Formation of Protostellar Cores and Circumstellar Disks

Department of Astrophysical Sciences, Princeton University
JSPS Postdoctoral Fellow for Research Abroad
Kengo TOMIDA
Kohji Tomisaka, Tomoaki Matsumoto, Yasunori Hori, Satoshi Okuzumi, Masahiro N. Machida, Kazuya Saigo

Introduction: Star Formation

Initial State: Molecular Cloud Core
Final State: Protostar, Disk, Jet, Outflow

Overall scenario is established, but details are left unknown. Complex physics: multi-dimensionality, large dynamic range, self-gravity, magnetic fields, radiation, chemistry, etc.

ALMA era → Precise modeling are strongly demanded.
⇒ Highly sophisticated computational simulations

Star ex: Sun

Protostar, Disk, Outflow
HH111 (Mckee & Ostriker 07)
Protostellar Collapse: 1D RHD

Masunaga & Inutsuka 2000

4. Second (Protostellar) core

3. Second collapse (H$_2$ dissociation)

2. First (Adiabatic) core

1. Isothermal collapse

The scenario is well established based on 1D RHD simulations. Interplay between radiation, thermodynamics and dynamics.

(see also: Larson 1969 etc.)
In reality: rotation, magnetic fields

(Historic) “Problems” in Star Formation Processes

• Angular Momentum Problem

Cloud Cores \[j_c \approx 5 \times 10^{21} \left(\frac{R}{0.1 \text{pc}} \right)^2 \left(\frac{\Omega}{4 \text{km s}^{-1} \text{pc}^{-1}} \right) \text{cm}^2 \text{s}^{-1} \]

\[\Rightarrow \]

\[j_* \approx 6 \times 10^{16} \left(\frac{R_*}{2R} \right)^2 \left(\frac{P}{10 \text{day}} \right)^{-1} \text{cm}^2 \text{s}^{-1} \text{Stars} \]

→ Efficient angular momentum transport during protostellar collapse
⇒ Gravitational torque, Magnetic braking, Outflow

• Magnetic Flux Problem

Similarly, magnetic flux in cloud cores >> stellar magnetic flux
→ Magnetic fields must dissipate during the collapse
⇒ Ohmic Dissipation, Ambipolar Diffusion, (Hall effect)

• “Magnetic Braking Catastrophe” (Mellon & Li 2008,09, Li+ 2011, etc.)
Magnetic barking is too efficient; no circumstellar disk is formed
⇒ Long-term accretion, non-ideal MHD effects, etc. (Machida+ 2011)

⇒ Realistic 3D simulations with many physical processes!
ngr³mhd code

Required elements for SF studies

- Huge dynamic range: → 3D nested-grids
- MHD → HLLD (Miyoshi & Kusano 2005)
 (+ Carbuncle care → shock detection + HLLD-)
 ✓ Fast, robust and as accurate as Roe’s solver
 ✓ Independent from the details of EOS
- \(\text{div } \mathbf{B} = 0 \) constraint → Hyperbolic cleaning (Dedner+ 2002)
- Self-gravity → Multigrid (Matsumoto & Hanawa 2003)
- Radiation → Gray Flux Limited Diffusion (Levermore & Pomraning 1981)
 + Implicit (BiCGStab + ILU decomposition (0) preconditioner)
- EOS including chemical reactions ← partition functions
- Ohmic dissipation → Super Time Stepping (Alexiades+ 1996)
- Computers: NEC SX-9 at NAOJ, JAXA and Osaka-Univ.

⇒ First 3D RMHD simulations of protostellar core formation!
Simulation Setups

Two rotating models:
• Ideal MHD model
• Resistive MHD model

64^3 x 23 levels, 16 cells / \lambda_{\text{Jeans}}
\min(\Delta x) \sim 6.6 \times 10^{-5} \text{AU} \sim 0.014 \text{Rs}

End of simulations. \(T_c \sim 10^5 \text{ K}, \sim 1 \text{ yr after 2nd core formation} > 10^8 \) !

• 1 Ms unstabilized BE sphere (\(\rho_c = 1.2 \times 10^{-18} \text{ g/cc}, T=10\text{K}, R=8800\text{AU} \))
• \(B_z = 20\mu\text{G} (\mu \sim 3.8), \Omega = 0.046/t_{\text{ff}} \sim 2.4 \times 10^{-14} \text{ s}^{-1} \), aligned rotator
• 10% m=2 density perturbation
• Resistivity (Umebayashi & Nakano 2009, Okuzumi 2009)
Ohmic Dissipation

\[R_m = \frac{UL}{\eta} = \frac{\tau_{diss}}{\tau_{flow}} \]

Resistivity (w/Dr. Okuzumi): \(\xi = 10^{-17} \) s\(^{-1}\), Neglect shielding of cosmic rays
Need no enhancement, but resolving small high-density region is crucial.
Rotating models: Outflows

Density cross section

- Ideal MHD
- Resistive MHD

Edge-on

Face-on

~140 AU
Rotating models: First cores

Ideal MHD

Resistive MHD
Rotating models: Protostellar cores

Ideal MHD

Resistive MHD
Protostellar Cores

Radii, Masses, Angular momenta

PCs acquire $\sim 0.02 \, M_\odot$ in ~ 1 yr

Ideal MHD model = virtually spherical

←very low angular momentum

Circumstellar disk is not formed

“Magnetic Braking Catastrophe”

Resistive MHD: large ang. momentum

→rotationally supported disk is formed

$R_{\text{disk}} \sim 0.3 \, \text{AU}$ at the end of simulation

It will continuously grow via accretion

⇒NO Magnetic Braking Catastrophe
Fast outflow from protostellar core

Toroidal fields are rapidly amplified by rotation in resistive case. → Fast outflow ($\gtrsim 15\text{km/s}$) is driven due to magnetic pressure. Consistent w/ previous MHD sims (Machida et al. 08 etc.) The magnetic tower is disturbed by the kink instability.
Summary

First direct 3D RMHD simulations of protostellar core formation
• Spherical case: consistent with preceding studies.
• In ideal MHD cases, angular momentum transport is efficient → Protostellar cores are not rotating, virtually spherical
• Angular momentum transport is suppressed in resistive cases → Rotationally-supported disk and fast outflow, the disk is small because of short simulation time, but will grow (Machida+ 2011)
• Resistivity works in high density region → High resolution is critical

HOWEVER:
We simulated only 1 year after the protostellar core formation
Timestep is too short, it takes almost as long as real star formation.
⇒ Long term simulations with accurate subgrid models
With some “imagination”...
Thank you