Inflation in modified gravitational theories

Shinji Tsujikawa
Tokyo University of Science (TUS)
with Antonio De Felice (TUS),
 Joseph Elliston, Reza Tavakol (Queen Mary)

Inflationary models

Up to now many inflationary models have been proposed.

The conventional inflation is driven by a field potential with the Lagrangian

$$P = X - V(\phi)$$
 where $X = -g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi/2$

Meanwhile there are other types of single-field models such as

• K-inflation: the Lagrangian includes non-linear terms in X.

 $P = P(\phi, X)$ Examples: ghost condensate, DBI

• f(R) gravity: a simple example is $f(R) = R + R^2/(6M^2)$ [Starobinsky, 1980]

f(R) gravity is equivalent to (generalized) Brans-Dicke theory with $\omega_{\rm BD}=0$

• Non-minimal coupling models: a scalar field couples to the Ricci scalar.

Example: Higgs inflation

• Galileon (G) inflation: the Lagrangian is constructed to satisfy the symmetry. $\partial_{\mu}\phi \rightarrow \partial_{\mu}\phi + b_{\mu}$ (in the limit of flat space-time)

The most general single-field scalar-tensor theories having second-order equations of motion:

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm pl}^2}{2} R + P(\phi, X) - G_3(\phi, X) \,\Box \phi + \mathcal{L}_4 + \mathcal{L}_5 \right].$$

Horndeski (1974) Deffayet et al (2011)

$$\mathcal{L}_4 = G_4(\phi, X) R + G_{4,X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) \right]$$

 $\mathcal{L}_{5} = G_{5}(\phi, X) G_{\mu\nu} \left(\nabla^{\mu} \nabla^{\nu} \phi \right) - \frac{1}{6} G_{5,X} \left[\left(\Box \phi \right)^{3} - 3(\Box \phi) \left(\nabla_{\mu} \nabla_{\nu} \phi \right) \left(\nabla^{\mu} \nabla^{\nu} \phi \right) + 2(\nabla^{\mu} \nabla_{\alpha} \phi) \left(\nabla^{\alpha} \nabla_{\beta} \phi \right) \left(\nabla^{\beta} \nabla_{\mu} \phi \right) \right]$

This action covers most of the single-field scalar field models of inflation proposed in literature.

• K-inflation

Non-minimal coupling models

 $G_4 = F(\phi)$ \square Scalar-tensor theories (including f(R) gravity), Higgs inflation

 $G_5 = F(\phi)$ Field-derivative coupling models ('New Higgs inflation')

• Galileon inflation

$$P = X - c \phi,$$
 $G_3 \propto X,$ $G_4 \propto X^2,$ $G_5 \propto X^2$

Even the Gauss-Bonnet coupling $\xi(\phi)\mathcal{G}$ can be recovered for a particular choice of P, G_3, G_4, G_5 . (Kobayashi, Yamaguchi, Yokoyama, arXiv: 1105.5723)

Discrimination between single-field inflationary models

One can classify a host of inflationary models observationally from

- 1. The spectral index $n_{\mathcal{R}}$ of scalar curvature perturbations
- 2. The tensor-to-scalar ratio r

For the most general scalar-tensor theories, these observables are evaluated by Kobayashi, Yamaguchi, Yokoyama (arXiv: 1105.5723).

See also Naruko and Sasaki (CQG, 2011), De Felice and S.T. (JCAP, 2011), Gao (2011)

In those theories the scalar propagation speed C_s is in general different from 1.

In k-inflation the scalar non-Gaussianities are large for $c_s^2 \ll 1$

How about the scalar non-Gaussianities in the most general single-field scalar-tensor theories?

