Inflation in modified gravitational theories

Shinji Tsujikawa
Tokyo University of Science (TUS)
with Antonio De Felice (TUS),
Joseph Elliston, Reza Tavakol (Queen Mary)
Inflationary models

Up to now many inflationary models have been proposed. The conventional inflation is driven by a field potential with the Lagrangian

\[P = X - V(\phi) \]

where \(X = -g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi / 2 \)

Meanwhile there are other types of single-field models such as

- K-inflation: the Lagrangian includes non-linear terms in \(X \).
 \[P = P(\phi, X) \]
 Examples: ghost condensate, DBI

- f(R) gravity: a simple example is \(f(R) = R + R^2/(6M^2) \) \[\text{[Starobinsky, 1980]}\]
 f(R) gravity is equivalent to (generalized) Brans-Dicke theory with \(\omega_{BD} = 0 \)

- Non-minimal coupling models: a scalar field couples to the Ricci scalar.
 \[F(\phi) R \]
 Example: Higgs inflation

- Galileon (G) inflation: the Lagrangian is constructed to satisfy the symmetry.
 \[\partial_\mu \phi \rightarrow \partial_\mu \phi + b_\mu \]
 (in the limit of flat space-time)
The most general single-field scalar-tensor theories having second-order equations of motion:

\[S = \int d^4 x \sqrt{-g} \left[\frac{M_{\text{Pl}}^2}{2} R + P(\phi, X) - G_3(\phi, X) \Box \phi + \mathcal{L}_4 + \mathcal{L}_5 \right]. \]

\[\mathcal{L}_4 = G_4(\phi, X) R + G_{4,X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) \right] \]

\[\mathcal{L}_5 = G_5(\phi, X) G_{\mu\nu} (\nabla^\mu \nabla^\nu \phi) - \frac{1}{6} G_{5,X} \left[(\Box \phi)^3 - 3(\Box \phi) (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) + 2(\nabla^\mu \nabla_\alpha \phi) (\nabla^\alpha \nabla_\beta \phi) (\nabla^\beta \nabla_\mu \phi) \right] \]

This action covers most of the single-field scalar field models of inflation proposed in literature.

- K-inflation
- Non-minimal coupling models
 \[G_4 = F(\phi) \quad \rightarrow \quad \text{Scalar-tensor theories (including f(R) gravity), Higgs inflation} \]
 \[G_5 = F(\phi) \quad \rightarrow \quad \text{Field-derivative coupling models (‘New Higgs inflation’)} \]
- Galileon inflation
 \[P = X - c \phi, \quad G_3 \propto X, \quad G_4 \propto X^2, \quad G_5 \propto X^2 \]

Even the Gauss-Bonnet coupling \(\xi(\phi)G \) can be recovered for a particular choice of \(P, G_3, G_4, G_5 \). (Kobayashi, Yamaguchi, Yokoyama, arXiv: 1105.5723)
Discrimination between single-field inflationary models

One can classify a host of inflationary models observationally from

1. The spectral index n_R of scalar curvature perturbations
2. The tensor-to-scalar ratio r

For the most general scalar-tensor theories, these observables are evaluated by Kobayashi, Yamaguchi, Yokoyama (arXiv: 1105.5723).

See also Naruko and Sasaki (CQG, 2011), De Felice and S.T. (JCAP, 2011), Gao (2011)

In those theories the scalar propagation speed C_s is in general different from 1.

In k-inflation the scalar non-Gaussianities are large for $C_s^2 \ll 1$

How about the scalar non-Gaussianities in the most general single-field scalar-tensor theories?

