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Inflationary models

Up to now many inflationary models have been proposed.

The conventional inflation is driven by a field potential with the Lagrangian   

where

Meanwhile there are other types of single-field models such as

 K-inflation: the Lagrangian includes non-linear terms in X. 

 f(R) gravity: a simple example is 

Examples: ghost condensate, DBI

f(R) gravity is equivalent to (generalized) Brans-Dicke theory with 

 Non-minimal coupling models: a scalar field couples to the Ricci scalar. 

Example: Higgs inflation

 Galileon (G) inflation: the Lagrangian is constructed to satisfy the symmetry.

(in the limit of flat space-time)

[Starobinsky, 1980]



The most general single-field scalar-tensor theories having 

second-order equations of motion:

Horndeski (1974) 

Deffayet et al (2011)

This action covers most of the single-field scalar field models of inflation

proposed in literature. 

 K-inflation

 Non-minimal coupling models

Scalar-tensor theories (including f(R) gravity), Higgs inflation 

Field-derivative coupling models (‘New Higgs inflation’)

 Galileon inflation

(Kobayashi, Yamaguchi, Yokoyama, arXiv: 1105.5723)



Discrimination between single-field inflationary models

One can classify a host of inflationary models observationally from

For the most general scalar-tensor theories， these observables are evaluated

by Kobayashi, Yamaguchi, Yokoyama (arXiv: 1105.5723).

See also Naruko and Sasaki (CQG, 2011), De Felice and S.T. (JCAP, 2011), Gao (2011) 

In those theories the scalar propagation speed       is in general different from 1.

In k-inflation the scalar non-Gaussianities are large for 

How about the scalar non-Gaussianities in the most general

single-field scalar-tensor theories?

Gao and Steer (arXiv: 1107.2642), De Felice and S.T. (arXiv: 1107.3917)



The spectrum of curvature perturbations 

We consider scalar metric perturbations                  with the ADM metric

We choose the uniform field gauge:

Using the momentum and Hamiltonian constraints, the second-order action 

for perturbations reduces to

where

The scalar power spectrum is Kobayashi, Yamaguchi, Yokoyama (arXiv: 1105.5723)

De Felice and S. T. (arXiv: 1107.3917)



The spectrum of tensor perturbations 

The second-order action for tensor perturbations is

where

The tensor power spectrum is 

The tensor-to-scalar ratio is 

where

_____
This term comes from the 

nonminimal coupling in 



Scalar non-Gaussianities

For the ADM metric with scalar metric perturbations the third-order perturbed 

action is given by (obtained after many integrations by parts)

where



We find that the three-point correlation function is given by 

where

Gao and Steer (arXiv: 1107.2642), 

De Felice and S.T. (arXiv: 1107.3917)



The nonlinear parameter

(De Felice and S.T., arXiv: 1107.3917)



The scalar propagation speed



K-inflation + Galileon terms

 The ghost condensate model plus the Galileon       term 

(Kobayashi, Yamaguchi, Yokoyama, PRL, 2010)

There is a de Sitter solution with 

(Mizuno and Koyama, PRD, 2010)

 Let us consider the Galileon        term

 Let us consider the Galileon        term
(De Felice and S.T., arXiv: 1107.3917)



Let us consider nonminimal coupling models.

including scalar-tensor gravity and f(R) gravity

The above two types of nonminimal couplings themselves do not give rise to 

large equilateral non-Gaussianities.  



Potential-driven G-inflation

Let us consider the following model

In this case the scalar propagation speed squared is

The quartic potential can be saved (Kamada et al, PRD, 2010).



Observational constraints on G-inflation with the quartic potential  

The left figure corresponds to

The quartic potential is saved by 

the Galileon-like corrections.

Kamada, Kobayashi, Yamaguchi, Yokoyama, 

PRD,  2010

De Felice, S.T., Elliston, Tavakol, 

JCAP to appear

(standard inflation)

(G-inflation)



Gauss-Bonnet couplings

(Kobayashi, Yamaguchi, Yokoyama, 

arXiv: 1105.5723)

where

small

This result matches with that derived explicitly in the presence of 

the Gauss-Bonnet coupling (De Felice and S.T., JCAP, 2011).



CMB likelihood analysis by CAMB

where

The CMB likelihood analysis shows

that the Gauss-Bonnet contribution 

needs to be suppressed:

De Felice, S.T., Elliston,Tavakol, JCAP to appear (2011)

Observational constraints on the Gauss-Bonnet coupling

From the observational data of 

the scalar spectral index and 

the tensor-to-scalar ratio the GB

Coupling is constrained by varying 

two parameters:



Conclusions 

We have evaluated the primordial non-Gaussianities for the very general single-field

models characterized by 

We found that the equilateral nonlinear parameter is given by  

Our analysis covers a wide variety of inflation models such as 

(i)k-inflation, (ii) nonminimal coupling models [scalar-tensor theories and f(R) gravity], 

(iii) Galileon inflation, (iv) inflation with a Gausss-Bonnet coupling, etc.   

It will be of interest to discriminate a host of inflationary models in future observations 

by using our formula of the nonlinear parameter as well as the spectral index and 

the tensor-to-scalar ratio. 


