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The fluid/gravity correspondence

+ The fluid/gravity correspondence establishes a correspondence between
Einstein’s equations with a negative cc and those of relativistic conformal
fluids.
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The fluid/gravity correspondence

% The fluid/gravity correspondence establishes a correspondence between
Einstein’s equations with a negative cc and those of relativistic conformal
fluids.

% (Given any solution to the hydrodynamic equations, one can construct, in a
gradient expansion, an approximate inhomogeneous, dynamical black hole
solution in an asymptotically AdS spacetime.

% The construction heuristically can be viewed as patching together planar AdS
black holes of different temperatures with slow variation between patches.

% The fluid in question lives on the timelike boundary of AdS spacetime, and as
Is familiar, holographically encodes the entire dynamics of the bulk spacetime
geometry.



The black hole membrane paradigm

+ Connections between gravity and fluids originated in the black hole

membrane paradigm. T. Damour; K. Thorne, R. Price (1970s)

%+ The membrane paradigm associates a dynamical membrane with electro-
mechanical properties to the black hole.

% In particular, it does away with the interior of the black hole; matter falling into
the black hole instead interacts with the membrane.

+ Membrane dynamics, obtained by projecting Einstein’s equations onto a null
hypersurface, has formal similarities with the non-relativistic Navier-Stokes

dynamics. C. Eling, Y. Oz (2008)

% More recently, using a gradient expansion in the near-horizon Rindler region,
the membrane dynamics has been shown to correspond to an

incompressible Navier-Stokes system. |
Bredberg, Lysov, Keeler, Strominger (2010-11)

Compere, McFadden, Skenderis, Taylor (2011-12)
Eling, Meyer, Oz (2012)



The moving membrane

< What is the connection between the membrane dynamics and the fluid on the
boundary, when we consider AdS black holes?

% Given the connection between the radial position in AdS and the energy
scale in the field theory, is it possible that the membrane dynamics is
obtained as some RG flow of the boundary relativistic fluid?

% A-priori this sounds strange, given that hydrodynamics is already a long-
wavelength effective description, but one can visualize the non-relativistic
dynamics as the ultra-low-energy (or very late time) description of the
relativistic system.

% In any event, with our modern viewpoint on connections between gravity and
hydrodynamics, which in fact transcend the AdS/CFT regime, it is apposite to
revisit the membrane paradigm.



The black hole membrane paradigm

<+ What precisely is the definition of the black hole membrane paradigm?

<+ How do we derive the dynamics of the membrane?



The membrane paradigm: motivations

% Surface dynamics associated with the event horizon should capture the
dynamics of the internal states of the black hole.

+ What is a good description of such surface dynamics? One should be able to
derive it from Einstein’s equations.

% The membrane paradigm for black holes was invented to understand some
of these aspects and demystify the characteristics of the black hole and to
describe the associated physics as one would for “ordinary bodies”.

% Claim: the internal dynamics of a black hole can be modeled effectively as a
membrane with electromechanical properties. The dynamics of Einstein’s
equations allows determination of the response of the black hole to external
disturbances.

Damour (1978); Price, Thorne (1986)



The membrane paradigm: derivation

% Dynamical equations: project Einstein’s equations along the event horizon
which is a null hypersurface, using the the generator of the event horizon,
(which is a null vector in the spacetime).

Projecting Einstein’s equations

(i). “Hamiltonian constraint:” Rapg 2 &P

(i3). “Momentum constraint:” Rap 2 e?

Y spacetime metric: Gap
induced metric: g,

metric on spatial sections: 4



The membrane paradigm

% Dynamical equations: project Einstein’s equations along the event horizon
which is a null hypersurface, using the the generator of the event horizon,
(which is a null vector in the spacetime).

% Surface dynamics controlled by the extrinsic curvature induced on the
horizon which provides a measure of gravitational energy momentum.

% The diffeomorphism symmetry inherent in Einstein’s equations implies the
conservation for the “gravitational energy-momentum” obtained via such a
projection as an identity.

Ty ~ K,, — K g, + counter-terms |g,,,|

% The equations associated with the membrane paradigm are these
conservation equations; these can be written in a form that is tantalizingly
similar to fluid dynamical equations albeit of a peculiar kind.