Gao and Steer (arXiv: 1107.2642), De Felice and S.T. (arXiv: 1107.3917)

The spectrum of curvature perturbations

We consider scalar metric perturbations $\alpha, \psi, \mathcal{R}$ with the ADM metric

$$ds^{2} = -\left[(1+\alpha)^{2} - a(t)^{-2} e^{-2\mathcal{R}} (\partial\psi)^{2}\right] dt^{2} + 2\partial_{i}\psi \, dt \, dx^{i} + a(t)^{2} e^{2\mathcal{R}} d\mathbf{x}^{2}$$

We choose the uniform field gauge: $\delta \phi = 0$

Using the momentum and Hamiltonian constraints, the second-order action for perturbations reduces to

 $S_2 = \int dt d^3x \, a^3Q \left[\dot{\mathcal{R}}^2 - \frac{c_s^2}{a^2} \, (\partial \mathcal{R})^2 \right] \implies Q > 0 \text{ and } c_s^2 > 0 \text{ are required to avoid ghosts and Laplacian instabilities.}$ $Q = \frac{w_1(4w_1w_3 + 9w_2^2)}{3w_2^2}, \qquad c_s^2 = \frac{3(2w_1^2w_2H - w_2^2w_4 + 4w_1\dot{w}_1w_2 - 2w_1^2\dot{w}_2)}{w_1(4w_1w_3 + 9w_2^2)}$ where $w_1 = M_{\rm pl}^2 F - 4XG_{4,X} - 2HX\dot{\phi}G_{5,X} + 2XG_{5,\phi}$ $w_2 = 2M_{\rm pl}^2 HF - 2X\dot{\phi}G_{3,X} - 16H(XG_{4,X} + X^2G_{4,XX}) + 2\dot{\phi}(G_{4,\phi} + 2XG_{4,\phi X})$ $-2H^2\dot{\phi}(5XG_{5,X}+2X^2G_{5,XX})+4HX(3G_{5,\phi}+2XG_{5,\phi X})$ $w_3 = -9M_{\rm pl}^2 H^2 F + 3(XP_{,X} + 2X^2P_{,XX}) + 18H\dot{\phi}(2XG_{3,X} + X^2G_{3,XX}) - 6X(G_{3,\phi} + XG_{3,\phi X})$ $+18H^{2}(7XG_{4,X}+16X^{2}G_{4,XX}+4X^{3}G_{4,XXX})-18H\dot{\phi}(G_{4,\phi}+5XG_{4,\phi X}+2X^{2}G_{4,\phi XX})$ $+6H^{3}\dot{\phi}(15XG_{5,X}+13X^{2}G_{5,XX}+2X^{3}G_{,5XXX})-18H^{2}X(6G_{5,\phi}+9XG_{5,\phi X}+2X^{2}G_{5,\phi XX})$ $w_4 = M_{\rm pl}^2 F - 2XG_{5,\phi} - 2XG_{5,X}\ddot{\phi}$ The scalar power spectrum is $\mathcal{P}_{\mathcal{R}} = \frac{H^2}{8\pi^2 \Omega c^3}$ Kobayashi, Yamaguchi, Yokoyama (arXiv: 1105.5723) De Felice and S. T. (arXiv: 1107.3917)

The spectrum of tensor perturbations

The second-order action for tensor perturbations is

$$S = \sum_{\lambda} \int dt d^3x \, a^3 Q_T \left[\dot{h}_{\lambda}^2 - \frac{c_T^2}{a^2} \, (\partial h_{\lambda})^2 \right]$$

 λ corresponds to polarization modes

where

 c_T^2

$$= \frac{w_1}{4} = \frac{1}{4} M_{\rm pl}^2 F \left[1 + \mathcal{O}(\epsilon) \right]$$
where $F = 1 + \frac{2G_4}{M_{\rm pl}^2}$ and $\epsilon = -\dot{H}/H^2 \ll 1$.

$$= \frac{w_4}{w_1} = 1 + \mathcal{O}(\epsilon)$$

$$\frac{1}{\sqrt{1 + 1}}$$
This term comes from the nonminimal coupling in \mathcal{L}_4

$$\mathcal{L}_4 = G_4(\phi, X) R + G_{4,X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) \right]$$

The no-ghost condition is satisfied for F > 0.

