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Part |

e See PDF file: review-part.pdf



Part Il : Quantum dark soliton

e 1D Bose gas with repulsive interaction
+ experimental backgrounds

e Construction of the quantum state of a dark soliton in the
weak coupling case (0<c<< 1)

e Exact relaxation dynamics (video shaw):

Solving the Bethe equations numerically, we derive exact
time evolution for a dipped density profile collapsing into
a flat profile

(Relaxation of quantum states (M. Rigol et al PRL(2007) ;

P. Reimann, PRL (2008); Cf. von Neumann’s quantum
ergodic theorem (1929)); H. Tasaki, PRL(1998)



1D bosons interacting through the J-function potentials

The Lieb-Liniger Hamiltoninan is given by

N Ny

—. & : i}
HII=_ E_I_ Zf-ﬂri"}'—l_;ul

=171 jk=1

We introduce field operators for the 1D bosons, w(x), 1(z)' satisfying the
commutation relations:

(), ¢ (y)] = 6(x - y)

In the second quantized form, we have for Hpp.
I | ;
H = [ (80 ()80 () + e (2)0 (2)0(z)(z) }dr
0

The held operators satisty the nonlinear Schrodinger equation:



Dark soliton: a solution of classical NLS equation
n: density, n=N/L where N the particle number

B=1-v?/(2 1)

We assume that ¥(z) — n for z = +oo.

0 = —8?@0 + QCL/)T’(/)Z,U — p/g/@

Uv(z) = Vn (ﬂ + 34/ tanh?(z [J’nc))

2
Here we have y = n“c .



Dark soliton (a solution of classical NLSE)

 Amplitude profile
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Phase profile of a dark soliton




Brief review: experiments of cold atoms

 Through Interference of two plane-wave laser
beams, one can construct one-dimensional
trap of cold atoms.

Cf. T. Kinoshita et al., Nature 440, 900 (2006);
Science 305, 1125(2004)



A dark soliton can be realized by the phase printing method
Cf. Becker et al., Nature Physics vol. 41 (2008)
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Note: dark solitons observed in cold
atomic experiments should be related
to a quantum state

e Bose-Einstein condensates of cold atomic
systems should be described by a quantum
state (pure state).



More than 30 years ago, it was conjectured
that type Il excitations should be related to
a dark soliton

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, Vol. 49, No. 4, OCTOBER, 1980

Solitons in a One-Dimensional Bose System with
the Repulsive Delta-Function Interaction

Masakatsu ISHIKAWA and Hajime TAKAYAMAT

Dohto College, Hiroshimad-cho, Hokkaido 061-11
T Department of Physics, Hokkaido University, Sapporo 060

(Received May 12, 1980)

Lieb’s type II excitation, derived exactly by means of a Bethe ansatz, in a
one-dimensional Bose system with the repulsive delta-function interaction is
identified with the soliton mode, which is a solution of the Pitaevskii-Gross (or
nonlinear Schrodinger) equation for the corresponding Bose field.



However, it was not clear how to construct a
quantum state which leads to a dark soliton in
the weak coupling limit

The argument of Ishikawa - Takayama was based on
the similarity of the dispersion relations.

e Lieb’s Type Il excited state
= Bethe eigenstate with one hole

 The density profile of a type Il eigenstate is flat or
constant.

e Remark: Every Bethe state is translationally
invariant.



Spectrum of 1D Bose Gas (c=100)
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Construction of the quantum state of a dark
soliton (J. Sato et al., arXiv:1204.3960)

* We take superposition of excited states with
on hole:

X, N>= 2 N1 exp(2  ipq) |p>

Here |p> denotes the Bethe eigenstate with one
hole corresponding to momentum 2 & p/L

“"Delta function’” becomes a dark soliton



Application of form-factor formulas for the
1D Bose gas (Slavnov)

e |If we solve the Bethe equations numerically very

high precision, one can evaluate form factors
numerically exactly.

e Errors are O(101%) (Jun Sato)



The density profile

| X, N>: The quantum state of a dark soliton

<XN| ¢ )T ) X,N> :

the density profile as a function of x

We observe that the density profile overlaps
that of the dark soliton with v=v /2,
completely for small c

Hereafter we put N=L, and n=N/L.=1



Slavnhov’s formula (1990) for form factors

e <p’| ¢ T &) p>
= N (p—p’) Cauchy det’’ * det U

Here |p>and |p’> are two given Bethe
eigenstates with momentum p and p’



Quantum state of a dark soliton:
1. density profile overlaps the classical dark

soliton, completely for small c. v=v_/2
1.
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Matrix element of the field operator almost
coincides with the classical scalar field of dark
soliton for small c

o <X,N-1| ¢ (x) | X, N>: Matrix element of field

operator between dark soliton states with N
and N—1 particles.

e [t gives the order parameter of BEC.

