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The fluid/gravity correspondence

❖ The fluid/gravity correspondence establishes a correspondence between 
Einstein’s equations with a negative cc and those of relativistic conformal 
fluids. 

Bhattacharyya, Hubeny, Minwalla, MR (2007)

where the divergence, acceleration, shear, and vorticity, are defined as:6

θ = ∇µu
µ = P µν ∇µuν

aµ = uν ∇νu
µ ≡ Duµ

σµν = ∇(µuν) + u(µ aν) − 1

d − 1
θ P µν = P µα P νβ ∇(αuβ) −

1

d − 1
θ P µν

ωνµ = ∇[µuν] + u[µ aν] = P µα P νβ ∇[αuβ] .

(2.11)

For future reference we note that we will also have occasion to use a the following notation to
indicate symmetric traceless projections transverse to the velocity field. For any two tensor

T µν we define:

T 〈µν〉 = P µα P νβ T(αβ) −
1

d − 1
P µν P αβ Tαβ . (2.12)

Note that we can write the projectors a bit more compactly: P µα P νβ ∇(α uβ) = P ρ(µ∇ρuν)

and P µα P νβ ∇[α uβ] = P ρ[µ∇ρuν]. It is easy to verify all the previously asserted properties,

in addition to uµ aµ = 0 and Pµν aµ = aν :

σµν uµ = 0 , σµρ Pρν = σµ
ν , σ µ

µ = 0 ,

ωµν uµ = 0 , ωµρ Pρν = ωµ
ν , ω µ

µ = 0 .
(2.13)

We are now in possession of sufficient amount of data to write down the dissipative part

of the stress tensor to leading order in the derivative expansion. First of all let us notice

that the zeroth order equations of motion i.e., those arising from the ideal fluid description
relate the gradients of the energy density and pressure to those of the uµ. The quickest

way to derive the required relation is to consider projections of the conservation equation

∇µ (T µν)ideal = 0, along the velocity field and transverse to it, i.e.,

uν ∇µ (T µν)ideal = 0 =⇒ (ρ+ P )∇µu
µ + uµ∇µρ = 0

Pνα ∇µ (T µν)ideal = 0 =⇒ P µ
α ∇µP + (ρ+ P ) Pνα uµ ∇µuν = 0 . (2.14)

respectively. To characterize the stress-tensor at leading order in the gradient expansion

our task is reduced to writing down symmetric two tensors that can be built solely from

velocity gradients and we should furthermore account for the Landau frame condition. These

conditions in fact isolate just two terms which can appear in the expression for Πµν :

Πµν
(1) = −2 η σµν − ζ θ P µν , (2.15)

where we have introduced two new parameters the shear viscosity, η, and the bulk viscosity,

ζ .

Likewise for the charge current Υµ we will obtain contributions which are first order in the

derivatives of the thermodynamic variables ρ and qI and also the velocity field (where now

6Note that we use standard symmetrization and anti-symmetrization conventions. For any tensor Fab

we define the symmetric part F(ab) = 1
2 (Fab + Fba) and the anti-symmetric part F[ab] = 1

2 (Fab − Fba)
respectively. We also use D to indicate the velocity projected covariant derivative: D ≡ uµ ∇µ.
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this statement we are assuming that we have performed a Kaluza-Klein reduction of the

Type IIB supergravity fields over the compact S5 leading to an infinite tower of massive
fields coupled to the gravitational degrees of freedom.

The general structure of this effective five-dimensional lagrangian is not only complicated

but it also depends on the details of the internal space. Were one to replace the S5 by a

Sasaki-Einstein five manifold X5 one would end up with a different effective description

corresponding to a different field theory fixed point in four dimensions. However, there is a

universal sub-sector of Type IIB supergravity which we can focus on – this is just the sector
of solely gravitational dynamics in AdS5 i.e., we set all the Kaluza-Klein harmonics of the

graviton modes on S5 and other matter degrees of freedom consistently to zero. We will

restrict attention to this sub-sector which corresponds in the dual field theory to focussing

on just the dynamics of the energy-momentum tensor.

