BFSSSYY ’08]

Global slicing (S3) of de Sitter Penrose diagram

‘White
lam

— An observer can see only one boundary; the other boundary is
behind the black hole horizon. [c.f. “non-traversability of a

1/

wormhole”, “topological censorship”] 35



* In the white island phase, a white region will split.

— Late time geometry for the three white island case:

[Kodama et al "82]

° ° I

— Singularity and horizons will
form so that the boundaries

are causally disconnected
from each other.



From the Mandelbrot model: A single white island is of
order Hubble size (due to frequent bubble nucleation)

The boundary moves away from a given observer, but its
area remains finite. (Effectively a closed universe)

Black hole in the bulk.

This universe will eventually collapse.

— Simpler model: Shells of bubbles constantly
colliding to a given bubble

— Any given observer in the true vacuum
will end up at singularity.

37



Summary of this part

Three phases of eternal inflation and their cosmology:

* Blackisland phase:

Small deformation of an open FRW
* Tubular phase:

Negatively curved space with an infinite genus boundary
 White island:

Observer sees one boundary and one or more black hole
horizons (behind which there are other boundaries).

38



Holographic duality



Proposal: FRW/CFT duality

The open FRW created by bubble nucleation is
described by a conformal field theory on 5?
(at the boundary of H3)

* SO(3,1): conformal sym in 2D (as in AdS/CFT).
e The dual has 2 less dimensions than the bulk.

— The dual theory contains gravity (Liouville field).
(It is a 2D gravity coupled to matter with c¢>25).

— Liouville field plays the role of time.

— “Census taker” sees more and more stuff at late time:
Corresponds to finer and finer cutoff.



Near boundary behavior of correlators

* Two-point function: sum of terms with definite dimensions
(T R)¢ Z G Alfat+is) A(ThLTz)(l — COoS Q)_A

+ Z G (Fat B2) (A =2)(TaAT2) (] _ o5 )~

(Q angular separation on §2 )
A=2,3,4,..; and 0, 1+a (0<a<1) for massless fields).

* One bulk field corresponds to a tower of CFT operators.

— Operators which scale like e 2T

“RG-invariant” operators (defined at the UV scale)

— Operators which scale like 272 T=AF

“RG-covariant” operators (defined at reference scale)


http://maru.bonyari.jp/texclip/, 0)/rangle 

&=&/sum_{/Delta}G_/Delta^{(1)}e^{-/Delta(R_1+R_2)}

e^{-/Delta(T_1+T_2)}(1-/cos/Omega)^{-/Delta}/

&&/hspace{-2cm}+/sum_{/Delta'=2}^{/infty}G_{/Delta'}^{(2)}e^{-/Delta'(R_1+R_2)}

e^{(/Delta'-2)(T_1+T_2)}(1-/cos/Omega)^{-/Delta
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

 e^{-/Delta (T+R)}

/end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

 e^{(/Delta-2)T-/Delta R}

/end{align*}

Graviton correlator

e Supercurvature mode with £ =i (A =0)
Pure gauge in the bulk; has physical effect
on the boundary (“How the boundary is
embedded in the bulk”).

* From Euclidean prescription, we get correlator
of 2D curvature

(RO R)y — .

(1 — cos2)?

This remains finite as £ — oo :
Gravity is not decoupled at the boundary.


http://maru.bonyari.jp/texclip/texclip.php?s=/[

 /langle R^{(2)} R^{(2)} /rangle ={1/over (1-/cos/Omega)^2}

/]



* Dimension 2 piece of graviton is transverse
(conserved)-traceless in 2D.

— ldentified as energy-momentum tensor of 2D CFT
— Evidence for the existence of local 2D theory.

 3-point function (h¢¢) will tell us about operator
product expansion.

— Normalization of energy momentum tensor will
be fixed, and central charge will be found

— From scaling argument, it is of order de Sitter
entropy.



Conclusions

e We have studied
— Fluctuations in the universe in a bubble

— Phases of eternal inflation; non-trivial topology
— Holographic duality

* There are many issues that are not well understood:
— Multi-field tunneling
— Observational consequences of the phases
— Holographic duality (does dS/CFT make sense?)
— Measure problem