Kinematics: variables for the paradigm

% From the horizon generator we can determine the extrinsic curvature of the
horizon; introduce a basis on spatial sections with vectors ¢,

V,§=—-K/ e,

% Components of this extrinsic curvature are decomposed based on their
transformations of the spatial rotation group.

expansion: 0=—-K_,
1
shear: Oab = —Vac K5 + 5 Vb 0
vorticity vector: Q, = —K§

% The surface gravity can also be recovered from the extrinsic curvature by
looking at the component along the generator:

surface gravity: k=—K g :



Membrane dynamics

% The equations on a given spatial section of the horizon are interpreted as
fluid dynamical equations and those along the generator as a gravitational
analog of the Clausius equation (relating entropy production to heat).
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Equation bears similarity to a hydrodynamic equation, with
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The equation along the generators is the famous Raychaudhuri equation:
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Damour (1978); Price, Thorne (1986)



Inadequacies of the membrane paradigm

+ The equations for the most part are essentially kinematical: conservation of
the horizon stress tensor is guaranteed a-priori.

+ The derivation is predicated on the equation of motion of gravity being solved
and one subsequently focuses on the projection of the full dynamics.

% The negative value of the bulk viscosity, usually attributed to the teleological
nature of the event horizon, indicates a serious pathology of the horizon fluid.

+ Analysis of linearized fluctuations about spherically symmetric black holes

(such as asymptotically flat Schwarzschild) does not show any evidence of
hydrodynamic behaviour.

% More critically, hydrodynamics is a low energy effective theory. At no stage in
the derivation of the membrane paradigm is one focussing on the low energy
excitations of the black hole.



Relativistic hydrodynamics

% Hydrodynamics is an IR effective field theory, valid when systems attain local
but not global thermal equilibrium.

% We require that deviations away from equilibrium are long-wavelength in
nature, i.e., we allow fluctuations that occur at scales larger than the typical
mean free path of the theory. ¢, <L t, <1

+ This allows for a gradient expansion: higher derivative operators are
suppressed by powers of our expansion parameter £m/L .

% The dynamical content of fluid dynamics is just conservation. The energy
momentum tensor and charge currents if any should be covariantly
conserved.

V. T" =0, V,J*=0

% Conservation alone does not make for a good dynamical system since there
are more dof than equations, but things simplify in the long-wavelength limit.



Relativistic hydrodynamics

+ In the long-wavelength limit (+ local equilibrium) the dynamical dof are
reduced, to local charge densities, local temperature and a (normalized)
velocity field which indicates direction of flow of energy flux.

7 (z) = [P(x) + p(z)] v u” + P(x) g" + I ()

Ji =qu' +Jp

diss

% The definition of the velocity field can be fixed by a choice of fluid frame;
typically one chooses the velocity to be the timelike eigenvector of the energy
-momentum tensor (defining thus the Landau frame).

% Further specification of the fluid requires constitutive relations which require
the operators which characterize the dissipative tensors.

% In addition, a fluid also has an entropy current, which satisfies the 2" |law.

‘75 =sut + jg,diss ) vﬂjg > 0



Relativistic hydrodynamics

% The dissipative parts of stress-tensor and charge currents can be expanded
out in a basis of on-shell inequivalent operators built from the dynamical
variables and their derivatives.

+ From the velocity field we can for instance define:

0=V,u"=P"V,u,
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+ At first order, upon using the conservation of ideal fluid to eliminate themal
gradients, we have

Hf’l'/) = 2no — (O P

% Second law requires that » >0, ¢>0



Blackfolds: an eftective theory of black branes

% The discussion of hydrodynamics makes it clear that one way to approach
the membrane paradigm is to view it as an effective theory of black objects.

+ The natural language for such a discussion is provided within the framework

of blackfolds. |
Emparan, Harmark, Nairchos, Obers (2009)

+ However to proceed, we need a useful way to characterize the low energy
degrees of freedom.

% Requirement: ability to separate the IR dofs (associated with the horizon)
from the UV dof (associated with asymptopia).



-rom black holes to black branes

% The black holes in 3+1 dimensions are spherical (Hawking’s topology
theorem) and inherently have only one scale.

+ In higher dimensions, one can have extended horizons, with multiple scales.

e

black string

black brane
% Separation of scales allows us to investigate the behaviour of infra-red
physics of black holes systematically.