The tensor power spectrum is

$$\mathcal{P}_T = \frac{H^2}{2\pi^2 Q_T c_T^3} \simeq \frac{2H^2}{\pi^2 M_{\rm pl}^2 F}$$

The tensor-to-scalar ratio is

$$r = \frac{\mathcal{P}_T}{\mathcal{P}_R} \simeq 16c_s\epsilon_s$$
 where $\epsilon_s = \frac{Qc_s^2}{M_{\rm pl}^2F} = \mathcal{O}(\epsilon)$

Scalar non-Gaussianities

For the ADM metric with scalar metric perturbations the third-order perturbed action is given by (obtained after many integrations by parts)

$$S_3 = \int dt \, \mathcal{L}_3$$

where

$$\mathcal{L}_{3} = \int d^{3}x \left\{ a^{3} \mathcal{C}_{1} M_{\mathrm{pl}}^{2} \mathcal{R} \dot{\mathcal{R}}^{2} + a \mathcal{C}_{2} M_{\mathrm{pl}}^{2} \mathcal{R} (\partial \mathcal{R})^{2} + a^{3} \mathcal{C}_{3} M_{\mathrm{pl}} \dot{\mathcal{R}}^{3} + a^{3} \mathcal{C}_{4} \dot{\mathcal{R}} (\partial_{i} \mathcal{R}) (\partial_{i} \mathcal{X}) + a^{3} (\mathcal{C}_{5} / M_{\mathrm{pl}}^{2}) \partial^{2} \mathcal{R} (\partial \mathcal{X})^{2} \right. \\ \left. \left. + a \mathcal{C}_{6} \dot{\mathcal{R}}^{2} \partial^{2} \mathcal{R} + \mathcal{C}_{7} \left[\partial^{2} \mathcal{R} (\partial \mathcal{R})^{2} - \mathcal{R} \partial_{i} \partial_{j} (\partial_{i} \mathcal{R}) (\partial_{j} \mathcal{R}) \right] / a + a (\mathcal{C}_{8} / M_{\mathrm{pl}}) \left[\partial^{2} \mathcal{R} \partial_{i} \mathcal{R} \partial_{i} \mathcal{X} - \mathcal{R} \partial_{i} \partial_{j} (\partial_{i} \mathcal{R}) (\partial_{j} \mathcal{X}) \right] \right. \\ \left. \left. + \mathcal{F}_{1} \frac{\delta \mathcal{L}_{2}}{\delta \mathcal{R}} \right|_{1} \right\}$$

 $C_i \ (i = 1, 2, \cdots, 8)$ are slowly varying relative to a, and $\partial^2 \mathcal{X} = Q\dot{\mathcal{R}}$.

 \mathcal{F}_1 are second order in perturbations and

$$\frac{\delta \mathcal{L}_2}{\delta \mathcal{R}}\Big|_1 \equiv -2\left[\frac{d}{dt}(a^3 Q \dot{\mathcal{R}}) - a Q c_s^2 \partial^2 \mathcal{R}\right] \quad \blacksquare \quad \text{This vanishes at first order in } \mathcal{R}.$$

The vacuum expectation value of \mathcal{R} for the three-point operator at the conformal time $\tau = \tau_f$ is

$$\left\langle \mathcal{R}(\mathbf{k}_1)\mathcal{R}(\mathbf{k}_2)\mathcal{R}(\mathbf{k}_3)\right\rangle = -i\int_{\tau_i}^{\tau_f} d\tau \, a \left\langle 0\right| \left[\mathcal{R}(\tau_f, \mathbf{k}_1)\mathcal{R}(\tau_f, \mathbf{k}_2)\mathcal{R}(\tau_f, \mathbf{k}_3), \mathcal{H}_{\text{int}}(\tau)\right] \left|0\right\rangle$$

where $\mathcal{H}_{int} = -\mathcal{L}_3$.