The spectrum of curvature perturbations

We consider scalar metric perturbations $\alpha, \psi, \mathcal{R}$ with the ADM metric

$$ds^2 = -[(1 + \alpha)^2 - a(t)^{-2} e^{-2\mathcal{R}} (\partial \psi)^2] dt^2 + 2\partial_i \psi dt dx^i + a(t)^2 e^{2\mathcal{R}} dx^2$$

We choose the uniform field gauge: $\delta \phi = 0$

Using the momentum and Hamiltonian constraints, the second-order action for perturbations reduces to

$$S_2 = \int dt d^3 x a^3 Q \left[\dot{\mathcal{R}}^2 - \frac{c_s^2}{a^2} (\partial \mathcal{R})^2 \right]$$

where

$$Q = \frac{w_1(4w_1w_3 + 9w_2^2)}{3w_2^2}, \quad c_s^2 = \frac{3(2w_1^2w_2H - w_2^2w_4 + 4w_1w_1w_2 - 2w_1^2w_2)}{w_1(4w_1w_3 + 9w_2^2)}$$

$$w_1 = M_{pl}^2 F - 4XG_{4,X} - 2H X \dot{\phi}G_{5,X} + 2XG_{5,\phi}$$

$$w_2 = 2M_{pl}^2 H F - 2X \dot{\phi}G_{3,X} - 16H(XG_{4,X} + X^2G_{4,XX}) + 2\dot{\phi}(G_{4,\phi} + 2XG_{4,\phi X}) - 2H^2 \dot{\phi}(5XG_{5,X} + 2X^2G_{5,XX}) + 4HX(3G_{5,\phi} + 2XG_{5,\phi X})$$

$$w_3 = -9M_{pl}^2 H^2 F + 3(XP_{,X} + 2X^2P_{,XX}) + 18H\dot{\phi}(2XG_{3,X} + X^2G_{3,XX}) - 6X(G_{3,\phi} + XG_{3,\phi X}) + 18H^2 (7XG_{4,X} + 16X^2G_{4,XX} + 4X^3G_{4,XXX}) - 18H\dot{\phi}(G_{4,\phi} + 5XG_{4,\phi X} + 2X^2G_{4,\phi XX}) + 6H^3 \dot{\phi}(15XG_{5,X} + 13X^2G_{5,XX} + 2X^3G_{5,XXX}) - 18H^2 X(6G_{5,\phi} + 9XG_{5,\phi X} + 2X^2G_{5,\phi XX})$$

$$w_4 = M_{pl}^2 F - 2XG_{5,\phi} - 2XG_{5,X} \ddot{\phi}$$

The scalar power spectrum is

$$\mathcal{P}_\mathcal{R} = \frac{H^2}{8\pi^2 Q c_s^3}$$

Kobayashi, Yamaguchi, Yokoyama (arXiv: 1105.5723)
De Felice and S. T. (arXiv: 1107.3917)
The spectrum of tensor perturbations

The second-order action for tensor perturbations is

\[S = \sum_{\lambda} \int dt d^3 x \ a^3 Q_T \left[\dot{h}_\lambda^2 - \frac{c_T^2}{a^2} (\partial h_\lambda)^2 \right] \]

\[\lambda \text{ corresponds to polarization modes} \]

where

\[Q_T = \frac{w_1}{4} = \frac{1}{4} M_{\text{pl}}^2 F [1 + \mathcal{O}(\epsilon)] \]

\[c_T^2 = w_4 / w_1 = 1 + \mathcal{O}(\epsilon) \]

\[\text{where } F = 1 + 2 G_4 / M_{\text{pl}}^2 \text{ and } \epsilon = -\dot{H} / H^2 \ll 1. \]

This term comes from the nonminimal coupling in \(\mathcal{L}_4 \)

\[\mathcal{L}_4 = G_4(\phi, X) R + G_{4,X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) \right] \]

The no-ghost condition is satisfied for \(F > 0 \).

