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Inflationary models

Up to now many inflationary models have been proposed.
The conventional inflation 1s driven by a field potential with the Lagrangian

P=X — V(é) where X = —¢""0,00,¢/2

Meanwhile there are other types of single-field models such as
@® K-inflation: the Lagrangian includes non-linear terms in X.
P=P (Cb, X ) Examples: ghost condensate, DBI
® f(R) gravity: a simple exampleis f(R) = R + R? /(6 M 2) [Starobinsky, 1980]

f(R) gravity is equivalent to (generalized) Brans-Dicke theory with wsp = 0

® Non-minimal coupling models: a scalar field couples to the Ricci scalar.

F(¢p)R Example: Higgs inflation
@® Galileon (G) inflation: the Lagrangian is constructed to satisfy the symmetry.

Ou@ — 0,0+ 0, (in the limit of flat space-time)
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The most general single-field scalar-tensor theories having

second-order equations of motion:

M?2 Horndeski (1974)
S = /d%\/—g [Tpl R+ P(¢,X)—G3(¢p, X)Od+ L4+ L5|.  Deffayet et al 2011)
Ls=G4(¢,X) R+ Gy x [(O00)° — (V,V.u0) (VFVY )]
Ls = G5(¢, X) G (VHVY9) — éGE»,X[(D@)?’ —3(0¢) (Vu Vo) (VFVY9) + 2(VFVa0) (VEV ) (VOV .0)]

This action covers most of the single-field scalar field models of inflation
proposed 1n literature.

® K-inflation

@® Non-minimal coupling models
G4 = F(¢) =P Scalar-tensor theories (including f(R) gravity), Higgs inflation
G5 = F(¢) wmmp Field-derivative coupling models (‘New Higgs inflation’)

® Galileon inflation

P:X—Cgb, G3(XX, G4O(X2, G5OCX2

Even the Gauss-Bonnet coupling £(¢)G can be recovered for a particular
choice of P, GG3, G4, (G5. (Kobayashi, Yamaguchi, Yokoyama, arXiv: 1105.5723)
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Discrimination between single-field inflationary models

One can classify a host of inflationary models observationally from

1. The spectral index np of scalar curvature perturbations
2. The tensor-to-scalar ratio r

For the most general scalar-tensor theories, these observables are evaluated
by Kobayashi, Yamaguchi, Yokoyama (arXiv: 1105.5723).

See also Naruko and Sasaki (CQG, 2011), De Felice and S.T. (JCAP, 2011), Gao (2011)
In those theories the scalar propagation speed Cg 1s in general different from 1.

In k-inflation the scalar non-Gaussianities are large for (:3 <1

=) How about the scalar non-Gaussianities in the most general
single-field scalar-tensor theories?

Gao and Steer (arXiv: 1107.2642), De Felice and S.T. (arXiv: 1107.3917)
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The spectrum of curvature perturbations

We consider scalar metric perturbations v, 1, R with the ADM metric

ds? = —[(1 + a)? — a(t) "2 e 2R (0)?] dt? + 20, dt dz’ + a(t)?e*Rdx>

We choose the uniform field gauge: 54 — ()

Using the momentum and Hamiltonian constraints, the second-order action

for perturbations reduces to
S, = /dtd?’m a3Q [R2 _ z_% (aR)Zl ‘ Q@ > 0 and ¢? > 0 are required to avoid

ghosts and Laplacian instabilities.

wy (dwiwz + 9w3) s 32wiwsH — w3wy + dwiiwy — 2wiig)

where — —
@ ’ ¢ w1 (dwiws + 9w3)

3ws3 °

w) = MAF —4XGy x —2HX G5 x +2X G5 4

P
wo = 2M2AHF — 2X ¢G5 x — 16H(XGa x + X?Gaxx) + 20(Gap + 2XGapx)
—2H%3(5X G5 x +2X?Gs xx) + 4HX (3G5 4 +2X G5 4x)
wy = —9IMAH?F + 3(XPx +2X*P xx) + 18H$(2X G5 x + X?G3 xx) — 6X(G3,6 + XG3.6x)
HISH?(TX Gy x + 16X%2Gy xx +4X3Gy xxx) — 18HG(Gup + 5X Gy px +2X%CGugxx)
+6H3p(15X G5 x + 13X2G5 xx +2X3Gsxxx) — 18H2X (6G5,4 + 9X G5 px + 2X2G5.6xx)
wy = MAF —2XG5 4 — 2X G5 x ¢

2
H Kobayashi, Yamaguchi, Yokoyama (arXiv: 1105.5723)

The scalar power spectrum 1is .
p p Pr Q2 Q o De Felice and S. T. (arXiv: 1107.3917)
S



"
The spectrum of tensor perturbations

The second-order action for tensor perturbations is

. 2
S = E /dtd?’:l: (I,SQT [hi _a (8h)\)2] A corresponds to
A

a? polarization modes

where

M _laprpgo .
Or = = MaF I+ O] e P =14 26,/M2 and e = —H/H? < 1.