We find that the three-point correlation function is given by

$$\langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \mathcal{R}(\mathbf{k}_3) \rangle = (2\pi)^7 \delta^{(3)} (\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) (\mathcal{P}_{\mathcal{R}})^2 \frac{\mathcal{A}_{\mathcal{R}}}{\prod_{i=1}^3 k_i^3}$$

Gao and Steer (arXiv: 1107.2642), De Felice and S.T. (arXiv: 1107.3917)

where

$$\begin{split} \mathcal{A}_{\mathcal{R}} &= \frac{M_{\mathrm{pl}}^{2}}{Q} \Biggl\{ \frac{1}{4} \left(\frac{2}{K} \sum_{i>j} k_{i}^{2} k_{j}^{2} - \frac{1}{K^{2}} \sum_{i\neq j} k_{i}^{2} k_{j}^{3} \right) \mathcal{C}_{1} + \frac{1}{4c_{s}^{2}} \left(\frac{1}{2} \sum_{i} k_{i}^{3} + \frac{2}{K} \sum_{i>j} k_{i}^{2} k_{j}^{2} - \frac{1}{K^{2}} \sum_{i\neq j} k_{i}^{2} k_{j}^{3} \right) \mathcal{C}_{2} \\ &\quad + \frac{3}{2} \frac{H}{M_{\mathrm{pl}}} \frac{(k_{1} k_{2} k_{3})^{2}}{K^{3}} \mathcal{C}_{3} + \frac{1}{8} \frac{Q}{M_{\mathrm{pl}}^{2}} \left(\sum_{i} k_{i}^{3} - \frac{1}{2} \sum_{i\neq j} k_{i} k_{j}^{2} - \frac{2}{K^{2}} \sum_{i\neq j} k_{i}^{2} k_{j}^{3} \right) \mathcal{C}_{4} \\ &\quad + \frac{1}{4} \left(\frac{Q}{M_{\mathrm{pl}}^{2}} \right)^{2} \frac{1}{K^{2}} \left[\sum_{i} k_{i}^{5} + \frac{1}{2} \sum_{i\neq j} k_{i} k_{j}^{4} - \frac{3}{2} \sum_{i\neq j} k_{i}^{2} k_{j}^{3} - k_{1} k_{2} k_{3} \sum_{i>j} k_{i} k_{j} \right] \mathcal{C}_{5} + \frac{3}{c_{s}^{2}} \left(\frac{H}{M_{\mathrm{pl}}} \right)^{2} \frac{(k_{1} k_{2} k_{3})^{2}}{K^{3}} \mathcal{C}_{6} \\ &\quad + \frac{1}{2c_{s}^{4}} \left(\frac{H}{M_{\mathrm{pl}}} \right)^{2} \frac{1}{K} \left(1 + \frac{1}{K^{2}} \sum_{i>j} k_{i} k_{j} + \frac{3k_{1} k_{2} k_{3}}{K^{3}} \right) \left[\frac{3}{4} \sum_{i} k_{i}^{4} - \frac{3}{2} \sum_{i>j} k_{i}^{2} k_{j}^{2} \right] \mathcal{C}_{7} \\ &\quad + \frac{1}{8c_{s}^{2}} \frac{H}{M_{\mathrm{pl}}} \frac{Q}{M_{\mathrm{pl}}^{2}} \frac{1}{K^{2}} \left[\frac{3}{2} k_{1} k_{2} k_{3} \sum_{i} k_{i}^{2} - \frac{5}{2} k_{1} k_{2} k_{3} K^{2} - 6 \sum_{i\neq j} k_{i}^{2} k_{j}^{3} - \sum_{i} k_{i}^{5} + \frac{7}{2} K \sum_{i} k_{i}^{4} \right] \mathcal{C}_{8} \Biggr\}, \end{split}$$

The terms C_i $(i = 1, \dots, 5)$ appear in k-inflation (Seery and Lidsey, Chen et al), which can be well approximated as an equilateral estimator.

The shape of the non-Gaussianities can be also approximated as an equilateral one even in the presence of C_6 (Mizuno and Koyama) and C_7 , C_8 (De Felice and S.T.).