The tensor power spectrum is

\[P_T = \frac{H^2}{2 \pi^2 Q_T c_T^3} \approx \frac{2 H^2}{\pi^2 M_{\text{pl}}^2 F} \]

The tensor-to-scalar ratio is

\[r = \frac{P_T}{P_{\mathcal{R}}} \approx 16 c_s \epsilon_s \]

where \(\epsilon_s = \frac{Q c_s^2}{M_{\text{pl}}^2 F} = \mathcal{O}(\epsilon) \)
Scalar non-Gaussianities

For the ADM metric with scalar metric perturbations the third-order perturbed action is given by (obtained after many integrations by parts)

\[S_3 = \int dt \, \mathcal{L}_3 \]

where

\[
\mathcal{L}_3 = \int d^3x \left\{ a^3 c_1 M_{pl}^2 \mathcal{R} \mathcal{R}^2 + a c_2 M_{pl}^2 \mathcal{R} (\partial \mathcal{R})^2 + a^3 c_3 M_{pl} \dot{\mathcal{R}}^3 + a^3 (c_4 + M_{pl}^2) \partial \mathcal{R} (\partial_i \mathcal{R})(\partial_i \mathcal{X}) + a^3 (c_5 + M_{pl}^2) \partial^2 \mathcal{R} (\partial_i \mathcal{X})^2 \\
+ a c_6 \mathcal{R}^2 \partial \mathcal{R} + c_7 \left[\partial^2 \mathcal{R} (\partial \mathcal{R})^2 - \mathcal{R} \partial_i \partial_j (\partial_i \mathcal{R})(\partial_j \mathcal{R}) \right] / a + a (c_8 + M_{pl}) \left[\partial^2 \mathcal{R} \partial_i \mathcal{R} \partial_i \mathcal{X} - \mathcal{R} \partial_i \partial_j (\partial_i \mathcal{R})(\partial_j \mathcal{X}) \right]
\]

\[\left. \mathcal{F}_1 \right|_{\delta \mathcal{R}} = -2 \left[\frac{d}{dt} (a^3 Q \dot{\mathcal{R}}) - a Q c_2 \partial^2 \mathcal{R} \right] \]

This vanishes at first order in \(\mathcal{R} \).

The vacuum expectation value of \(\mathcal{R} \) for the three-point operator at the conformal time \(\tau = \tau_f \) is

\[
\langle \mathcal{R}(k_1) \mathcal{R}(k_2) \mathcal{R}(k_3) \rangle = -i \int_{\tau_i}^{\tau_f} d\tau \, a \langle 0 | [\mathcal{R}(\tau_f, k_1) \mathcal{R}(\tau_f, k_2) \mathcal{R}(\tau_f, k_3), \mathcal{H}_{\text{int}}(\tau)] | 0 \rangle
\]

where \(\mathcal{H}_{\text{int}} = -\mathcal{L}_3 \).

We find that the three-point correlation function is given by

\[
\langle R(k_1)R(k_2)R(k_3) \rangle = (2\pi)^7 \delta^{(3)}(k_1 + k_2 + k_3) \langle P_R \rangle^2 \frac{A_R}{\prod_{i=1}^3 k_i^3}
\]

where

\[
A_R = \frac{M_{pl}^2}{Q} \left\{ \frac{1}{4} \left(\frac{2}{K} \sum_{i>j} k_i^2 k_j^2 - \frac{1}{K^2} \sum_{i \neq j} k_i^2 k_j^3 \right) C_1 + \frac{1}{4c_s^2} \left(\frac{1}{2} \sum_{i} k_i^3 + \frac{2}{K} \sum_{i>j} k_i^2 k_j^2 - \frac{1}{K^2} \sum_{i \neq j} k_i^2 k_j^3 \right) C_2
\]

\[+ \frac{3}{2} \frac{H}{M_{pl}} \frac{(k_1 k_2 k_3)^2}{K^3} C_3 + \frac{1}{8} \frac{Q}{M_{pl}^2} \left(\sum_{i} k_i^3 - \frac{1}{2} \sum_{i \neq j} k_i k_j^2 - \frac{2}{K^2} \sum_{i \neq j} k_i^2 k_j^3 \right) C_4 \]