4.1 The universal sector: gravity in AdSd+1

As discussed above we will concentrate on pure gravitational dynamics in asymptotically

AdS spacetimes. This in particular allows us to work without loss of generality in arbitrary

dimensions as the form the gravitational action is independent of the number of spacetime
dimensions. Let us therefore consider starting with a string or M-theory background of

the form AdSd+1 ×X where X is some compact internal manifold ensuring that one has a

consistent string/M-theory vacuum.21 The universal sector of this theory which we focus on

is the dynamics of Einstein gravity with a negative cosmological constant, i.e.,

Sbulk =
1

16πG(d+1)
N

∫
dd+1x

√
−G (R − 2 Λ) . (4.1)

With a particular choice of units (RAdS = 1) Einstein’s equations are given by22

EMN = RMN − 1

2
GMNR − d(d − 1)

2
GMN = 0

=⇒ RMN + d GMN = 0, R = −d(d + 1).
(4.2)

Of course the equations (4.2) admit AdSd+1 solutions, which correspond to the vacuum

state of the dual field theory. Recall that global AdSd+1 has as its boundary the Einstein

static universe, R×Sd−1. We are free to consider other choices of boundary manifolds Bd; for

instance to discuss field theory on Minkowski space Rd−1,1 we would focus on the Poincaré
patch of AdSd+1. Given a metric g on the boundary Bd we have the bulk geometry to zeroth

21We will be interested in d > 2. As discussed in [66, 69] there is no interesting hydrodynamic limit for a
1+1 dimensional CFT. A conserved traceless stress tensor is simply made up of left and right moving waves
which propagate with no dissipation.

22We use upper case Latin indices {M, N, · · · } to denote bulk directions, while lower case Greek indices
{µ, ν, · · · } refer to field theory or boundary directions. Finally, we use lower case Latin indices {i, j, · · · } to
denote the spatial directions in the boundary.
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The fluid/gravity correspondence

❖ The fluid/gravity correspondence establishes a correspondence between 
Einstein’s equations with a negative cc and those of relativistic conformal 
fluids. 

❖ Given any solution to the hydrodynamic equations, one can construct, in a 
gradient expansion, an approximate inhomogeneous, dynamical black hole 
solution in an asymptotically AdS spacetime. 

❖ The construction heuristically can be viewed as patching together planar AdS 
black holes of different temperatures with slow variation between patches.

❖ The fluid in question lives on the timelike boundary of AdS spacetime, and as 
is familiar, holographically encodes the entire dynamics of the bulk spacetime 
geometry.



The black hole membrane paradigm

T. Damour; K. Thorne, R. Price (1970s)

❖ Connections between gravity and fluids originated in the black hole 
membrane paradigm.

❖ The membrane paradigm associates a dynamical membrane with electro-
mechanical properties to the black hole.

❖ In particular, it does away with the interior of the black hole; matter falling into 
the black hole instead interacts with the membrane.

❖ Membrane dynamics, obtained by projecting Einstein’s equations onto a null 
hypersurface, has formal similarities with the non-relativistic Navier-Stokes 
dynamics.

❖ More recently, using a gradient expansion in the near-horizon Rindler region, 
the membrane dynamics has been shown to correspond to an 
incompressible Navier-Stokes system.

Bredberg, Lysov, Keeler, Strominger (2010-11)
Compere, McFadden, Skenderis, Taylor (2011-12)
Eling, Meyer, Oz (2012)

C. Eling, Y. Oz (2008)



The moving membrane

❖ What is the connection between the membrane dynamics and the fluid on the 
boundary, when we consider AdS black holes? 

❖ Given the connection between the radial position in AdS and the energy 
scale in the field theory, is it possible that the membrane dynamics is 
obtained as some RG flow of the boundary relativistic fluid?

❖ A-priori this sounds strange, given that hydrodynamics is already a long-
wavelength effective description, but one can visualize the non-relativistic 
dynamics as the ultra-low-energy (or very late time) description of the 
relativistic system. 

❖ In any event, with our modern viewpoint on connections between gravity and 
hydrodynamics, which in fact transcend the AdS/CFT regime, it is apposite to  
revisit the membrane paradigm. 



The black hole membrane paradigm

 

✤ What precisely is the definition of the black hole membrane paradigm?

 

✤ How do we derive the dynamics of the membrane?



The membrane paradigm: motivations

❖ Surface dynamics associated with the event horizon should capture the 
dynamics of the internal states of the black hole. 

❖ What is a good description of such surface dynamics? One should be able to 
derive it from Einstein’s equations.

❖ The membrane paradigm for black holes was invented to understand some 
of these aspects and demystify the characteristics of the black hole and to 
describe the associated physics as one would for “ordinary bodies”.