The nonlinear parameter

We define the nonlinear parameter $f_{\rm NL}$, as $f_{\rm NL} = \frac{10}{3} \frac{A_R}{\sum_{i=1}^3 k_i^3}$ For the equilateral configuration $(k_1 = k_2 = k_3)$ one has

$$f_{\rm NL}^{\rm equil} = \frac{40}{9} \frac{M_{\rm pl}^2}{Q} \left[\frac{1}{12} \mathcal{C}_1 + \frac{17}{96c_s^2} \mathcal{C}_2 + \frac{1}{72} \frac{H}{M_{\rm pl}} \mathcal{C}_3 - \frac{1}{24} \frac{Q}{M_{\rm pl}^2} \mathcal{C}_4 - \frac{1}{24} \left(\frac{Q}{M_{\rm pl}^2} \right)^2 \mathcal{C}_5 + \frac{1}{36c_s^2} \left(\frac{H}{M_{\rm pl}} \right)^2 \mathcal{C}_6 - \frac{13}{96c_s^4} \left(\frac{H}{M_{\rm pl}} \right)^2 \mathcal{C}_7 - \frac{17}{192c_s^2} \frac{H}{M_{\rm pl}} \frac{Q}{M_{\rm pl}^2} \mathcal{C}_8 \right]$$

Under the expansion of the slow-variation parameters it follows that

$$f_{\rm NL}^{\rm equil} = \frac{85}{324} \left(1 - \frac{1}{c_s^2} \right) - \frac{10}{81} \frac{\lambda}{\Sigma} + \frac{55}{36} \frac{\epsilon_s}{c_s^2} + \frac{5}{12} \frac{\eta_s}{c_s^2} - \frac{85}{54} \frac{s}{c_s^2} + \left(\frac{20}{81} \frac{1 + \lambda_{3X}}{\epsilon_s} + \frac{65}{162c_s^2\epsilon_s} \right) \delta_{G3X} + \left(\frac{80}{81} \frac{3 + 2\lambda_{4X}}{\epsilon_s} + \frac{65}{27c_s^2\epsilon_s} \right) \delta_{G4XX} + \left(\frac{20}{81\epsilon_s} + \frac{65}{162c_s^2\epsilon_s} \right) \delta_{G5X} + \left(\frac{20}{81} \frac{5 + 2\lambda_{5X}}{\epsilon_s} + \frac{65}{162c_s^2\epsilon_s} \right) \delta_{G5XX}$$

where

(De Felice and S.T., arXiv: 1107.3917)

$$\eta_{s} = \frac{\dot{\epsilon}_{s}}{H\epsilon_{s}}, \quad s = \frac{\dot{c}_{s}}{Hc_{s}}, \quad \delta_{G3X} = \frac{G_{3,X}\dot{\phi}X}{M_{\rm pl}^{2}HF}, \quad \delta_{G4XX} = \frac{G_{4,XX}X^{2}}{M_{\rm pl}^{2}F}, \quad \delta_{G5X} = \frac{G_{5,X}H\dot{\phi}X}{M_{\rm pl}^{2}F}, \quad \delta_{G5XX} = \frac{G_{5,XX}H\dot{\phi}X^{2}}{M_{\rm pl}^{2}F}, \quad \delta_{G5X} = \frac{G_{5,XX}H\dot{$$

$$\begin{split} \lambda &= (F^2/3)[3X^2P_{,XX} + 2X^3P_{,XXX} + 3H\dot{\phi}(XG_{3,X} + 5X^2G_{3,XX} + 2X^3G_{3,XXX}) - 2(2X^2G_{3,\phi X} + X^3G_{3,\phi XX}) \\ &+ 6H^2(9X^2G_{4,XX} + 16X^3G_{4,XXX} + 4X^4G_{4,XXXX}) - 3H\dot{\phi}(3XG_{4\phi,X} + 12X^2G_{4,\phi XX} + 4X^3G_{4,\phi XXX}) \\ &+ H^3\dot{\phi}(3XG_{5,X} + 27X^2G_{5,XX} + 24X^3G_{5,XXX} + 4X^4G_{5,XXXX}) \\ &- 6H^2(6X^2G_{5,\phi X} + 9X^3G_{5,\phi XX} + 2X^4G_{5,\phi XXX})] \\ \text{Standard inflation: } P = X - V(\phi), c_s^2 = 1, \lambda = 0 \quad \text{and} \quad f_{\text{NL}}^{\text{equil}} = \frac{55}{36}\epsilon_s + \frac{5}{12}\eta_s \end{split}$$