\[+ \frac{1}{4} \left(\frac{Q}{M_{pl}^2} \right)^2 \frac{1}{K^2} \left[\sum_{i} k_i^5 + \frac{1}{2} \sum_{i \neq j} k_i k_j^4 - \frac{3}{2} \sum_{i \neq j} k_i^2 k_j^3 - k_1 k_2 k_3 \sum_{i} k_i k_j \right] C_5 + \frac{3}{c_s^2} \left(\frac{H}{M_{pl}} \right)^2 \frac{(k_1 k_2 k_3)^2}{K^3} C_6 \]

\[+ \frac{1}{2c_s^4} \left(\frac{H}{M_{pl}} \right)^2 \frac{1}{K} \left(1 + \frac{1}{K^2} \sum_{i>j} k_i k_j^2 + \frac{3k_1 k_2 k_3}{K^3} \right) \left[\frac{3}{4} \sum_{i} k_i^4 - \frac{3}{2} \sum_{i>j} k_i^2 k_j^2 \right] C_7 \]

\[+ \frac{1}{8c_s^2 M_{pl} M_{pl}^2 K^2} \left[\frac{3}{2} k_1 k_2 k_3 \sum_{i} k_i^2 - \frac{5}{2} k_1 k_2 k_3 K^2 - 6 \sum_{i \neq j} k_i^2 k_j^3 - \sum_{i} k_i^5 + \frac{7}{2} K \sum_{i} k_i^4 \right] C_8 \}

The terms \(C_i \) (\(i = 1, \cdots, 5 \)) appear in k-inflation (Seery and Lidsey, Chen et al), which can be well approximated as an equilateral estimator.

The shape of the non-Gaussianities can be also approximated as an equilateral one even in the presence of \(C_6 \) (Mizuno and Koyama) and \(C_7, C_8 \) (De Felice and S.T.).
The nonlinear parameter

We define the nonlinear parameter f_{NL}, as

$$f_{NL} = \frac{10}{3} \frac{A_R}{\sum_{i=1}^{3} k_i^3}$$

For the equilateral configuration ($k_1 = k_2 = k_3$) one has

$$f_{NL}^{\text{equil}} = \frac{40}{9} \frac{M_{pl}^2}{Q} \left[\frac{1}{12} c_1 + \frac{17}{96 c_s^2} c_2 + \frac{1}{72 M_{pl} c_3} - \frac{1}{24} \frac{Q}{M_{pl}^2} c_4 - \frac{1}{24} \left(\frac{Q}{M_{pl}^2} \right)^2 c_5 + \frac{1}{36 c_s^2} \left(\frac{H}{M_{pl}} \right)^2 c_6 - \frac{13}{96 c_s^4} \left(\frac{H}{M_{pl}} \right)^2 c_7 - \frac{17}{192 c_s^2 M_{pl} Q}{M_{pl}^2 c_8} \right]$$

Under the expansion of the slow-variation parameters it follows that

$$f_{NL}^{\text{equil}} = \frac{85}{324} \left(1 - \frac{1}{c_s^2} \right) - \frac{10}{81} \lambda + \frac{55}{81} s + \frac{1}{12} \frac{\eta_s}{c_s^2} + \frac{5}{54} c_s^2 + \frac{85}{81} \frac{s}{c_s^2} + \frac{20}{81} \frac{1 + \lambda_3 x}{\epsilon_s} + \frac{65}{162 c_s^2} \frac{\delta_{G3X}}{c_s^2}$$

$$+ \left(\frac{80}{81} \frac{3 + 2 \lambda_4 x}{\epsilon_s} + \frac{65}{27 c_s^2} \frac{\delta_{G4XX}}{c_s^2} \right) \epsilon_s + \left(\frac{20}{81} + \frac{65}{162 c_s^2} \right) \frac{\delta_{G5X}}{c_s^2} + \left(\frac{20}{81} + \frac{65}{162 c_s^2} \right) \frac{\delta_{G5XX}}{c_s^2}$$