❖ Claim: the internal dynamics of a black hole can be modeled effectively as a  
membrane with electromechanical properties. The dynamics of Einstein’s 
equations allows determination of the response of the black hole to external 
disturbances.

Damour (1978); Price, Thorne (1986)



The membrane paradigm: derivation

❖ Dynamical equations: project Einstein’s equations along the event horizon 
which is a null hypersurface, using the the generator of the event horizon, 
(which is a null vector in the spacetime).

Projecting Einstein’s equations

⇠A eAa

(i). “Hamiltonian constraint:” RAB ⇠A ⇠B

(ii). “Momentum constraint:” RAB ⇠A eB

H spacetime metric: GAB

induced metric: gµ⌫

metric on spatial sections: �ab



The membrane paradigm
❖ Dynamical equations: project Einstein’s equations along the event horizon 

which is a null hypersurface, using the the generator of the event horizon, 
(which is a null vector in the spacetime).

❖ Surface dynamics controlled by the extrinsic curvature induced on the 
horizon which provides a measure of gravitational energy momentum.

❖ The diffeomorphism symmetry inherent in Einstein’s equations implies the 
conservation for the “gravitational energy-momentum” obtained via such a 
projection as an identity.

❖ The equations associated with the membrane paradigm are these 
conservation equations; these can be written in a form that is tantalizingly 
similar to fluid dynamical equations albeit of a peculiar kind.

Tµ⌫ ⇠ Kµ⌫ �K gµ⌫ + counter-terms [gµ⌫ ]



Kinematics: variables for the paradigm

rµ⇠ = �K⌫
µ e⌫

❖ From  the horizon generator we can determine the extrinsic curvature of the 
horizon; introduce a basis on spatial sections with vectors eµ

❖ Components of this extrinsic curvature are decomposed based on their 
transformations of the spatial rotation group.

expansion: ✓ = �Ka
a ,

shear: �ab = ��ac K
c
b +

1

2

�ab ✓

vorticity vector: ⌦a = �K⇠
a

surface gravity:  = �K⇠
⇠ ,

❖ The surface gravity can also be recovered from the extrinsic curvature by 
looking at the component along the generator:



Membrane dynamics
❖ The equations on a given spatial section of the horizon are interpreted as 

fluid dynamical equations and those along the generator as a gravitational 
analog of the Clausius equation (relating entropy production to heat). 

Equation bears similarity to a hydrodynamic equation, with 

P =


8⇡
, ⌘ =

1

16⇡
, ⇣ = � 1

16⇡

The equation along the generators is the famous Raychaudhuri equation:

⌘/s =
1

4⇡

Damour (1978); Price, Thorne (1986)

Dts�
1


D2

t s =
1

T

✓
2

1

16⇡
�ab �

ab � 1

16⇡
✓2 + horizon-momenta

2

◆

Dtpa = �ra

⇣ 

8⇡

⌘
+

1

16⇡
rb�

b
a � 1

16⇡
ra✓ � ⇠µ Tmatter

µa



Inadequacies of the membrane paradigm

❖ The equations for the most part are essentially kinematical: conservation of 
the horizon stress tensor is guaranteed a-priori.

❖ The derivation is predicated on the equation of motion of gravity being solved 
and one subsequently focuses on the projection of the full dynamics. 

❖ The negative value of the bulk viscosity, usually attributed to the teleological 
nature of the event horizon, indicates a serious pathology of the horizon fluid.

❖ Analysis of linearized fluctuations about spherically symmetric black holes 
(such as asymptotically flat Schwarzschild) does not show any evidence of 
hydrodynamic behaviour. 

❖ More critically, hydrodynamics is a low energy effective theory. At no stage in 
the derivation of the  membrane paradigm is one focussing on the low energy 
excitations of the black hole.



Relativistic hydrodynamics

❖ Hydrodynamics is an IR effective field theory, valid when systems attain local 
but not global thermal equilibrium.

❖ We require that deviations away from equilibrium are long-wavelength in 
nature, i.e., we allow fluctuations that occur at scales larger than the typical 
mean free path of the theory.  

❖ This allows for a gradient expansion: higher derivative operators are 
suppressed by powers of our expansion parameter            .

❖ The dynamical content of fluid dynamics is just conservation. The energy 
momentum tensor and charge currents if any should be covariantly 
conserved. 

