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Introduction 1/3 
• 超流動 障害物が存在する状況で実現するエネルギー散逸のないマクロな流れ 

 

• 超流動の安定性をもたらすもの 

  ボース・アインシュタイン凝縮(BEC)（=巨視的波動関数Ψの存在）＋ 

 

 

      ＝有限の圧縮率  （Bloch et al. Rev. Mod. Phys. 2008, Appendix） 

 

     理想ボースガスのBECは圧縮率が無限大  

 

 

  

      

         

                                 「柔らかすぎない」 BEC⇒超流動性     
         以上は超流動速度が十分小さいときの話 
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Hohenberg-Martin (1965) Annals of Phys. 



Introduction 2/3 
障害物が存在する状況で、超流動速度が臨界速度(Vc)を超えると定常流解が存在
しない。 

 

   

 

numerical cal. of time-dependent-Gross-Pitaevskii equation(=NLS) in 2D 

Density of condensate wave function 

Disk (obstacle)  

By M. Kunimi  

  臨界速度以下特に臨界速度近傍で、超流動の安定性をもたらすもの 

  ボース・アインシュタイン凝縮(BEC)（=巨視的波動関数Ψの存在）＋有限の圧縮率＋ 

 

 

  研究目的：             の同定      ⇒  結論：         = 抑制された動的(局所)密度ゆらぎ        

 

?? 

?? ??   



Introduction 3/3(解題): bifurcation theory 

Conventional theory of Equilibrium phase 

transition does not apply to the transition from 

V<Vc to V>Vc. 

V Vc 

Stationary 

Superfluid state 

Non-stationary 

dissipative state 

Dynamical scaling 

regime 

But bifurcation theory is useful to describe the 

transition from a stationary state to a non-stationary 

state 



Model (1/2): Gross-Pitaevskii theory (1961) weakly-interacting, zero 

temperature 

Kinetic term One-body potential, chemical potential Two-body (contact type ) repulsion  

We start with the following (dimensionless) Hamiltonian: 

where           is a Bosonic field operator.   

 

Heisenberg Equation of Motion for               is given by  

 

Most particles are assumed to condense. Field operator can then be treated as a c-

number.  

  (Gross-Pitaevskii approximation).  



Model (2/2): Gross-Pitaevskii theory (1961) in conventional dimensional 

form 

Gross-Pitaevskii方程式：凝縮体の運動を記述 

It describes weakly interacting Bosons in condensed phase at zero 

temperature.  

Bogoliubov方程式：系の
励起状態を記述 

Kinetic term One-body 

potential,chemical 

potential 

Two-body potential 

Condensate wave function 

  

Gradient of phase ⇔ Superfluid velocity  

 

Quantization of vorticies(Onsager-Feynman)  

 



Confirmed by numerical cal. of time-dependent-Gross-Pitaevskii equation 
Frisch et al. 1992 

2D problem; Vc for flow around a disk 
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       Velocity of fluid 

 

Vc 

Vc(Landau) 

Breakdown of SF by vortex-emission 

Density of condensate wave function 

Phase of condensate wave function 

Disk 

位相が特異的にな
る  ⇒  渦が生成 

Density of condensate wave function 

渦 

vortex 

 
Disk  

Direction of superflow 

By M. Kunimi  

phonon 

 

Phase of condensate wave function 



Critical velocity in Cold atoms 

Raman et al. 1999 

stirring condensate by laser beam 

Onofrio et al. 2000 

In reality, vc  < vc,Landau, ;  vortex creation in Cold Atoms  

Vc （Vc,Landau=4.8mm/s） 

Vc    (VcLandau=7.0mm/s) 

(interference fringe)Inouye et al. (2001) 

Phase of condensate wave function 

Disk 

vortex 
vortex 



Simpler Analogue of vortex-emission instability 

one-dimensional superflow in the presence of potential barrier 

  

x

v v

|)| x

Potential barrier  condensate 

 Josephson-like system 

v 
vc 

current-phase relation  

（1D Gross-Pitaevskii eq.） （2D Gross-Pitaevskii eq.） 
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potential strength/chemical potential 

Landau critical velocity 

Stability of one-dimensional superflow in the presence of 

potential barrier（1D Gross-Pitaevskii eq.）     

soliton 

phonon  

Hakim97(Baratoff et al. 71) 
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Time evolution 

Time evolution 

No steady flow 

states 

Steady 

nondissipative flow 

state 
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Dynamical scaling above critical velocity 

Soliton-emission rate(Pham-Brachet 2002) 

gray soliton 
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phonon  

g; height of potential barrier 

Vortex-emission rate(Huepe-Brachet 2002) 

Γ
；E

m
is

s
io

n
 r

a
te

 

vortices 

(Huepe-Brachet 2002) 



Dynamical scaling regime? 

Bifurcation theory 

Ex. 

=theory of parameter dependence of existence and stability of 

stationary solutions of dynamical nonlinear systems (equations) 

Stationary solutions 

Stationary Solutions exits No stationary solutions 

No stationary solutions 

Bifurcation point 



Characteristic time (inverse of growth rate or converging rate ) 

scales as 

unstable stable 

Stability analysis 

Dynamical scaling regime ! 

Stationary Solutions exits No stationary solutions 

Linear stability analysis around stationary 

solutions. 

A stable stationary solution 

+ an unstable stationary solution  exist 

stationary solutions: + - 



v 
vc 

stable sol. unstable sol. 