where

$$\eta_s = \frac{\dot{c}_s}{H c_s}, \quad s = \frac{\dot{c}_s}{H c_s}, \quad \delta_{G3X} = \frac{G_{3,X} \dot{\phi} X}{M_{pl}^2 H F}, \quad \delta_{G4XX} = \frac{G_{4,XX} X^2}{M_{pl}^2 F}, \quad \delta_{G5X} = \frac{G_{5,X} H \dot{\phi} X}{M_{pl}^2 F}, \quad \delta_{G5XX} = \frac{G_{5,XX} H \dot{\phi} X}{M_{pl}^2 F}$$

$$\lambda_3 = \frac{X G_{3,XX}}{G_{3,XX}}, \quad \lambda_4 = \frac{X G_{4,XX}}{G_{4,XX}}, \quad \lambda_5 = \frac{X G_{5,XX}}{G_{5,XX}}, \quad \Sigma = \frac{w_1 (4 w_1 w_3 + 9 w_2)}{12 M_{pl}^4}.$$

$$\lambda = (F^2/3)[3 X^2 P_{,XX} + 2 X^3 P_{,XXX} + 3 H \dot{\phi} (X G_{3,X} + 5 X^2 G_{3,XX} + 2 X^3 G_{3,XXX}) - 2 (2 X^2 G_{3,\phi,X} + X^3 G_{3,\phi,XX})$$

$$+ 6 H^2 (9 X^2 G_{4,XX} + 16 X^3 G_{4,XXX} + 4 X^4 G_{4,XXXX}) - 3 H \dot{\phi} (3 X G_{4,\phi,X} + 12 X^2 G_{4,\phi,XX} + 4 X^3 G_{4,\phi,XXX})$$

$$+ H^3 \dot{\phi} (3 X G_{5,X} + 27 X^2 G_{5,XX} + 24 X^3 G_{5,XXX} + 4 X^4 G_{5,XXXX})$$

$$- 6 H^2 (6 X^2 G_{5,\phi,X} + 9 X^3 G_{5,\phi,XX} + 2 X^4 G_{5,\phi,XXX})]$$

Standard inflation: $P = X - V(\phi), c_s^2 = 1, \lambda = 0 \quad \Rightarrow \quad f_{NL}^{\text{equil}} = \frac{55}{36} \epsilon_s + \frac{5}{12} \eta_s$
The scalar propagation speed

If $c_s^2 \ll 1$, the large non-linear parameter $|f_{\text{NL}}|^\text{equil} \gg 1$ can be realized. Expansion in terms of slow-variation parameters gives

$$c_s^2 \approx \frac{\delta_{PX} + 4\delta_{G3X} - 2\delta_{G3\phi} + 6\delta_{G4X} + 20\delta_{G4XX} + 4\delta_{G5X} + 4\delta_{G5XX} - 6\delta_{G5\phi}}{\delta_{PX}(1 + 2\lambda_{PX}) + 6\delta_{G3X}(1 + \lambda_{3X}) - 2\delta_{G3\phi} + 6\delta_{G4X} + 24\delta_{G4XX}(2 + \lambda_{4X}) + 6\delta_{G5X} + 2\delta_{G5XX}(7 + 2\lambda_{5X}) - 6\delta_{G5\phi}}$$

where

$$\delta_{PX} = \frac{P_{,X}X}{M_{\text{pl}}^2 H^2 F}, \quad \lambda_{PX} = \frac{XP_{,XX}}{P_{,X}}, \quad \delta_{G3\phi} = \frac{G_{3,\phi}X}{M_{\text{pl}}^2 H^2 F}, \quad \delta_{G4X} = \frac{G_{4,X}X}{M_{\text{pl}}^2 F}, \quad \delta_{G5\phi} = \frac{G_{5,\phi}X}{M_{\text{pl}}^2 F}.$$

If either of the following conditions is satisfied, it is possible to realize the large non-Gaussianities:

$$\lambda_{PX} \gg 1, \quad \lambda_{3X} \gg 1, \quad \lambda_{4X} \gg 1, \quad \lambda_{5X} \gg 1.$$

In k-inflation one has

$$c_s^2 = \frac{1}{1 + 2\lambda_{PX}} = \frac{P_{,X}}{P_{,X} + 2XP_{,XX}} \quad \epsilon = \delta_{PX} = \frac{P_{,X}X}{3M_{\text{pl}}^2 H^2}$$

Since k-inflation occurs around $P_{,X} \approx 0$, it follows that $c_s^2 \ll 1$.