< Historically, this was done in the context of black holes in a universe with a
negative cosmological constant first: fluid/gravity correspondence.

% More generally the blackfold approach allows one to investigate this physics
and moreover allows construction of approximate black hole solutions in
higher dimensions.



Blackfolds

+ A world-volume effective field theory for the dynamics of black branes.

% Gives approximate black hole solutions to Einstein’s equations when the
horizons in question admit two widely separated scales.

Emparan, Harmark, Nairchos, Obers (2009)

aH

Allows one to explore the vast classical
<P phase space of gravitational solutions in
higher dimensions.

j Emparan, Figueras (2010)



Blackfolds: qualitative picture

Far zone sourced by TH"
near zone
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+ Dynamics of black branes naturally splits into two

* [ntrinsic dynamics: dynamics along the world-volume, essentially given by
the conservation of the brane stress tensor.

* Extrinsic dynamics: which describes how the brane bends in response to
the ambient curvature.



Blackfolds: low energy dynamics

* |ntrinsic: conservation of the induced stress
— tensor along the horizon directions.

[mtrinsic. ,LLI/_
ﬂ danom S VMT =0
* Extrinsic: minimization of the stress induced
Sdrinsic olgmmics by the extrinsic curvature of the brane.

>
K’ T" =0

+ In the long wavelength limit (momenta along the world-volume)
* |ntrinsic: Black branes behave like fluids under strains along the horizon.

* Extrinsic: Dynamics is that of elastic solids for strains normal to the horizon.

Camps, Emparan (2012).



Predictions of blackfolds

+ Black branes are known to be unstable to long-wavelength fluctuations.

+ This feature should be visible in the effective field theory approach and
indeed the intrinsic dynamics of the branes i.e., fluid dynamics carries a clear
signature of this instability.
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The membrane boundary conditions

+ A-priori there are two distinct ways to view the dynamics on a fiducial timelike
hypersurface, which we view as a regulated membrane.

Horizon
Fiducial hypersurface
Asymptotic boundary




The membrane boundary conditions

< A-priori there are two distinct ways to view the dynamics on a fiducial timelike
hypersurface, which we view as a regulated membrane.

Dirichlet problem Induced problem
* Fix the metric data (background) * Project the bulk metric solved with
on the hypersurface and solve asymptotic boundary conditions +
gravity eoms subject to regularity regularity onto the hypersurface.

in the interior. I
* The stress tensor likewise Is

* The stress tensor on the surface constructed from the extrinsic
IS induced a la Brown-York once curvature.
we solve for the geometry in the
interior. * There is a non-trivial correlation
between the stress-tensor and the
* This stress tensor encodes the iInduced metric: “multi-trace”
dynamics of the degrees of boundary condition in AdS/CFT

freedom on the surface. parlance.



Dirichlet versus induced problems

+ The Dirichlet boundary condition allows us to identify the dynamical degrees
of freedom since we get to prescribe the background.

+ The induced problem on the other hand requires a specific the boundary
condition the surface so that the desired asymptotics is attained.

+ The induced problem on the horizon is precisely the construction of the
membrane paradigm:

* The induced geometry and the dynamical degrees of freedom (spatial
components of the horizon generators) are correlated precisely to achieve
the desired asymptotics.

+ Strategy: Use the Dirichlet problem to isolate the dynamical degrees of
freedom & subsequently engineer the appropriate induced boundary
condition to ensure asymptotics.



Dirichlet problem: branes in a box
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% We focus on the near-zone of the black object, isolating the brane in a box.

% By prescribing rigid boundary conditions on the hypersurface we fix the
geometry of our box and ask how the black hole responds to this
confinement.

+ This allows us to decipher the dynamical degrees of freedom on the surface.



Branes in a box: implications

% Putting a black hole/brane in a box has consequences on its dynamics.

+ Given the new boundary conditions the black hole has to adapt itself and in
particular its horizon needs to adjust appropriately. Indeed one can have
multiple black hole solutions in the box.

+ One important consequence is the change in the nature of the black hole
thermodynamics:

* Small black holes: Don’t see the box and have thermodynamics of an
asymptotically flat space solution, including the negative specific heat.

* Large black holes: Are sensitive to the box and associated boundary
conditions. They can come to equilibrium and have positive specific heat.