The scalar propagation speed

If $c_s^2 \ll 1$, the large non-linear parameter $|f_{\rm NL}^{\rm equil}| \gg 1$ can be realized. Expansion in terms of slow-variation parameters gives

 $c_s^2 \simeq \frac{\delta_{PX} + 4\delta_{G3X} - 2\delta_{G3\phi} + 6\delta_{G4X} + 20\delta_{G4XX} + 4\delta_{G5X} + 4\delta_{G5XX} - 6\delta_{G5\phi}}{\delta_{PX}(1+2\lambda_{PX}) + 6\delta_{G3X}(1+\lambda_{3X}) - 2\delta_{G3\phi} + 6\delta_{G4X} + 24\delta_{G4XX}(2+\lambda_{4X}) + 6\delta_{G5X} + 2\delta_{G5XX}(7+2\lambda_{5X}) - 6\delta_{G5\phi}}$

where

$$\delta_{PX} = \frac{P_{,X}X}{M_{\rm pl}^2 H^2 F}, \quad \lambda_{PX} = \frac{XP_{,XX}}{P_{,X}}, \quad \delta_{G3\phi} = \frac{G_{3,\phi}X}{M_{\rm pl}^2 H^2 F}, \quad \delta_{G4X} = \frac{G_{4,X}X}{M_{\rm pl}^2 F}, \quad \delta_{G5\phi} = \frac{G_{5,\phi}X}{M_{\rm pl}^2 F}$$

If either of the following conditions is satisfied, it is possible to realize the large non-Gaussianities:

 $\lambda_{PX}\gg 1\,,\qquad \lambda_{3X}\gg 1\,,\qquad \lambda_{4X}\gg 1\,,\qquad \lambda_{5X}\gg 1\,.$

In k-inflation one has

$$c_s^2 = \frac{1}{1 + 2\lambda_{PX}} = \frac{P_{,X}}{P_{,X} + 2XP_{,XX}} \qquad \epsilon = \delta_{PX} = \frac{P_{,X}X}{3M_{\rm pl}^2 H^2}$$

Since k-inflation occurs around $P_{X} \approx 0$, it follows that $c_s^2 \ll 1$.

If P is function of X only, a de Sitter solution with $P_{,X} = 0$ is problematic because the power spectrum $\mathcal{P}_{\mathcal{R}}$ diverges.

We require the ϕ -dependence in P [like DBI inflation] or additional terms G_i (i = 3, 4, 5) [like G-inflation].

$$|f_{\rm NL}^{\rm equil}| \gg 1$$

K-inflation + Galileon terms

• The ghost condensate model plus the Galileon G_3 term

 $P=-X+X^2/(2M^4)\,,~~G_3=\mu X/M^4$ (Kobayashi, Yamaguchi, Yokoyama, PRL, 2010)

There is a de Sitter solution with $1 - x \simeq \sqrt{3}\mu/M_{\rm pl}$ for $x = X/M^4$ close to 1.

 $f_{\rm NL}^{\rm equil} \simeq 5/[6(1-x)] \simeq 4.62r^{-2/3} \qquad \text{(Mizuno and Koyama, PRD, 2010)}$

- r is the tensor-to-scalar ratio.
- Let us consider the Galileon G_4 term

$$P = -X + X^2/(2M^4)$$
, $G_4 = \mu X^2/M^7$

For $x = X/M^4$ close to 1 there is a de Sitter solution characterized by

$$H^2 = \frac{M^3}{36\mu} \frac{1-x}{x}, \qquad \frac{\mu M}{M_{\rm pl}^2} = \frac{1-x}{6x^2(3-2x)} \qquad \text{and} \qquad c_s^2 = 2(1-x)/9$$

The inflationary observables are

(De Felice and S.T., arXiv: 1107.3917)

• Let us consider the Galileon G_5 term

$$P = -X + X^2/(2M^4)$$
, $G_5 = \mu X^2/M^{10}$ \square $f_{\rm NL}^{\rm equil} \simeq 0.17 r^{-2/3}$

Our formula of $f_{\rm NL}^{\rm equil}$ can be applied to most of single-field inflation models proposed so far.

