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Drastic slow down of dynamics of supercooled liquids  

at low temperatures or at high densities 
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INTRODUCTION 

What is the Glass Transition? 



What is the Jamming Transition? 

INTRODUCTION 

 The volume fraction (density) of the hard balls poured into a jar 

    randomly is always about                     ! ! 

  It flows under external stresses (such as the shear force)   

J. D. Bernal 

g or P

From HP Tanaka ‘s Lab 



What is the relation btwn Glass and Jamming Transition? 

INTRODUCTION 

Liu and Nagel, Nature 1998 
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Mean Field Scenario of the Glass transition  
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 Thermodynamics:   

Replica Liquid Theory Mezard, Parisi 

 Dynamics:   Mode-Coupling Theory (MCT)          
Gotze  etc… 

Mean Field “Theory” of the Glass transition  



If this mean field scenario is correct, 

 MCT should work better in Higher Dimensions 

 MCT should work better for Long-Ranged Systems  

  Dynamic (MCT) transition point should mark the  

    qualitative change of  the free energy landscape 

    (inherent structures) 

Mean Field Scenario of the Glass transition  



Diffusion constant 
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Kumar et al. JCP 124, 214501 (2006) 
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Flenner et al. PRE 72 031508 (2005) 
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d=4 
P. Charbonneau, A. Ikeda, J. A. van Meel, and KM, PRE (2010) 

MD vs MCT for hard sphere glasses at d=4 

MCT’s critical scaling works better at higher dimensions! 

Mean Field Scenario of the Glass transition  



Schmid and Schillling PRE 81 041502 

(2010) 

Ikeda and KM , PRL 104 255704 (2010) 

d  theory,Replica

2 MCT, d

See also  Charbonneau, Ikeda, Parisi, and Zamponi, PRL 107 (2011) 185702 

A. Ikeda and KM , PRL 104 255704 (2010) 

MCT becomes less quantitative as d increases 

But, not at VERY high dimensions…  

Mean Field Scenario of the Glass transition  



If this mean field scenario is correct, 

 MCT should work better in Higher Dimensions 

 MCT should work better for Long-Ranged Systems  

??? 

  Dynamic (MCT) transition point should mark the  

    qualitative change of  the free energy landscape 

    (inherent structures) 

Mean Field Scenario of the Glass transition  
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Gaussian Core Model (GCM) 

Stillinger et al. (1977) 

 Glass Transition of Long-Ranged Systems 
Long-ranged Potential = Dense Ultra-Soft Potential 

Mean Field Scenario of the Glass transition  



KA LJ GCM (ρ = 1.5) GCM (ρ = 2.0) 

Tmct (simulation+fitting) 0.435 0.202 ×10-5 0.266 ×10-6 

Tmct (theory) 0.922 0.266 ×10-5 0.340 ×10-6 

Deviations 112 % 33 % 28 % 

 Glass Transition of Long-Ranged Systems 

 

MCT works unprecedentedly well!! 

 Glass Transition of Long-Ranged Systems 

Mean Field Scenario of the Glass transition  



If this mean field scenario is correct, 

 MCT should work better in Higher Dimensions 

 MCT should work better for Long-Ranged Systems  

INTRODUCTION 

  Dynamic (MCT) transition point should mark the  

    qualitative change of  the free energy landscape 

    (inherent structures) 

  Dynamic (MCT) transition point should mark the  

    qualitative change of  the free energy landscape 

    (inherent structures) 

??? 



Free energy landscape (inherent structures) for hard 

sphere fluids 

If we use 
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 Jamming Transition versus Glass Transition  
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total volume 

Visualize the “Energy” Landscape 
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This is nothing but the Jamming transition 

 Jamming Transition versus Glass Transition  
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0.69MCT 0.51MCT 

Ozawa, Kuroiwa, Ikeda, and KM   arXiv:1207.6925  

Initial density dependence of jamming  

transition points 

See also  Chaudhuri, Berthier, Sastry, PRL 104 (2010) 165701  
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Binary Hard Spheres with size ratio 1.4 and composition ratio 0.5:0.5 

 Jamming Transition versus Glass Transition  

http://arxiv.org/abs/1207.6925
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0.69MCT 0.51MCT 

Contact Numbers 

Strong evidence that the system remains still amorphous!   
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 Jamming Transition versus Glass Transition  