Josephson (current-phase )relation  

x

v v

|)| x

Soliton-emission instability = saddle-node bifurcation(Hakim 97) 

V<vc   a stable and an unstable 

     solutions exist   
V>vc no stationary solution  

     exists 

Further, Vortex-emission instability = saddle-node bifurcation 

(Pomeau 93,Rica 01) 

Saddle-node bifurcation 

Stationary Solutions exits No stationary solutions 
A stable stationary solution 

+ an unstable stationary solution  exist 

This type of bifurcation is called saddle-node bifurcation.  

Dynamical scaling of vortex-emission and soliton emission is due to 

saddle-node bifurcation 

v=vc, stable and unstable 

solutions are degenerate.  

V Vc 



Dynamical density fluctuation  

• Slightly below the critical velocity of 

soliton-emission instability, the dynamical 

density fluctuation is enhanced. 

V Vc 

Stationary 

Superfluid state 

Non-stationary 

dissipative state 

Dynamical scaling 

regime 



Model (1/4): Classical analogue of Bogoliubov equation   

We express                 as the sum of the stationary solution of GP equation  

and the fluctuation around it.  

Equation linearized w. r. t.                is given by        

with       

Normal mode is given in the form of           ?       

Resultant two-component Equation for (u,v) is given by           

Bogoliubov equation   
j 

j 

j j 

j 

j 
j 

j 
j 

j; index of normal mode General solution to ★  is given by           

・・・・★            



 Quantum fluctuation around a stationary condensate is taken into account as follows: 

Model (2/4): 

Bogoliubov theory (Bogoliubov1947) weakly interacting, zero temperature 

Orthonormal condition for (u,v) is given by 

Diagonal representation of Hamiltonian is given by 

with   

where               are bosonic creation and annihilation operators, respectively. 



Model (3/4) In the spatially uniform case, solution to Bogoliubov equation is 

given by 

where Ω denotes volume and                           . 

Excitation energy is given by                          . 

Bogoliubov excitation  

Free bose gas 

(shown as a reference)  

p 
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Bogoliubov spectrum was 

found in experiments of cold 

atoms (Stamper-Kurn 1999)  

via probe detecting density 

fluctuation S(q,ω),S(q) 

Gapless spectrum is a sign 

for Bogoliubov excitation 

being a Nambu-Goldstone 

mode(phase fluctuation?) 



with 

Solution is given by 

Density fluc. and phase fluc. couples 

In low energy, phase fluc. Dominates 

(～NambuGoldstone mode) 

Model (4/4): Phase fluctuation, density fluctuation, and Bogoliubov 

excitation 



How to measure density fluctuations? 

g; ground state (energy Eg)    l; excited state （energy El） 

Note： Dynamical structure factor  S(q,ω) is not useful  

            in spatially inhomogeneous systems. 

We thus introduce the spectral function of local density: 

autocorrelation function of  local density: 

Fourier Transform 

Dynamical structure factor S(q,ω) is not useful in the 

spatially inhomogeneous systems. 



v =Vc V =0 

x 

ω 

ρ 

Watabe    Thesis 

V=0 

V=Vc 

V 
ｄ=２ 

x,ω dependence of spectral 

function   (U(x)=U δ(x)) 

V Fluctuation is enhanced near Vc! 



x 

ω 

ρ 

d=1 

x 

ω 

ρ 
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V=0.０４9 
V=0.０４ 

d=1 

d=1 

Note: the power of  ω changes discontinuously at Vc 

The exponent does not depend on x 

Blue curves for V=0, Black for 0<V<Vc, Red for V=Vc 

d=2  d=3  d=1  

Watabe    Thesis 

ω dependence of spectral function at X=0 for soliton-emission instability 



Crossover and scaling form 

Crossover frequency 

 (Dynamical scaling 

inherent to saddle-

node bifurcation) 

Scaling form (d=1,2,3)  



Numerical confirmation  

of Scaling relation 

Red: (Vc-V)/Vc=6x10-5 

Blue: (Vc-V)/Vc=1x10-3 

 

Green: (Vc-V)/Vc=1x10-2 

 

Enhancement of 

fluctuation is due to 

saddle-node bifurcation 



Stability criterion of superfluidity 

Fourier Transform 



 Zero mode of Bogoliubov equation 

A zero mode(Goldstone mode) 

Fetter 1972 

For V=Vc 

For V≦Vc 

Another zero mode 

Pham-Brachet 2002 Takahashi-Kato2009 

v 
vc 

stable sol. unstable sol. 

Josephson (current-phase )relation  

 

At v=vc, stable and unstable 

solutions are degenerate.  

Ｃｆ analogous to elementary diff. eq. 



Spectral function of local density 

=0 

 couples to density 

fluctuation 

 does not couple to density 

fluctuation 

 Fetter’s solution (Goldstone mode) 

At V=Vc, density fluctuation  occurs at low energy 

 ≠0 

Localized density fluc.  

  The other zero mode 



Spatial dependence near Vc 

Each curve represents the results for 

each V(red curve for Vc) 



Discussion: Why is density fluctuation enhanced near critical 

velocity? 

Near critical velocity, the state changes 

drastically with change V→V+δV 

Near critical velocity, the state changes 

drastically with change U0→ U0+δU0 

 

≒ 

Near critical velocity, the density 

fluctuation would be enhanced  



summary 

 

• dynamical density fluctuation at low ω and 

autocorrelation of the local density at long time 

difference are enhanced near critical velocity  in a 

soliton-emission instability. 

 

• Enhancement of fluctuation at critical velocity is due to 

appearance of the zero mode that couples to density 

fluctuation.   

 

• Our result suggests that superfluidity requires BEC with 

finite compressibility and suppressed dynamical density 

fluctuations.  

 

 

 