If P is function of X only, a de Sitter solution with $P_{,X} = 0$ is problematic because the power spectrum $\mathcal{P}_\mathcal{R}$ diverges.

We require the ϕ-dependence in P [like DBI inflation] or additional terms G_i ($i = 3, 4, 5$) [like G-inflation].

$$|f_{\text{NL}}|^\text{equil} \gg 1$$
K-inflation + Galileon terms

- The ghost condensate model plus the Galileon G_3 term

$$P = -X + X^2 / (2M^4), \quad G_3 = \mu X / M^4$$
(Kobayashi, Yamaguchi, Yokoyama, PRL, 2010)

There is a de Sitter solution with $1 - x \simeq \sqrt{3} \mu / M_{\text{pl}}$ for $x = X / M^4$ close to 1.

$$f_{\text{NL}}^{\text{equil}} \simeq 5 / [6(1 - x)] \simeq 4.62r^{-2/3}$$
(Mizuno and Koyama, PRD, 2010)

r is the tensor-to-scalar ratio.

- Let us consider the Galileon G_4 term

$$P = -X + X^2 / (2M^4), \quad G_4 = \mu X^2 / M^7$$

For $x = X / M^4$ close to 1 there is a de Sitter solution characterized by

$$H^2 = \frac{M^3}{36\mu} \frac{1 - x}{x}, \quad \frac{\mu M}{M_{\text{pl}}^2} = \frac{1 - x}{6x^2(3 - 2x)} \quad \text{and} \quad c_s^2 = \frac{2(1 - x)}{9}$$

The inflationary observables are

$$P_R \simeq \frac{3\sqrt{2}}{256\pi^2} \left(\frac{M}{M_{\text{pl}}} \right)^4 \frac{1}{(1 - x)^{3/2}}, \quad r \simeq \frac{128\sqrt{2}}{9} (1 - x)^{3/2}, \quad f_{\text{NL}}^{\text{equil}} \simeq 1.28r^{-2/3}$$

(DeFelice and S.T., arXiv: 1107.3917)

For $r = 0.01$, $f_{\text{NL}}^{\text{equil}} = 9.4$

- Let us consider the Galileon G_5 term

$$P = -X + X^2 / (2M^4), \quad G_5 = \mu X^2 / M^{10}$$

$$f_{\text{NL}}^{\text{equil}} \simeq 0.17r^{-2/3}$$
Our formula of $f_{\text{NL}}^{\text{equil}}$ can be applied to most of single-field inflation models proposed so far.

Let us consider nonminimal coupling models.

(i) $G_4 = F(\phi) \quad \Rightarrow \quad \mathcal{L}_4 = F(\phi)R$ including scalar-tensor gravity and $f(R)$ gravity

$\delta_{G4X} = \delta_{G4XX} = 0 \quad \Rightarrow \quad c_s^2 = 1/(1 + 2\lambda_{P X})$

If P does not have non-linear terms in X we have $c_s^2 = 1$ and

$f_{\text{NL}}^\text{equil} = \mathcal{O}(\epsilon_s, \eta_s)$

This is the case for Higgs inflation ($P = X - V(\phi)$) and Brans-Dicke theories ($P = \omega_{BD}X/\phi - V(\phi)$).

(ii) $G_5 = F(\phi) \quad \Rightarrow \quad \mathcal{L}_5 = F(\phi)G_{\mu\nu}(\nabla^\mu \nabla^\nu \phi)$

New Higgs inflation (with the coupling $G_{\mu\nu} \nabla^\mu \phi \nabla^\nu \phi$) corresponds to the choice $F(\phi) \propto \phi$.