2 . S
Cr = ’bU4/’bU1 =1 + 0(6) / This term comes from the

nonminimal coupling in [,4
Ly =Ga(¢, X) R+ Gax [(O6) — (V. V,0) (VIV"9)]
The no-ghost condition is satisfied for F' > 0.

The tensor power spectrum is
_ H? _ 2H 2
- 2n2Qrcd M2 F

Pr

The tensor-to-scalar ratio is

D 2
r = % ~ 16cg€; where €s = J\?ZCSF = O(e)

pl
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Scalar non-Gaussianities

For the ADM metric with scalar metric perturbations the third-order perturbed
action is given by (obtained after many integrations by parts)

S3 = /dtﬁg

Ls = / d3m{a361M§1RR2 +aCoMAR(OR)? + a’CsMpR? + a’CaR(9;R)(8;X) + a®(C5/MZ)O*R(OX)*
+aC€,R262R ar C7 [8272,(87?,)2 — ’R@zaj (&,R) (837%)] /a A Q(CS/Mpl) [GZ”R&,R&,X — R&baj (6572) (8326)}

Ly }
1

+F 22
C; (i=1,2,---,8) are slowly varying relative to a, and 9°X = QR.

where

O0R

JF1 are second order in perturbations and

OLa| _ o [%(CLSQR) - anﬁfﬁR] mm) This vanishes at first order in R.
1

OR

The vacuum expectation value of R for the three-point operator
at the conformal time 7 = 7 is

(R(k1)R(k2)R(k3)) = —i /Tf dra (0| [R(7s, k1)R(7s, k2)R(7s, k3), Hin(7)] |0)

where Hiny = —L3.



We find that the three-point correlation function 1s given by

A -
_ 7 5(3) 2 R Gao and Steer (arXiv: 1107.2642),
(R(k1)R(k2)R(ks)) = (27)"5" (k1 + ko + k3)(Pr) 1, k3 De Felice and S.T. (arXiv: 1107.3917)
=1 "1
where
M2 1
A = 2 {4( > k2 - Zk2k3) c1+— ( Zk3 Zkfk22k2k3)
i>j i#] i>] i£g

3 H (klkgkg)Q 3 2 21.3
L KO 8M2 Zk szkj KQZM

i#] i#]

]

2 53 2
i : 3 ((H \" (kikaks)®
1 (r% K2 [Z k2 + Z kikd — = Z k2kS — kikoks » kikj} Cs+ 5 (Mpl) ( 1;33) .

g 2%3 z%j i>j

1/ H\*1 1 3k1k2k3 A 272
o —) K(HKQZ:«J@J Zk Zkk

1>7]

i#j

= klkgkgzkff - klkgkgf(? 6> k2kI - ki+ ;KZkf] cg},

The terms C; (¢ = 1,---,5) appear in k-inflation (Seery and Lidsey,
Chen et al), which can be well approximated as an equilateral estimator.

The shape of the non-Gaussianities can be also approximated as
an equilateral one even in the presence of Cg (Mizuno and Koyama)

and C7, Cs (De Felice and S.T.).
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The nonlinear parameter
10 AR

3211

For the equilateral configuration (k1 = ko = k3) one has

2 2 2 H

cquil _ 40 M, W, 1H, 1Q, 1(Q L (H ._i(i)c_ Ty Q.

NL T 9o [12C +960362+72MP1C5 24 M2 2% m M2 C5+36(:§ My, 6™ 96 My) " 192¢2 My M%°
Under the expansion of the slow-variation parameters it follows that

cqui _ 85 (1) 10\ 55¢ 57 85 01+\sx 65
NL ™ 394 2 81 e, 162c2¢, ) %

We define the nonlinear parameter fnr,, as J/yL =

TRIT T3%2 T2 ma

CS
803 + 2M\x 65 20 65 205 4+ 2A5x 65
— ) ) — J
H (81 = 27c§es> ST (8165 i 162c§es) =N (81 w | e ) "
where (De Felice and S.T., arXiv: 1107.3917)
€s Cs Gs.x0X GixxX? Gs xHoX | %2
s = = 5 . = —— 6 = 6 R bt E— G5XXH¢)X
Ui He,' $ He,’ G3X MSIHF » 0Gax X MﬁlF y  0G5X MSlF Y Sosxx = W
P
Naw = XGs3 xx Ao = XGyxxx Ny = XGs xxx v _ wy (dwyws + 9w3)
X = ) IX = — = —, =
E 3.X Gy xx > Gs.xx 121\/131