`m ⌧ L tm ⌧ t

`m/L

rµT
µ⌫ = 0 , rµJ

µ = 0

❖ Conservation alone does not make for a good dynamical system since there 
are more dof than equations, but things simplify in the long-wavelength limit.



Relativistic hydrodynamics
❖ In the long-wavelength limit (+ local equilibrium) the dynamical dof are 

reduced, to local charge densities, local temperature and a (normalized) 
velocity field which indicates direction of flow of energy flux.

T

µ⌫(x) = [P (x) + ⇢(x)] uµ
u

⌫ + P (x) gµ⌫ +⇧µ⌫(x)

Jµ
I = qI u

µ + Jµ
I,diss

❖ The definition of the velocity field can be fixed by a choice of fluid frame; 
typically one chooses the velocity to be the timelike eigenvector of the energy 
-momentum tensor (defining thus the Landau frame).

❖ Further specification of the fluid requires constitutive relations which require 
the operators which characterize the dissipative tensors.

❖ In addition, a fluid also has an entropy current, which satisfies the 2nd  law.

J µ
S = s uµ + J µ

S,diss , rµJ µ
S � 0



Relativistic hydrodynamics

❖ The dissipative parts of stress-tensor and charge currents can be expanded 
out in a basis of on-shell inequivalent operators built from the dynamical 
variables and their derivatives. 

❖ From the velocity field we can for instance define:where the divergence, acceleration, shear, and vorticity, are defined as:6

θ = ∇µu
µ = P µν ∇µuν

aµ = uν ∇νu
µ ≡ Duµ

σµν = ∇(µuν) + u(µ aν) − 1

d − 1
θ P µν = P µα P νβ ∇(αuβ) −

1

d − 1
θ P µν

ωνµ = ∇[µuν] + u[µ aν] = P µα P νβ ∇[αuβ] .

(2.11)

For future reference we note that we will also have occasion to use a the following notation to
indicate symmetric traceless projections transverse to the velocity field. For any two tensor

T µν we define:

T 〈µν〉 = P µα P νβ T(αβ) −
1

d − 1
P µν P αβ Tαβ . (2.12)

Note that we can write the projectors a bit more compactly: P µα P νβ ∇(α uβ) = P ρ(µ∇ρuν)

and P µα P νβ ∇[α uβ] = P ρ[µ∇ρuν]. It is easy to verify all the previously asserted properties,

in addition to uµ aµ = 0 and Pµν aµ = aν :

σµν uµ = 0 , σµρ Pρν = σµ
ν , σ µ

µ = 0 ,

ωµν uµ = 0 , ωµρ Pρν = ωµ
ν , ω µ

µ = 0 .
(2.13)

We are now in possession of sufficient amount of data to write down the dissipative part

of the stress tensor to leading order in the derivative expansion. First of all let us notice

that the zeroth order equations of motion i.e., those arising from the ideal fluid description
relate the gradients of the energy density and pressure to those of the uµ. The quickest

way to derive the required relation is to consider projections of the conservation equation

∇µ (T µν)ideal = 0, along the velocity field and transverse to it, i.e.,

uν ∇µ (T µν)ideal = 0 =⇒ (ρ+ P )∇µu
µ + uµ∇µρ = 0

Pνα ∇µ (T µν)ideal = 0 =⇒ P µ
α ∇µP + (ρ+ P ) Pνα uµ ∇µuν = 0 . (2.14)

respectively. To characterize the stress-tensor at leading order in the gradient expansion

our task is reduced to writing down symmetric two tensors that can be built solely from

velocity gradients and we should furthermore account for the Landau frame condition. These

conditions in fact isolate just two terms which can appear in the expression for Πµν :

Πµν
(1) = −2 η σµν − ζ θ P µν , (2.15)

where we have introduced two new parameters the shear viscosity, η, and the bulk viscosity,

ζ .