$\delta_{G5X} = \delta_{G5XX} = 0 \quad \Rightarrow \quad c_s^2 = \frac{\delta_{P X} - 6\delta_{G5\phi}}{\delta_{P X}(1 + 2\lambda_{P X}) - 6\delta_{G5\phi}}$

If P does not have non-linear terms in X we have $c_s^2 = 1$ and

$f_{\text{NL}}^\text{equil} = \mathcal{O}(\epsilon_s, \eta_s)$

The above two types of nonminimal couplings themselves do not give rise to large equilateral non-Gaussianities.
Potential-driven G-inflation

Let us consider the following model

\[P = X - V(\phi), \quad G_3 = -\frac{1}{M^{4n-1}} e^{\mu \phi/M_{pl}} X^n \]

The Galileon coupling corresponds to \(\mu = 0 \) and \(n = 1 \).

In this case the scalar propagation speed squared is

\[c_s^2 \simeq \frac{\delta_{PX} + 4\delta_{G3X}}{\delta_{PX} + 6n\delta_{G3X}} \]

\[\Rightarrow \quad c_s^2 \simeq \frac{2}{3n} \] for \(\delta_{G3X} \gg \delta_{PX} \).

For the specific theories with \(n \gg 1 \) one has \(c_s^2 \ll 1 \) and

\[f_{NL}^{\text{equil}} \simeq -\frac{865}{3888} n \]

\[\Rightarrow \quad |f_{NL}^{\text{equil}}| \gg 1 \]

In the following let us consider the theories with \(n = 1 \) (in which case the non-Gaussianities cannot be large).

For the potential \(V(\phi) = V_0(\phi/M_{pl})^p \) the spectral index and the tensor-to-scalar ratio in the regime \(\delta_{G3X} \gg \delta_{PX} \) are

\[n_s \simeq 1 - \frac{3(p+1)}{(p+3)N + p} \left[1 - \frac{2(p-1)}{3(p+1)(p+5)} \mu x \right] \]

\[N \text{ is the number of e-foldings from the end of inflation.} \]

For \(N = 55 \), in the limit where \(\mu \to 0 \), \(n_s = 0.9614 \) and \(r = 0.1791 \) for \(p = 4 \).

The quartic potential can be saved (Kamada et al, PRD, 2010).
Observational constraints on G-inflation with the quartic potential

\[V(\phi) = V_0\left(\phi/M_{\text{pl}}\right)^4 \quad \text{and} \quad G_3 = -\frac{1}{M^3}e^{\mu\phi/M_{\text{pl}}}X \]

The left figure corresponds to \(\mu = 0 \) and \(\mu = 1 \) where \(B = [V_0/(M^3 M_{\text{pl}})]^{1/4} \)

The quartic potential is saved by the Galileon-like corrections.

Kamada, Kobayashi, Yamaguchi, Yokoyama, PRD, 2010 \((\mu = 0)\)

De Felice, S.T., Elliston, Tavakol, JCAP to appear \((\mu \neq 0)\)

For \(\mu > 0 \) the intermediate values of \(B \) are within 1\(\sigma \) observational bound.

\[B \to 0 \text{ corresponds to } \frac{\delta_{PX}}{\delta_{G3X}} \gg 1. \quad \text{(standard inflation)} \]

\[B \to \infty \text{ corresponds to } \frac{\delta_{PX}}{\delta_{G3X}} \ll 1. \quad \text{(G-inflation)} \]
Gauss-Bonnet couplings

Our general action covers the Gauss-Bonnet coupling $-\xi(\phi)G$ by choosing

\[
\begin{align*}
P &= -8\xi^{(4)}(\phi)X^2(3 - \ln X), \\
G_3 &= -4\xi^{(3)}(\phi)X(7 - 3\ln X), \\
G_4 &= -4\xi^{(2)}(\phi)X(2 - \ln X), \\
G_5 &= 4\xi^{(1)}(\phi)\ln X
\end{align*}
\]