Ozawa, Kuroiwa, Ikeda, and KM   arXiv:1207.6925  

Remain Isostatic!     zJ = 2d    

http://arxiv.org/abs/1207.6925
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0.69MCT 0.51MCT 

Orientational Order Parameters 

See also   Schreck, O’Hern, Silbert, PRE 84 (2011) 011305  
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 Jamming Transition versus Glass Transition  

Ozawa, Kuroiwa, Ikeda, and KM   arXiv:1207.6925  

http://arxiv.org/abs/1207.6925
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Order hidden in Disorder? 
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Being in a rugged landscape 

means that  many amorphous 

states or “mosaics” coexist. 

http://arxiv.org/abs/1207.6925


 CONCLUSIONS 

 MCT should work better in Higher Dimensions 

 MCT should work better for Long-Ranged Systems  

  Dynamic (MCT) transition point should mark the  

    qualitative change of  the free energy landscape 

    (inherent structures) 
More puzzles than answers on configurational  

properties beyond dynamic (MCT) transition point. 

• Is the “order” we found really a mosaic size? 

• How does the order affect slow dynamics?  

• How many length scales exist?   

•  etc… 

??? 











Schreck et al. PRE (2011) 



0.3 0.4 0.5 0.6
0.03

0.04

0.05

0.06

0.07

0.08

 

 

0.51MCT 

Fraction of Rattlers 

d=3 

ini

rattlern

ini

0.69MCT 

See also  Chaudhuri, Berthier, Sastry, PRL 104 (2010) 165701 

d=2 

0.3 0.4 0.5 0.6 0.7 0.8
0.040

0.045

0.050

0.055

0.060

0.065

 

 rattlern

 Jamming Transition versus Glass Transition  





Mode-Coupling Theory vs. Replica Theory 

 MCT vs. Replica theory in  

Schmid and Schillling PRE 81 041502 (2010) 

Ikeda and KM , PRL 104 255704 (2010) 



Mode-Coupling Theory vs. Replica Theory 

 MCT vs. Replica theory in   3   

MCT wins over Replica. But maybe simply because 

HNC is a bad approximation. 

Gleim et al. PRL (1998) 



INTRODUCTION 

 Mean Field Scenario of the Glass Transition 

If MCT is really a mean field description,  

 Do MCT and Replica Theory consistently describe the 

   dynamic transition?  
MCT transition point coincides with Dynamic transition point of replica theory? 

? 
For hard spheres 

? 

Does MCT work better in higher dimensions?  



Monatomic GCM vitrifies! 

And MCT works unprecedentedly well!! 

And dynamic heterogeneities are weak!!! 

Monatomic GCM vitrifies! 

And MCT works unprecedentedly well!! 

And dynamic heterogeneities are weak!!! 

 

 

And dynamic heterogeneities are weak!!! 

 

 

And dynamic heterogeneities are weak!!! 

MCTTT 

Weaker violation of Stokes-Einstein relation 

 Glass Transition of Long-Ranged Systems 



 MCT in arbitrary dimensions 

 Replica Theory with Hyper-Netted Chain Parisi and Zamponi Rev. Mod. Phys.82 789 (2010) 

Regular HNC equation 

HNC equation   

between replicas 

 Glass Transition in Higher Dimensions 

Replica Theory vs MCT for hard sphere glasses at d > 4 
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Gotze  etc… 
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And MCT works unprecedentedly well!! 

And dynamic heterogeneities are weak!!! 

 

And MCT works unprecedentedly well!! 

Monatomic GCM vitrifies! 

Non-ergodic parameter 

 Glass Transition of Long-Ranged Systems 
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And dynamic heterogeneities are weak!!! 

GCM (ρ=2.0) 
time 

r
Single-peaked and Gaussian shape 

KA-LJ system 

time 

Distribution of  the Particle Displacement   δr 

Bimodal distribution of fast and slow particles 

Flenner et al. (2005) 

r
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Monatomic GCM vitrifies! 

And MCT works unprecedentedly well!! 

And dynamic heterogeneities are weak!!! 

crystal 

fluid 

Monatomic GCM vitrifies! 
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 Glass Transition of Long-Ranged Systems 
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MCT works unprecedentedly well!! 

 

 

And dynamic heterogeneities are weak!!! 

 

 

And dynamic heterogeneities are weak!!! 



Phase Diagram of Monatomic GCM 

Quench! 

Fluid 

Crystal 

 Glass Transition of Long-Ranged Systems 