Likewise for the charge current Υµ we will obtain contributions which are first order in the

derivatives of the thermodynamic variables ρ and qI and also the velocity field (where now

6Note that we use standard symmetrization and anti-symmetrization conventions. For any tensor Fab

we define the symmetric part F(ab) = 1
2 (Fab + Fba) and the anti-symmetric part F[ab] = 1

2 (Fab − Fba)
respectively. We also use D to indicate the velocity projected covariant derivative: D ≡ uµ ∇µ.
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where the divergence, acceleration, shear, and vorticity, are defined as:6
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conditions in fact isolate just two terms which can appear in the expression for Πµν :
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Likewise for the charge current Υµ we will obtain contributions which are first order in the

derivatives of the thermodynamic variables ρ and qI and also the velocity field (where now
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❖ At first order, upon using the conservation of ideal fluid to eliminate themal 
gradients, we have

❖ Second law requires that ⌘ � 0 , ⇣ � 0



Blackfolds: an effective theory of black branes

❖ The discussion of hydrodynamics makes it clear that one way to approach  
the membrane paradigm is to view it as an effective theory of black objects.

❖ The natural language for such a discussion is provided within the framework 
of blackfolds.

Emparan, Harmark, Nairchos, Obers (2009) 

❖ However to proceed, we need a useful way to characterize the low energy 
degrees of freedom.

❖ Requirement: ability to separate the IR dofs (associated with the horizon) 
from the UV dof (associated with asymptopia).



From black holes to black branes
❖ The black holes in 3+1 dimensions are spherical (Hawking’s topology 

theorem) and inherently have only one scale. 

❖ In higher dimensions, one can have extended horizons, with multiple scales.

black string black brane
❖ Separation of scales allows us to investigate the behaviour of infra-red 

physics of black holes systematically.

❖ Historically, this was done in the context of black holes in a universe with a 
negative cosmological constant first: fluid/gravity correspondence.

❖ More generally the blackfold approach allows one to investigate this physics 
and moreover allows construction of approximate black hole solutions in 
higher dimensions.



Blackfolds
❖ A world-volume effective field theory for the dynamics of black branes.

❖ Gives approximate black hole solutions to Einstein’s equations when the 
horizons in question admit two widely separated scales.

Allows one to explore the vast classical 
phase space of gravitational solutions in 
higher dimensions.

Emparan, Harmark, Nairchos, Obers (2009) 
aH

j

Figure 2: New proposal for the phase diagram of thermal equilibrium phases in D ≥ 6. As in

ref. [11], the details of the phase connections are unknown and smooth connections (i.e., second order

transitions) are possible instead of swallowtails with cusps (i.e., first order transitions). In phases of

black holes with multiple pinches evolving into multi-black rings (and multi-ring Saturns) it is also

unknown whether intermediate pinched Saturns or pinched multi-rings appear (this depends on how

the different pinches evolve along the phase curve). Other than this, the features in the diagram are

robust. The asymptotic behavior of the curves depends only on the total number of rings and is given

by eq. (2.17).

5 Final remarks

An incorrect assumption about the properties of multi-black rings in thermal equilibrium had

led ref. [11] to conjecture an unduly complicated phase diagram in D ≥ 6. In this paper,

after properly identifying the possible hierarchies between the length scales in the system, we

have concluded that the simplest and most natural completion of the diagram can actually

be realized. An analysis of the exact five-dimensional di-ring solutions confirms in detail the

results obtained by performing a thin-ring approximation.

While in D ≥ 6 we have worked only to leading order in the thin-ring approximation, it

should not be too difficult to estimate the size of subleading corrections in r0/(R(1)−R(2)) by

considering a linearized (Newtonian) approximation to the gravitational interaction between

black objects.

We have only studied configurations with a single angular momentum. But arguments

similar to the ones in this paper can be made for other multi-black hole systems, where

instead of singly-spinning black rings we have doubly-spinning black rings [4], helical black

rings, or blackfolds with horizon topology
∏

i|pi∈odd
Spi × SD−

∑
i pi−2 [5].
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Emparan, Figueras (2010) 



Blackfolds: qualitative picture

❖ Dynamics of black branes naturally splits into two

★ Intrinsic dynamics: dynamics along the world-volume, essentially given by 
the conservation of the brane stress tensor.

★ Extrinsic dynamics: which describes how the brane bends in response to 
the ambient curvature.

⌦ x

i

Tµ⌫

H

r

⌦

near zoneFar zone sourced by 

Tµ⌫



Blackfolds: low energy dynamics

❖ In the long wavelength limit (momenta along the world-volume)

★ Intrinsic: Black branes behave like fluids under strains along the horizon.

★ Extrinsic: Dynamics is that of elastic solids for strains normal to the horizon.

★ Intrinsic: conservation of the induced stress 
tensor along the horizon directions.