(according to the Onsager—Penrose criterion)

* The amplitude profile and the phase profile
coincide with those of the classical dark
soliton with v=2 mt/L, respectively.
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Onsager-Penrose criterion of BEC

The one-particle reduced density matrix
e p,(xy)=<XN| o ®T¢ () IX,N>

* If the largest eigenvalue of p ;(x,y) is much

larger than all the other eigenvalues, the
system has BEC.



Depletion rate < 1

o <X,N| ¢ )T ) |X,N>
=|<X,N-1] ¢ ) | X,N>[2+ X |<n| ¢ x) | X,N>|2

ZCT nlZ|X, N-1> EFEL DL TODIREE

BIDEZIBEORKESIEIBECEHEREH 1LY
INEULVFEE (depletion rate) Z7R Y




Remark 1: Various applications of Slavnov’s
form-factor formula (1990) for 1D Bose gas

e We can exactly follow the time evolution of the
guantum many-body system both in real-time and
real-space.

To each eigenstate |p> we derive a set of numerical
solutions of the Bethe equations numerically with
qguite high precision.

e Some similarity with Quench dynamics (P. Calabrese
and J.S. Caux, 2007; F. Essler (transverse Ising chain))



Remark 2: Historical comments

e For attractive case, quantum state of a bright
soliton was constructed in 1980’s.

By superposing Bethe eigenstates of an N-
string, bright soliton states were constructed.

* |n optical fibers, bright soliton states are
studied in several experiments.



Bright soliton is derived from a quantum
state through a different limit

Journal of the Physical Society of Japan
Vol. 53, No. 6, June, 1984, pp. 1933-1938

Classical Soliton as a Limit
of the Quantum Field Theory

Miki WADACHI and Masa-aki SAKAGAMITTT

Institute of Physics, College of Arts and Sciences,
University of Tokyo, Komaba, Tokyo 153
tNational Laboratory for High Energy Physics (KEK), Tsukuba, Ibaraki 305
Tt Department of Physics, Osaka University, Toyonaka

(Received February 8, 1984)

In the Nonlinear Schrodinger model, the correspondence between classical
soliton and its quantum field theory is investigated. It is shown explicitly that
moving soliton as well as soliton at rest arise as the matrix elements of a field
operator in the limit #—o0, where »n is the particle number making the bound
state.



Exact non-equilibrium dynamics

of a quantum dark soliton

(1) Relaxation for N=1000

(2) Recurrence for N=20
By Jun Sato (JSPS Fellow, Ochanomizu Univ. )

J. Sato et al, PRL vol. 108, 110401 (2012)



Time evolution of the density profile
The density operator is defined by

p(z,t) = ' (z, )0 (e, 1

The density profile at time t is calculated by
N—-1

< ()|ﬂ Z 62m p—p)q/N

p,p'=0
x e L=P=iE= By pt) ) Py,

where P = 27p/L and P’ = 2rp/ /L denote the total momentum of the
P) and |P"), respectively.

Bethe eigenstates

We evaluate the form factor (P'|p(0)|P) by Slavnov's formula. Tt is

expressed in terms of a determinant.



Width of quantum state is proportional to
healing length Ic=1/(cn)!/?
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N=20,c=100

Relaxation process
in short time
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Fidelity for large system (relaxation)
and for small system (recurrence)

E(t) E(t)
l-ﬂq N=1000 = N=20
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0.2 0.2
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Collapse of a 'localized’” guantum state

Two possible interpretations:
(1) collapse due to nonlinear dispersion relation

(2) Sum of many oscillations with different
frequencies vanishes almost everywhere in time

(2’) quantum ergodic theorems (QET)
(i) Reimann (2008)
(ii)) QET of von Neumann (1929)
Cf. M. Rigol et al.



Conclusions on quantum soliton state

 We have constructed the quantum state of a dark soliton .
It should be useful for computing physical quantities.

o <X,N-1] ¢ (x) | X,N> gives the order parameter of BEC

e Solving the Bethe equation numerically and making use of
Slavnov formula, we have calculated the time evolution for
a very long time. (infinitely long time)

e For N=20, recurrence phenomena may occur.
e For N=1000, relaxation occurs for isolated quantum system

[Ref] J. Sato, R. Kanamoto, E. Kaminishi and T. D., Phys. Rev.
Lett. 108, 110401 (2012); arXiv: 1204.3960.



Future problems and prospects

e (1) In XXZ chain and 1D Bose gas, we can study exact
asymptotic behavior for various correlation functions.

Physical applications should be interesting.
e (2) Quantum dynamics:

For XXZ chain and 1D Bose gas, we can study time
evolution of the qguantum many-body systems over a very
long period of time.

Can we reconstruct any given Initial state
in terms of Bethe states ? (Partially, yes)
(3) Quantum soliton states
Difference from the mean-field solution should be explored
Connections to experiments should be studied
Perturbative approaches
Can we construct a multi-soliton state ?
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