Let us consider nonminimal coupling models.

(i) $G_4 = F(\phi)$ $\longrightarrow \mathcal{L}_4 = F(\phi)R$ including scalar-tensor gravity and f(R) gravity $\delta_{G4X} = \delta_{G4XX} = 0 \quad \Longrightarrow \quad c_s^2 = 1/(1+2\lambda_{PX})$ If P does not have non-linear terms in X we have $c_s^2 = 1$ and $f_{\rm NL}^{\rm equil} = \mathcal{O}(\epsilon_s, \eta_s)$ This is the case for Higgs inflation $(P = X - V(\phi))$ and Brans-Dicke theories $(P = \omega_{\rm BD} X / \phi - V(\phi)).$ $G_5 = F(\phi)$ \square $\mathcal{L}_5 = F(\phi)G_{\mu\nu}(\nabla^{\mu}\nabla^{\nu}\phi)$ (11) New Higgs inflation (with the coupling $G_{\mu\nu}\nabla^{\mu}\phi\nabla^{\nu}\phi$) corresponds to the choice $F(\phi) \propto \phi$. $\delta_{G5X} = \delta_{G5XX} = 0 \quad \Longrightarrow \quad c_s^2 = \frac{\delta_{PX} - 6\delta_{G5\phi}}{\delta_{PX}(1 + 2\lambda_{PX}) - 6\delta_{G5\phi}}$ If P does not have non-linear terms in X we have $c_s^2 = 1$ and $f_{\rm NL}^{\rm equil} = \mathcal{O}(\epsilon_s, \eta_s)$

The above two types of nonminimal couplings themselves do not give rise to large equilateral non-Gaussianities.

Potential-driven G-inflation

Let us consider the following model

$$P = X - V(\phi), \qquad G_3 = -\frac{1}{M^{4n-1}} e^{\mu \phi/M_{\rm pl}} X^n$$

The Galileon coupling corresponds to $\mu = 0$ and n = 1.

In this case the scalar propagation speed squared is

 $c_s^2 \simeq \frac{\delta_{PX} + 4\delta_{G3X}}{\delta_{PX} + 6n\delta_{G3X}} \longrightarrow c_s^2 \simeq 2/(3n) \text{ for } \delta_{G3X} \gg \delta_{PX}.$ For the specific theories with $n \gg 1$ one has $c_s^2 \ll 1$ and $f_{\rm NL}^{\rm equil} \simeq -\frac{865}{3888}n \longrightarrow |f_{\rm NL}^{\rm equil}| \gg 1$

In the following let us consider the theories with n = 1(in which case the non-Gaussianities cannot be large). For the potential $V(\phi) = V_0 (\phi/M_{\rm pl})^p$ the spectral index and the tensor-to-scalar ratio in the regime $\delta_{G3X} \gg \delta_{PX}$ are

$$n_{\rm s} \simeq 1 - \frac{3(p+1)}{(p+3)N+p} \left[1 - \frac{2(p-1)}{3(p+1)(p+5)} \mu x \right] \qquad \text{where } x \equiv \phi/M_{\rm pl} \ll 1 \text{ for} \\ \delta_{G3X} \gg \delta_{PX} \text{ and } \mu = \mathcal{O}(1).$$

$$r \simeq \frac{64\sqrt{6}}{9} \frac{p}{(p+3)N+p} \left(1 - \frac{\mu x}{p+5} \right) \qquad N \text{ is the number of e-foldings} \\ \text{from the end of inflation.}$$
For $N = 55$, in the limit where $\mu \to 0$, $n_{\rm s} = 0.9614$ and $r = 0.1791$ for $p = 4$.

The quartic potential can be saved (Kamada et al, PRD, 2010).

Observational constraints on G-inflation with the quartic potential

$$V(\phi) = V_0 (\phi/M_{\rm pl})^4$$
 and $G_3 = -\frac{1}{M^3} e^{\mu \phi/M_{\rm pl}} X$

The left figure corresponds to $\mu = 0$ and $\mu = 1$ where $B = [V_0/(M^3 M_{\rm pl})]^{1/4}$

The quartic potential is saved by the Galileon-like corrections.