★ Extrinsic: minimization of the stress induced 
by the extrinsic curvature of the brane.

rµT
µ⌫ = 0

K ⇢
µ⌫ Tµ⌫ = 0

Camps, Emparan (2012).



Predictions of blackfolds

❖ Black branes are known to be unstable to long-wavelength fluctuations. 

❖ This feature should be visible in the effective field theory approach and 
indeed the intrinsic dynamics of the branes i.e., fluid dynamics carries a clear 
signature of this instability.
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0.05
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0.20
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Figure 1: Left: dispersion relation Ω(k), eq. (1.5), for unstable sound waves in the effective

black brane fluid (normalized relative to the thickness r0). Right: Ω(k) for the unstable

Gregory-Laflamme mode for black branes (numerical data courtesy of P. Figueras). For

black p-branes in D spacetime dimensions, the curves depend only on n = D − p− 3.

small values of kr0, the match is excellent. When kr0 is of order one we have no right to expect

agreement, but the overall qualitative resemblance of the curves is nevertheless striking. The

quantitative agreement improves with increasing n and indeed, as figure 2 shows, at large

n it becomes impressively good over all wavelengths: for n = 100 the numerical values are

reproduced to better than 1% accuracy up to the maximum value of k. Although the extent of

this agreement is surprising, we will provide some arguments for why the fluid approximation

appears to be so successful as n grows.

Thus, the effective viscous fluid seems to capture in a simple manner some of the most

characteristic features of black brane dynamics. We believe this is a significant simplification

from the complexity of the full Einstein equations.

The outline of the rest of the paper is as follows: the next section contains the bulk of the

calculations of the paper for a generic hydrodynamic-type perturbation of the black brane.

We highlight the differences with the analysis of [2], in particular at asymptotic infinity, and

compute the values in (1.3) for the effective η and ζ. Section 3 relates the linearized damped

sound-mode perturbations of the fluid to the Gregory-Laflamme perturbations of the black

brane. We examine the conditions that can lead to the surprising quantitative agreement

of the dispersion relation at large n, and we propose its exact form as n → ∞. We close

in section 4 with an examination of the differences between our results and other fluid-like

approaches to the GL instability, and a discussion of our results within the context of the

blackfold approach.

2 Hydrodynamic perturbations of black branes

In this section we study general perturbations of a vacuum black p-brane with slow variation

along the worlvolume directions of the brane. Up to gauge transformations, they are fully

3

Camps, Emparan, Haddad (2010).



The membrane boundary conditions

❖ A-priori there are two distinct ways to view the dynamics on a fiducial timelike 
hypersurface, which we view as a regulated membrane.
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The membrane boundary conditions

❖ A-priori there are two distinct ways to view the dynamics on a fiducial timelike 
hypersurface, which we view as a regulated membrane.

Dirichlet problem

★ Fix the metric data (background) 
on the hypersurface and solve 
gravity eoms subject to regularity 
in the interior.

★ The stress tensor on the surface 
is induced a la Brown-York once 
we solve for the geometry in the 
interior.

★ This stress tensor encodes the 
dynamics of the degrees of 
freedom on the surface.

Induced problem

★ Project the bulk metric solved with 
asymptotic boundary conditions + 
regularity onto the hypersurface.

★ The stress tensor likewise is 
constructed from the extrinsic 
curvature.

★ There is a non-trivial correlation 
between the stress-tensor and the 
induced metric: “multi-trace” 
boundary condition in AdS/CFT 
parlance.



Dirichlet versus induced problems

❖ The Dirichlet boundary condition allows us to identify the dynamical degrees 
of freedom since we get to prescribe the background.

❖ The induced problem on the other hand requires a specific the boundary 
condition the surface so that the desired asymptotics is attained.

❖ The induced problem on the horizon is precisely the construction of the 
membrane paradigm: 

✴ The induced geometry and the dynamical degrees of freedom (spatial 
components of the horizon generators) are correlated precisely to achieve 
the desired asymptotics.

❖ Strategy: Use the Dirichlet problem to isolate the dynamical degrees of 
freedom & subsequently engineer the appropriate induced boundary 
condition to ensure asymptotics. 



Dirichlet problem: branes in a box

❖ We focus on the near-zone of the black object, isolating the brane in a box.

❖ By prescribing rigid boundary conditions on the hypersurface we fix the 
geometry of our box and ask how the black hole responds to this 
confinement. 

