Supernovae from the Most Massive Stars

Ke-Jung (Ken) Chen

Johnston Graduate Fellow, University of Minnesota

East Asia Numerical Astrophysics Meeting, YITP Kyoto, Oct. 30 2012

Star Bombers

Alexander Heger Monash University

Stan Woosley UC Santa Cruz

Ann Almgren Lawrence Berkeley National Lab

Daniel Kasen UC Berkeley

Weiqun Zhang Lawrence Berkeley National Lab

Super Luminous SNe

Tuesday, October 30, 12

Tuesday, October 30, 12

Tuesday, October 30, 12

The Death of Massive Stars

Woosley, Heger, & Weaver (2002)

(Talk by Wise)

MS Mass	He Core	Supernova Mechanism
$10 \le M \le 85$	$2 \le M \le 32$	Fe core collapse to a neutron star or black hole (GRB Talks: Aloy, Matsumoto, Mizuta) (CCSNe Talk by Suwa)
$80 \le M \le 150$	$35 \le M \le 60$	Pulsational pair instability followed by core (PPSN)
$150 \le M \le 250$	$60 \le M \le 133$	Pair instability supernova (PSN)
$250 \leq M$	$133 \leq M$	Black holes

Mass Unit: solar mass \odot

The Death of Massive Stars

Woosley, Heger, & Weaver (2002)

(Talk by Wise)

MS Mass	He Core	Supernova Mechanism
$10 \le M \le 85$	$2 \le M \le 32$	Fe core collapse to a neutron star or black hole (GRB Talks: Aloy, Matsumoto, Mizuta) (CCSNe Talk by Suwa)
$80 \le M \le 150$	$35 \le M \le 60$	Pulsational pair instability followed by core (PPSN)
$150 \le M \le 250$	$60 \le M \le 133$	Pair instability supernova (PSN)
250 ≤ M	$133 \leq M$	Black holes

Mass Unit: solar mass \odot

Star > 80 M⊙

Star > 80 M⊙ н

150 M \odot > Star > 80 M \odot

Star > 80 M⊙ н

150 M☉ **> Star > 80 M**☉

E~10⁵²+ erg

250 M⊙ **> Star > 150 M**⊙

How to Blow Up Multi-D Stars?

1D Models

80 - 150 M☉ Stars (Woosley+ 2007, priv. comm.) 150 - 250 M☉ Stars (Heger & Woosley 2002, 2010)

CASTRO (DOE SciDAC Computational Astrophysics Team) Massive Parallel, Adaptive Mesh Refinement (AMR), Multi-D, Radiation, Hydro, +(Nuclear Burning, Mapping, Rotation, GR, ...) (Almgren+ 2010, Zheng+ 2011 2012, Chen+ 2011 2012)

Supercomputers

Itasca

Franklin

Hopper

Jaguar

Tuesday, October 30, 12

Pulses occur on a hydrodynamic time scale for the helium and heavy element core (~500 s).

For this mass, there are no especially violent single pulses before the star collapses.

Tuesday, October 30, 12

Pulses commence again after central oxygen depletion, but become more violent. Two strong pulses send shock waves into the envelope. Two days later the iron core collapses.

90+ M⊙

The pulses become more violent and the intervals between them longer. Multiple supernovae occur but usually just one of them is very bright.

Core of 110 $M\odot$ Star

Tuesday, October 30, 12

Velocity [cm/s] 1e14 cm x1e14 cm

Tuesday, October 30, 12

Physical Properties of Colliding Shells

Physical Properties of Colliding Shells

Tuesday, October 30, 12

Explosive Burning of 150 $M\odot$ Star

Explosive Burning of 150 $M\odot$ Star

Core of 150 M \odot Star

Core of	150 M ⊙	Star
---------	----------------	------

DB: Header Cycle: 0	Time:0
Contour Var: C	
- 0.04545 - 0.04090 - 0.03636 - 0.03181 - 0.02727 - 0.02272 - 0.01818 - 0.01363 - 0.009089 - 0.004545	

Max: 0.04999 Min: 1.394e-10

user: kchen Thu Jun 17 12:19:35 2010

Exploding 200 Mo Star (2007 bi)

Exploding 200 Mo Star (2007 bi)

Mixing

More Explosions ! (Chen+ in prep)

RSG 200

B-0410 (1007-10)

RSG 250

Tuesday, October 30, 12

RSG 150

Mixing of Elements

Mass Coordinate

Results

Model	Mass [M⊙]	Core [M⊙]	E [10 ⁵² erg]	Ni [M⊙]	Instab.	Mixing
B150	150	67	1.29	0.07	Burning	weak
B200	200	95	4.14	6.57	Burning	weak
B250	250	109	7.23	28.05	Burning	weak
R150	150	59	1.19	0.10	Rev.	Strong
R200	200	86	3.43	4.66	Rev.	Strong
R250	250	156	•••		••••	

Results

Model	Mass [M⊙]	Core [M⊙]	E [10 ⁵² erg]	Ni [M⊙]	Instab.	Mixing
B150	150	67	1.29	0.07	Burning	weak
B200	200	95	4.14	6.57	Burning	weak
B250	250	109	7.23	28.05	Burning	weak
R150	150	59	1.19	0.10	Rev.	Strong
R200	200	86	3.43	4.66	Rev.	Strong
R250	250	156	•••		••••	

Ni is only slightly mixed out . The Gamma-Ray emission for PSNe is unlikely.

Fate Very Bright Sources Observation

80 ~ 150 M⊙

150 ~ 250 M⊙

250+ M⊙

Fate Very Bright Sources Observation

80 ~ 150 **M**⊙ PPSN

150 ~ 250 **M**⊙ PSN

250+ **M**⊙ BH(?)

Fate Very Bright Sources Observation

80 ~ 150 **M**⊙ PPSN YES

150 ~ 250 **M**⊙ PSN YES

250+ M⊙ BH(?) No

	Fate	Very Bright	Sources	Observation
80 ~ 150 M ⊙	PPSN	YES	Pop I, II, III	
50 ~ 250 M ⊙	PSN	YES	Pop I(?), II, III	
250+ M ⊙	BH(?)	No	No	

	Fate	Very Bright	Sources	Observation
80 ~ 150 M ⊙	PPSN	YES	Pop I, II, III	Multi-SN
150 ~ 250 M ⊙	PSN	YES	Pop I(?), II, III	Large Ni
250+ M ⊙	BH(?)	No	No	GW

Very Bright **Observation** Sources Fate **80 ~ 150 M**⊙ PPSN YES Pop I, II, III Multi-SN **150 ~ 250 M**⊙ PSN Pop I(?), II, III YES Large Ni 250+ Mo BH(?) No No GW The first stars are promising candidates (Abel+ 2002, Bromm+ 2009)

Observation Very Bright Sources Fate **80 ~ 150 M**⊙ PPSN YES Pop I, II, III Multi-SN **150 ~ 250 M**⊙ PSN Pop I(?), II, III YES Large Ni 250+ Mo BH(?) No No GW The first stars are promising candidates (Abel+ 2002, Bromm+ 2009) Mixing can be important !

Super Explosions !! <u>Stars > 1,0</u>00M⊙ may not die as black holes

An Explosion of 55,000 M \odot Star (Heger, & Chen+ in prep., Whalen, Heger, & Chen+ to be submitted)

(Chen+, highlighted in the Coalition for Academic Scientific Computation (CASC) 2012

Many thanks for your attention

This work has been strongly supported by:

National Energy Research Scientific Computing Center

Scientific Discovery through Advanced Computing

