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Gauge/gravity duality can reproduce many
properties of condensed matter systems, even
In the limit where the bulk is described by
classical general relativity:

1) Fermi surfaces

2) Non-Fermi liquids

3) Superconducting phase transitions
4) ...

It is not clear why it is working so well.



Can one do more than reproduce qualitative
features of condensed matter systems?

Can gauge/gravity duality provide a
guantitative explanation of some mysterious
property of real materials?

We will see evidence that the answer is yes!



Most previous applications have assumed
translational symmetry.

Unfortunate consequence: Any state with
nonzero charge density has infinite DC
conductivity. (A boost produces a nonzero
current with no applied electric field.)

This can be avoided in a probe approximation
(Karch, O’'Bannon, 2007;....).



Plan: Add a lattice to the simplest holographic
model of a conductor and calculate transport

properties.

A perfect lattice still has infinite conductivity
due to Bloch waves. So we work at nonzero T

and include dissipation. (Cf: Kachru et al; Maeda
et al; Hartnoll and Hoffman; Liu et al.)

Main result: We will find a surprising similarity
to the optical conductivity in the normal phase
of the cuprates.



Simple model of a conductor

Suppose electrons in a metal satisfy

d
m= = eE —m-—
dt T
If there are n electrons per unit volume, the
current density is J = nev. Letting E(t) = Ee’ot,
find J = o E, with o

U(w) - 1 —wwr

where K=ne?/m. This is the Drude model.



KT Kwr?

Re(o) = 1+ (w7)?’

Note:
(1) For wr>1, |o|~ K/w

(2) In the limit 7 — oo :
Re(o) x 6(w), Im(o) = K/w

This can be derived more generally
from Kramers-Kronig relation.



Our gravity model

4 6 1 n 9 4P?
S= | dx+/—g R+ﬁ_§FMVF —2V,0V (I)—F?

We work Iin Poincare coordinates with
boundary at z=0. Then
® — zpy + 22py + O(2°)

We introduce the lattice by requiring:

¢1 (CE‘) — .A() COS(k‘().CL‘)



Want finite temperature: Add black hole

Want finite density: Add charge to the black
hole. The chemical potential is then

A¢(z=0) = p

We numerically find solutions with smooth
horizons that are static and translationally
invariant in one direction. (Have to solve 7
coupled nonlinear PDE’s in 2D.)



Scalar field in holographic lattice

Solution with
T/u= A1,

Ko = 2 and unit
amplitude




metric component scalar field
Lattice induced on Lattice with k, = 2
metric has k, = 4.



Conductivity

To compute the optical conductivity using linear
response, we perturb the solution

G = Guv + 09, Ay =A, +0A, =045
Boundary conditions:
iIngoing waves at the horizon
0g,, and 0@ normalizable at infinity
OA,~ O(z), OA,= e“[E/iw +Jz+..]

inducec! current



Review: optical conductivity with no lattice
(T/p = .115)
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With the lattice, the delta function is
smeared out




The low frequency conductivity takes the simple

Drude form: Kt
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1 —wr
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Intermediate frequency shows scaling regime
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The exponent 2/3 is robust

100" 1
50 1

02 05 1.0 20 5.0

wT

different wavenumbers
Ky=.5,1,2,3

10.0,

02 05 1.020 5.0

wT

different temperatures
T/u=.098, .115, .13




lor|-C

Same conductivity plotted as a function of w/u
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Coefficient of power law is independent of T.



lo(w)| (kS/cm)

Comparison with the cuprates
(van der Marel, et al 2003)
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lonic Lattice

We now take our bulk action to be just the 4D
Einstein-Maxwell theory (no scalar field).

Introduce the lattice by making the chemical
potential be a periodic function:

Ay — u(x) = |1+ Ag cos(kox)]



Two changes in bulk lattice:

1) Amplitude is larger
2) Wavenumber is k, rather than 2k,

No change in the optical conductivity. Still get:

1) Drude behavior at low frequency

2) Power law fall-off with exponent 2/3 for
2<WwWT <8



Conductivity at four different temperatures
for ionic lattice (.033 < T/u < .055)
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Even the phase is similar
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Resonances

At larger frequencies, the optical conductivity
has resonances. In the bulk, this is due to

quasinormal modes of the charged black hole.