❖ This allows us to decipher the dynamical degrees of freedom on the surface. 

⌦ x

i

H

r

⌦

near zone

Tµ⌫

gµ⌫



Branes in a box: implications

❖ Putting a black hole/brane in a box has consequences on its dynamics.

❖ Given the new boundary conditions the black hole has to adapt itself and in 
particular its horizon needs to adjust appropriately. Indeed one can have 
multiple black hole solutions in the box. 

❖ One important consequence is the change in the nature of the black hole 
thermodynamics:

★ Small black holes: Don’t see the box and have thermodynamics of an 
asymptotically flat space solution, including the negative specific heat.

★ Large black holes: Are sensitive to the box and associated boundary 
conditions. They can come to equilibrium and have positive specific heat. 

Natural way to implement a covariant gravitational box: put the black hole in a 
universe with a negative cosmological constant.



Hydrodynamic limit of the Dirichlet problem

❖ Einstein’s equations can be solved in the near-zone in a certain long-
wavelength approximation (focus on large black branes).

❖ Solution is parameterized by variables that characterize the low energy 
intrinsic dynamics of the hypersurface on which we impose the boundary 
conditions.

❖ This dynamics is the aforementioned fluid dynamics: one finds the 
hypersurface is described by a relativistic fluid with explicit constitutive 
relations determining its transport properties.

❖ E.g., AdS black holes in a box: transport is unchanged but equation of state 
changes as a function of the hypersurface location.

❖ To leading order the longitudinal and transverse modes are decoupled; the 
coupling between the dof occurs at higher orders.

Brattan, Camps, Loganayagam, MR (2011)



Dirichlet hydrodynamics II

❖ The fluid dynamical behaviour being sensitive to the boundary conditions 
displays this for e.g., via a modification of the spectrum of small amplitude 
fluctuations.
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Figure 1: Spectrum of GL unstable modes for a black brane in a cavity of radius R,

according to eq. (5.7). The curves correspond to n = 1, for which the critical radius is

R
c

= 1.5 r0.

While there is no previous calculation of black brane instabilities in a finite

cavity that we can match these curves to, we can compare against the computation

in ref. [13] of the wavenumber k
GL

of the zero-mode, for which ⌦(k
GL

) = 0. Our

analytic expression (5.7), truncated to quadratic order, gives

k
GL

=
1

r0

n
p
n+ 1

n+ 2

p
1� (R

c

/R)n

f(R)
. (5.8)

We display this result in fig. 2, where we compare it with the corresponding one

of Fig. 3 in [13]. The qualitative agreement between the two graphs is apparent,

but one can easily discern quantitative discrepancies. These are expected, since

(5.8) has been obtained under the hydrodynamic assumption of small wavenumbers

k/T̂ ⌧ 1, which is not satisfied in general. As in [8], we may expect the agreement

to improve for larger n.

5.3 Critical behavior

Eq. (4.15) implies that when v̂2
s

= 0, the acceleration of the fluid under a density per-

turbation vanishes, i.e., the fluid does not respond to variations of r0. Equivalently,

using (4.21) we see that at that point the e↵ective specific heat Ĉ
V

becomes infinite

and therefore thermal fluctuations in the fluid have infinite wavelength. Then, this

is truly a thermodynamic critical point.
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❖ One sees the disappearance of the GL mode and the speed of sound 
monotonically increases as we move the hypersurface close to the horizon.

Emparan, Martinez (2012)



‘Membrane’ limit of the Dirichlet problem
❖ Near-horizon limit: enclose the black hole/brane with a box that hugs the 

horizon (cf., stretched horizon). 

❖ The dynamics can be studied by working in the Rindler geometry which is the 
effective geometry in the sliver of spacetime between the horizon and the 
Dirichlet surface.

❖ The low energy physics of the Rindler region is universal to all branes and is 
simply the incompressible Navier-Stokes dynamics.

Bredberg, Keeler, Lysov, Strominger (2011)
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Figure 1: This figure depicts the Einstein geometry holographically dual to a fluid. The accelerated boundary hypersurface

⌃c at radius r = rc is intrinsically flat but the extrinsic curvature is given by the fluid stress tensor. This extrinsic curvature

leads to gravity waves which propagate radially inward. The leading-order condition that these waves do not cross the past

horizon H� of ⌃c at ⌧ = �1 or produce singularities on the future horizon H+ at r = 0 is the non-linear incompressible

Navier-Stokes equation for the fluid.