Natural way to implement a covariant gravitational box: put the black hole in a
universe with a negative cosmological constant.



Hydrodynamic limit of the Dirichlet problem

+ Einstein’s equations can be solved in the near-zone in a certain long-
wavelength approximation (focus on large black branes).

% Solution is parameterized by variables that characterize the low energy
intrinsic dynamics of the hypersurface on which we impose the boundary
conditions.

+ This dynamics is the aforementioned fluid dynamics: one finds the
hypersurface is described by a relativistic fluid with explicit constitutive
relations determining its transport properties.

+ E.g., AdS black holes in a box: transport is unchanged but equation of state
changes as a function of the hypersurface location.
Brattan, Camps, Loganayagam, MR (2011)

% To leading order the longitudinal and transverse modes are decoupled; the
coupling between the dof occurs at higher orders.



Dirichlet hydrodynamics |

+ The fluid dynamical behaviour being sensitive to the boundary conditions
displays this for e.g., via a modification of the spectrum of small amplitude
fluctuations. Qr
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+ One sees the disappearance of the GL mode and the speed of sound
monotonically increases as we move the hypersurface close to the horizon.

Emparan, Martinez (2012)



‘Membrane’ limit of the Dirichlet problem

+ Near-horizon limit: enclose the black hole/brane with a box that hugs the
horizon (cf., stretched horizon).

% The dynamics can be studied by working in the Rindler geometry which is the
effective geometry in the sliver of spacetime between the horizon and the

Dirichlet surface.
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+ The low energy physics of the Rindler region is universal to all branes and is

simply the incompressible Navier-Stokes dynamics.
Bredberg, Keeler, Lysov, Strominger (2011)



Charged branes: Decoupling

% One can study more interesting systems, by considering black branes
carrying charges. e.g., D-branes in string theory.

+ Charges imply that one has a new scale in the problem, which one can use
to tune the temperature of the black hole (independently of its size).

+ In the near-extremal (vanishing temperature) limit one encounters an infinite
throat: the proper distance to the horizon diverges.

% The dynamics in the throat in the low energy limit decouples from the
asymptotic dof: this is the basis of the famous AdS/CFT correspondence.

% Of course, in string theory one can identify the decoupled theory which
describes the physics of the throat region.



D-branes and membranes

% In classical gravity one can explore the hypersurface dynamics in various

regimes of charged black branes.

+ Asymptotic region: Blackfold fluid
with features described earlier.

+ Throat region: Conformal fluid dual Ringloy
to AdS geometries. Low energy Taglon
limit of a QFT.

AdS &

+ Rindler region: incompressible fluid

/

panTha

% Monitor the variation of transport properties of the fluid across the regimes:
transport coefficients are pretty much determined by the throat dynamics.

Emparan, Hubeny, MR (wip)

Brattan, Camps, Loganayagam, MR (2011)



Black branes as lumps of fluid

+ Black branes really behave as
lumps of fluid in the low energy limit.

+ In the fluid/gravity correspondence,
the fluid lives at the end of the
universe, on the asymptotic
boundary of the spacetime where
the black hole resides.

+ Here the fluid is a hologram,
honestly capturing all the low
energy physics of the entire
geometry.




Black branes as lumps of fluid

% More generally, the blackfold
approach allows us to isolate the
fluid regime associated with a black
brane. (Dirichlet problem)

+ Based on where one chooses to put
the hypersurface demarcating the
near and far zones, one obtains
different constitutive relations.

% However, there is an universality of
the very near horizon region: this
Rindler region is described by a
nearly ideal, non-relativistic,
iIncompressible viscous fluid.




The paradigmatic membrane

% The membrane of the paradigm is obtained by fine tuning the boundary
condition on the hypersurface (multi-trace deformation).

% The physical consequence of such a boundary condition on the horizon
should be given by the equations for evolution of the horizon generator.

% Thus the Damour-Navier-Stokes equations which describe the evolution of
the horizon geometry as a function of the affine parameter arise from the fluid
dynamics of the Dirichlet membrane, upon allowing the background to
become ‘dynamical’.

+ In holographic RG parlance, the Damour membrane is the effective dynamics
obtained after integrating out the UV modes; this induces the multi-trace
boundary conditions.



A hierarchy of effective field theories

Blackfolds

U
Fluid/Gravity
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