(Kobayashi, Yamaguchi, Yokoyama, arXiv: 1105.5723)

where $\xi^{(n)}(\phi) = \partial^n \xi(\phi)/\partial \phi^n$

For the potential-driven inflation (i.e. in the presence of the term $P = X - V(\phi)$) one has

\[
c_s^2 = 1 - 64\delta_\xi^2(6\delta_\xi + \delta_X)/\delta_X
\]

very close to $c_s^2 = 1$

where $\delta_X = X/(M_{\text{pl}}^2 H^2)$ and $\delta_\xi = H\dot{\xi}/M_{\text{pl}}^2$.

The nonlinear parameter is estimated as

\[
f_{\text{NL}}^{\text{equl}} = \frac{55}{36}\delta_X + \frac{5}{12}\eta_X + \frac{275}{81}\delta_\xi \left(4\epsilon + 2\eta_\xi - \eta_X\right)
\]

small

where $\eta_\xi = \dot{\delta}_\xi/(H\delta_\xi)$ and $\eta_X = \dot{\delta}_X/(H\delta_X)$.

This result matches with that derived explicitly in the presence of the Gauss-Bonnet coupling (De Felice and S.T., JCAP, 2011).
Observational constraints on the Gauss-Bonnet coupling

\[S = \int d^4x \sqrt{-g} \left[\frac{M_{\text{pl}}^2}{2} R + X - V(\phi) - \xi(\phi)G \right] \]

where \(V(\phi) = m^2 \phi^2 / 2 \), \(\xi(\phi) = \xi_0 e^{\mu \phi / M_{\text{pl}}} \)

From the observational data of the scalar spectral index and the tensor-to-scalar ratio the GB Coupling is constrained by varying two parameters:

\[\epsilon_s(= \delta_X), \quad r_\xi = \delta_\xi / \delta_X \]

The CMB likelihood analysis shows that the Gauss-Bonnet contribution needs to be suppressed:

\[r_\xi \equiv \delta_\xi / \delta_X < 0.1 \quad (95\% \text{ CL}) \]

CMB likelihood analysis by CAMB

De Felice, S.T., Elliston, Tavakol, JCAP to appear (2011)
Conclusions

We have evaluated the primordial non-Gaussianities for the very general single-field models characterized by

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R + P(\phi, X) - G_3(\phi, X) \Box \phi + \mathcal{L}_4 + \mathcal{L}_5 \right].$$

We found that the equilateral nonlinear parameter is given by

$$f_{\text{NL}}^{\text{equil}} = \frac{85}{324} \left(1 - \frac{1}{c_s^2} \right) - \frac{10 \lambda}{81 \Sigma} + \frac{55}{36} \epsilon_s + \frac{5}{12} \eta_s - \frac{85}{54} \frac{s}{c_s^2} + \left(\frac{20}{81} \frac{1 + \lambda_3 X}{\epsilon_s} + \frac{65}{162 c_s^2 \epsilon_s} \right) \delta_{G3X}$$

$$+ \left(\frac{80}{81} \frac{3 + 2 \lambda_4 X}{\epsilon_s} + \frac{65}{27 c_s^2 \epsilon_s} \right) \delta_{G4XX} + \left(\frac{20}{81} \frac{5 + 2 \lambda_5 X}{\epsilon_s} + \frac{65}{162 c_s^2 \epsilon_s} \right) \delta_{G5XX}$$

For $c_s^2 \ll 1$ one can realize $|f_{\text{NL}}^{\text{equil}}| \gg 1$

Our analysis covers a wide variety of inflation models such as (i) k-inflation, (ii) nonminimal coupling models [scalar-tensor theories and $f(R)$ gravity], (iii) Galileon inflation, (iv) inflation with a Gauss-Bonnet coupling, etc.

It will be of interest to discriminate a host of inflationary models in future observations by using our formula of the nonlinear parameter as well as the spectral index and the tensor-to-scalar ratio.