A= (F?/3)[3X%Pxx +2X?Pxxx +3HH(XGs x +5X2Gs xx +2X3C3 xxx) — 22X%2G5 4x + X3Ga4xx
+6H?(9X?Gyxx +16X°Gaxxx +4X Gy xxxx) — 3HO(BXGup x + 12X%Gy sxx +4X3Gapxxx)
+H3G(3X G5 x +27TX?Gs xx + 24X3Gs xxx +4X*Gs xxxx)

—6H?*(6X%G5.6x +9X3Gs oxx +2X G5 xxx)]

. . equl 5
Standard inflation: P = X —V(¢),c2=1,A=0 mmp [ = Es + 57
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The scalar propagation speed

If ¢ < 1, the large non-linear parameter |foI™!| > 1 can be realized.

Expansion in terms of slow-variation parameters gives

2 dpx+49G3x —20G34+60Gax+200cax x +40a5x +40a5x x —6dG54

= dpx (14+2Apx )+60a3x (1+A3x)—20G3¢+60cax +240cax x (24+Aax )+6das5x +20a5x x (T+2A5x ) —6dG5¢

where

PxX _ XPxx Gz X GaxX G50 X

5PXZW, Apx = Px ; 5G3¢5:W7 5G4X=WJ 6GS¢:W'

If either of the following conditions is satisfied, it is possible to realize
the large non-Gaussianities:

Apx > 1, Asx > 1, Aax > 1, Asx > 1.
@ In k-inflation one has
) 1 Px PxX
[ S— —_=
s 14+ 2\px P,)(—I—QXP}XX 3M§1H2
il
Since k-inflation occurs around P x a 0, it follows that ¢ < 1. ) |/ >1

If P is function of X only, a de Sitter solution with P x =0
is problematic because the power spectrum Pr diverges.

€ =0px =

) We require the ¢-dependence in P [like DBI inflation] or
additional terms G; (i = 3,4,5) [like G-inflation].
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K-inflation + Galileon terms

® The ghost condensate model plus the Galileon (3, term
P=-X+X?/2M*, Gs=pX/M* (Kobayashi, Yamaguchi, Yokoyama, PRL, 2010)
There is a de Sitter solution with 1 — z ~ /3u/M,, for x = X/M* close to 1.
) ol o5 06(1 — )] ~ 4.6207%/3 (Mizuno and Koyama, PRD, 2010)

r is the tensor-to-scalar ratio.

® Let us consider the Galileon @G, term
P=-X+X?/2M*), Gy=pX*/M"’
For x = X/M* close to 1 there is a de Sitter solution characterized by

H2_M31—$ pM 11—z 0
T3 @ 0 ME 62(3—20) and g =2(1—-1x)/9
The inflationary observables are
3v2 ( M\* 1 128/2 2 peait I For r = 0.01,
PR = o56m (Mpl) A—opz’ "= g G-o7 ~ 1.28r" feauil — 9.4

(De Felice and S.T., arXiv: 1107.3917)
® Lect us consider the Galileon (G5 term

P—=_X+ X2/(2M4) ’ G5 _ /,LXz/Mlo ‘ fequ11 ~ 0.17?,,—2/3
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Our formula of fy; ~ can be applied to most of single-field
inflation models proposed so far.

Let us consider nonminimal coupling models.
(i) Gy=F(¢p) wmyp [, = F(¢)R including scalar-tensor gravity and f(R) gravity
0cax = dcaxx =0 mmmp Ci =1/(1+2\px)

If P does not have non-linear terms in X we have ¢ = 1 and

equil
Nc]l_, — O(ES, 778)

This is the case for Higgs inflation (P = X — V(¢)) and
Brans-Dicke theories (P = wppX/¢ — V(¢)).

(i) G5 =F(¢) wmp L:5=F(0)Gu(VV79)
New Higgs inflation (with the coupling G, V#¢V" @)
corresponds to the choice F/(¢) o ¢.

dpx — 60
) =0 =0 ;= e
G5X G5X X o G dpx(1+2Apx) — 6dcs54

If P does not have non-linear terms in X we have ¢ = 1 and

equil

NL O(es,1s)
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Potential-driven G-inflation

Let us consider the following model

The Galileon coupling corresponds
M4an—1 to =0 and n = 1.

P:Xiv(gb)v GSZ*
In this case the scalar propagation speed squared 1s

Opx + 4dag3x 9
2 ~ ~ 9 for ¢ Opx.
s Opx + 6ndgsx ‘ € /(3%) Or Ogsx > Opx

For the specific theories with n > 1 one has ¢? < 1 and
squi 865 equil
Nci 12 —%TL ‘ |fNL | >> ].