Kamada, Kobayashi, Yamaguchi, Yokoyama, PRD, 2010 ($\mu = 0$)

De Felice, S.T., Elliston, Tavakol, JCAP to appear $(\mu \neq 0)$

For $\mu > 0$ the intermediate values of *B* are within 1σ observational bound.

 $B \to 0$ corresponds to $\delta_{PX}/\delta_{G3X} \gg 1$. $B \to \infty$ corresponds to $\delta_{PX}/\delta_{G3X} \ll 1$. (standard inflation)

(G-inflation)

Gauss-Bonnet couplings

Our general action covers the Gauss-Bonnet coupling $-\xi(\phi)\mathcal{G}$ by choosing

 $P = -8\xi^{(4)}(\phi)X^2(3 - \ln X), \quad G_3 = -4\xi^{(3)}(\phi)X(7 - 3\ln X),$ $G_4 = -4\xi^{(2)}(\phi)X(2 - \ln X), \quad G_5 = 4\xi^{(1)}(\phi)\ln X \quad \text{(Kobayas)}$

(Kobayashi, Yamaguchi, Yokoyama, arXiv: 1105.5723)

where $\xi^{(n)}(\phi) = \partial^n \xi(\phi) / \partial \phi^n$

For the potential-driven inflation (i.e. in the presence of the term $P = X - V(\phi)$) one has

$$c_s^2 = 1 - 64\delta_{\xi}^2(6\delta_{\xi} + \delta_X)/\delta_X$$
 very close to $c_s^2 = 1$

where $\delta_X = X/(M_{\rm pl}^2 H^2)$ and $\delta_{\xi} = H\dot{\xi}/M_{\rm pl}^2$.

The nonlinear parameter is estimated as

$$f_{\rm NL}^{\rm equil} = \frac{55}{36} \delta_X + \frac{5}{12} \eta_X + \frac{275}{81} \frac{\delta_{\xi}}{\delta_X} (4\epsilon + 2\eta_{\xi} - \eta_X) \quad \text{small}$$

where
$$\eta_{\xi} = \dot{\delta}_{\xi}/(H\delta_{\xi})$$
 and $\eta_X = \dot{\delta}_X/(H\delta_X)$.

This result matches with that derived explicitly in the presence of the Gauss-Bonnet coupling (De Felice and S.T., JCAP, 2011).

Observational constraints on the Gauss-Bonnet coupling

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm pl}^2}{2} R + X - V(\phi) - \xi(\phi) \mathcal{G} \right]$$

De Felice, S.T., Elliston, Tavakol, JCAP to appear (2011)

where

 $V(\phi) = m^2 \phi^2/2, \qquad \xi(\phi) = \xi_0 e^{\mu \phi/M_{\rm pl}}$

From the observational data of the scalar spectral index and the tensor-to-scalar ratio the GB Coupling is constrained by varying two parameters:

$$\epsilon_s(=\delta_X), \quad r_\xi = \delta_\xi/\delta_X$$

The CMB likelihood analysis shows that the Gauss-Bonnet contribution needs to be suppressed:

 $r_{\xi} \equiv \delta_{\xi} / \delta_X < 0.1 \quad (95 \% \text{ CL})$

Conclusions

We have evaluated the primordial non-Gaussianities for the very general single-field models characterized by

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm pl}^2}{2} R + P(\phi, X) - G_3(\phi, X) \,\Box \phi + \mathcal{L}_4 + \mathcal{L}_5 \right].$$

We found that the equilateral nonlinear parameter is given by

For $c_s^2 \ll 1$ one can realize $|f_{\rm NL}^{\rm equil}| \gg 1$

Our analysis covers a wide variety of inflation models such as (i)k-inflation, (ii) nonminimal coupling models [scalar-tensor theories and f(R) gravity], (iii) Galileon inflation, (iv) inflation with a Gausss-Bonnet coupling, etc.

It will be of interest to discriminate a host of inflationary models in future observations by using our formula of the nonlinear parameter as well as the spectral index and the tensor-to-scalar ratio.