They do not arise in the homogeneous case,
but are a generic feature of holographic lattices.



Example of a resonance for ky/p = 1/2
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Resonance is fit by a pole in retarded Greens fn

By a W — Wy
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DC resistivity

005 The DC resistivity

p=(Kz)"
depends on the
lattice wavenumber
ko as well as T.
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Near horizon geometry of T = 0 black hole is
AdS, x R?. Hartnoll and Hofman (2012)
showed that at low T, p can be extracted from
the two point function of the charge density
evaluated at the lattice wavenumber:

P X T2V—1

1\/5—|—2 (/)2 — 41+ (k/p)?



Our data is in good agreement with the
Hartnoll-Hofman result (with k = 2k,)
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One can always tune k/u so that p o<1’
as observed in the cuprates.

While not a robust prediction of this model, it
Is not totally unjustified.

Tuning k/u is equivalent to tuning the charge
per lattice site which is analogous to doping.



Thermoelectric
conductivity




The heat currentis Q, =Tt - pu J,

(Follows from 18t law: TdS = dE — p dq)

In general, applying a homogeneous electric
field E, produces not only an electric current J,
but also Q,.

The thermoelectric coefficientis a = Q, / TE,.



For small w, a(w) is given by the Drude form
with the same relaxation time 7 as o(w).
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For2<w7t <8, we find \a(w)\:w5/6 -C




For large frequency, we find

~

Cpo P

alw) = =" Ty

which is the result is in the absence of a
lattice (Hartnoll and Herzog, 2007).

The thermal conductivity is harder to compute
numerically since one has to impose a
temperature gradient. This is an O(1)
contribution to 6g,, making it hard to read off
the O(z°) contribution needed for T ,,.



Five-dimensional
holographic lattice




We use the same Einstein-Maxwell scalar
action, but now in 5D with scalar mass
m? L2 = -15/4. The asymptotic behavior is

d=232p; + 25 2py + - -

To impose a lattice, we again require

$1 = Ag cos(kox)



Optical conductivity for a 3+1 system

1511

20+
15
|
510
g |
5j “‘\ & 4/"/‘7
L \\ . Py /¢’
I ~ P
L \._.-___ _’,""
O | ! ! ! | ! ! ! ! !




At very low frequency, one again finds Drude
behavior.

At intermediate frequency, there is a power law
fall-off, but the exponent is different:

B
ol =~z +C

WwV3/2

Remarkably, this again holds for2 < w 7 < 8!

It would be great to find a 3+1 analog of the
cuprates to compare this to!



The exponent is again robust against
changing the parameters in our model:
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Discussion




The power law behavior of transport
coefficients at intermediate frequencies does
not appear to be related to either the UV AdS,
or the IR AdS, symmetries.

Could it be a result of a new scaling symmetry
iIn some intermediate radius region of our
holographic lattice?

This is hard to check since there is no
preferred radial coordinate.



Since we are interested in homogeneous
transport, is it sufficient to find a scaling
symmetry of some homogeneous approximation
to the bulk geometry?

No.

Expanding the perturbation equation in a Fourier
series in x e.g. 0 A(x) = 2 0 A, cos(nk, x) yields

OodAg =) O<6An

Differential operator with
cos(nk, x) dependence



How can the power law exponent be
independent of k,, 4,, T when the delta function

should emerge when each vanishes?

The power law holds intherange 2 < w7 <8.
In the above limits, T diverges.



Summary

We have constructed holographic lattices Iin
Einstein-Maxwell-(scalar) theory in 4D and 5D

We perturbed the solutions and computed the
optical and thermoelectric conductivity

Simple Drude behavior at low frequencies

Intermediate power law with exponent that
agrees with the normal phase of the cuprates

DC resistivity scales like a power of T which
depends on Ky/p.



lo(w)| (kS/cm)

lor|-C

Wavenumber (cm’)
1000

10 &
:\\‘ Q\o

1 -0.65 =00, .

° |o(w)=cow

.| .|
50
30
20
15
10

0.01 0.02 0.04 0.08 0.12

w/f