@ In the following let us consider the theories with n = 1
(in which case the non-Gaussianities cannot be large).

For the potential V(¢) = Vo(¢/Mp)P the spectral index and
the tensor-to-scalar ratio in the regime dg3x > dpx are

3(p+1) 2(p—1) where z = ¢/M,) < 1 for
T Nt { I 1)(p+5)“‘”} baax > Spx and p = O(L).
646 p (1 e ) N is the number of e-foldings
9 (p+3)N+p p+5 from the end of inflation.

For N = 55, in the limit where yp — 0, ng = 0.9614 and » = 0.1791 for p = 4.
mm) The quartic potential can be saved (Kamada et al, PRD, 2010).



Observational constraints on G-inflation with the quartic potential

1
_ 4 _ M
V(9) = Vo(¢/Mp)" and Gg=—ze?/MnX
03T The left figure corresponds to
025 F _ [LZO&Hd#Zl
where B = [V, /(M3 M)]'/*
021 The quartic potential is saved by
- o015 | | the Galileon-like corrections.
Kamada, Kobayashi, Yamaguchi, Yokoyama,
0.1 t . PRD, 2010 (;, = ()
De Felice, S.T., Elliston, Tavakol,
0.05 1 | JCAP to appear (ﬂ + 0)
o L For p1 > 0 the intermediate values

09 092 094 096 0098 1 1.02 of B are within 1o observational bound.

Iy

B — 0 corresponds to dpy /0g3x > 1. (standard inflation)
B — oo corresponds to dpx /dazx < 1. (G-inflation)



" JE
Gauss-Bonnet couplings

Our general action covers the Gauss-Bonnet coupling —£(¢)G by choosing

P=-8W(@X%23-InX), Gs3=-43(¢)X(7-3InX),
G4 — —4‘5(2) (gb)X(Z — In X) ; G5 = 45(1) (Cb) InX (Kobayashi, Yamaguchi, Yokoyama,

arXiv: 1105.5723)
where £0%)(g) = 97¢(¢) /94"

For the potential-driven inflation (i.e. in the presence of the term
P =X —V(¢)) one has

c; =1—6407(60c +06x)/6x wmp very close to ¢z =1
where 0x = X/(M2%H?) and 6; = H /M2,

The nonlinear parameter is estimated as

d 275 0¢

i 55)
equil — 5 e S A 9 .
NL 36 x + 1277X+ 31 5X( € + 27)¢ ?7X) ‘ small

where e = 0¢/(H6¢) and nx = 0x /(Hdx).

This result matches with that derived explicitly in the presence of
the Gauss-Bonnet coupling (De Felice and S.T., JCAP, 2011).



Observational constraints on the Gauss-Bonnet coupling

MZ
5= [ dhov=g | PR+ X - V($) - €0
0.2
p=1
0.15¢
0.1
1 0.051
0_
—0.05¢
0.1 ' ' ' ' '
0 0.005 0.01 0.015 0.02 0.025 0.03

De Felice, S.T., Elliston, Tavakol, JCAP to appear (2011)

€
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CMB likelihood analysis by CAMB

where

V() =m2¢%/2,  £(¢) = Eoeld/Mm

From the observational data of

the scalar spectral index and

the tensor-to-scalar ratio the GB
Coupling 1s constrained by varying
two parameters:

es(=0x), re=0¢/0x

The CMB likelihood analysis shows
that the Gauss-Bonnet contribution
needs to be suppressed:

re = 55/5)( < 0.1 (95 % CL)
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Conclusions

We have evaluated the primordial non-Gaussianities for the very general single-field

models characterized by
.MZ1
S = /d“x\/fg[Tp R+ P(¢,X) — G3(¢, X)Oop + L4 + 55} :

We found that the equilateral nonlinear parameter 1s given by

85 1 10 A 55e, o1ns 83 s 2014+ A 65
(-3)- B3 e B3 B (B2 e

equil:_ o) YA s Wl e
NLo 324 c2 1Y ' 36 2 12¢2  54c2 81 e 162c2¢
65

803 4+ 2A\4x 65 20 65 205+ 2X5x
— ) ) — )
H (81 €s * 27c§65> ST (8163 i 1626%65) =N (81 €s * 162c2¢, .

mm) For 2 < 1 one can realize | fid™] > 1

Our analysis covers a wide variety of inflation models such as
(1)k-inflation, (i1) nonminimal coupling models [scalar-tensor theories and f(R) gravity],

(i11) Galileon inflation, (iv) inflation with a Gausss-Bonnet coupling, etc.

It will be of interest to discriminate a host of inflationary models in future observations
by using our formula of the nonlinear parameter as well as the spectral index and

the tensor-to-scalar ratio.