We wish to consider the general solution of the Einstein equations consistent with this initial data

and smooth on H+.1 In particular, so far we have not specified the extrinsic curvature K
ab

on ⌃
c

or

equivalently (and more conveniently) the Brown-York stress tensor on ⌃
c

2

T
ab

⌘ 2(�
ab

K �K
ab

). (9)

If no initial data were prescribed on I�, any T
ab

on ⌃
c

consistent with the constraint equations could be

chosen. This data could then in general be evolved radially inwards to produce a spacetime everywhere

inside of ⌃
c

. In general, such a spacetime will have gravitational flux (if not singularities) going up to

v = 1 (I+) as well as down to I�. Hence we have a “shooting problem” to find those special allowed

choices of T
ab

which produce a spacetime smooth on H+ with no flux coming up from I�.

We solved this problem in [28] to leading order in a double expansion in long wavelengths and weak

fields. Ingoing Rindler coordinates were used for which the leading order flat metric is

ds2
p+2 = �rd⌧2 + 2d⌧dr + dx

i

dxi. (10)

⌃
c

is the accelerated surface r = r
c

, H� is ⌧ = �1 and H+ is r = 0. these coordinates are conve-

nient for analyzing smoothness on H+. It was found that the allowed choices of T
ab

are precisely those

corresponding to the linearized fluid:

r3/2
c

T ⌧i = vi, r3/2
c

T ij = �⌘@(ivj), (11)

where the (kinematic) viscosity here is given by the formula3

⌘ = r
c

, (12)

1Here we allow for incoming flux where I� meets ⌃c at u = �1, v = 0.
2Our normalization here agrees with the conventional one for G = 1/16⇡.
3Our conventions here di↵er from [28].
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Charged branes: Decoupling

❖ One can study more interesting systems, by considering black branes 
carrying charges. e.g., D-branes in string theory. 

❖ Charges imply that one has a new scale in the problem, which one can use 
to tune the temperature of the black hole (independently of its size).

❖ In the near-extremal (vanishing temperature) limit one encounters an infinite 
throat: the proper distance to the horizon diverges. 

❖ The dynamics in the throat in the low energy limit decouples from the 
asymptotic dof: this is the basis of the famous AdS/CFT correspondence. 

❖ Of course, in string theory one can identify the decoupled theory which 
describes the physics of the throat region.



D-branes and membranes
❖ In classical gravity one can explore the hypersurface dynamics in various 

regimes of charged black branes. 

Emparan, Hubeny, MR (wip) Brattan, Camps, Loganayagam, MR (2011)

❖ Asymptotic region: Blackfold fluid 
with features described earlier.

❖ Throat region: Conformal fluid dual 
to AdS geometries. Low energy 
limit of a QFT.

❖ Rindler region: incompressible fluid

❖ Monitor the variation of transport properties of the fluid across the regimes: 
transport coefficients are pretty much determined by the throat dynamics.



Black branes as lumps of fluid

❖ Black branes really behave as 
lumps of fluid in the low energy limit.

❖ In the fluid/gravity correspondence, 
the fluid lives at the end of the 
universe, on the asymptotic 
boundary of the spacetime where 
the black hole resides.

❖ Here the fluid is a hologram, 
honestly capturing all the low 
energy physics of the entire 
geometry.



Black branes as lumps of fluid

❖ More generally, the blackfold 
approach allows us to isolate the 
fluid regime associated with a black 
brane. (Dirichlet problem)

❖ Based on where one chooses to put 
the hypersurface demarcating the 
near and far zones, one obtains 
different constitutive relations.

❖ However, there is an universality of 
the very near horizon region: this 
Rindler region is described by a 
nearly ideal, non-relativistic, 
incompressible viscous fluid.



The paradigmatic membrane

❖  The membrane of the paradigm is obtained by fine tuning the boundary 
condition on the hypersurface (multi-trace deformation).

❖ The physical consequence of such a boundary condition on the horizon 
should be given by the equations for evolution of the horizon generator.

❖ Thus the Damour-Navier-Stokes equations which describe the evolution of 
the horizon geometry as a function of the affine parameter arise from the fluid 
dynamics of the Dirichlet membrane, upon allowing the background to 
become ‘dynamical’.

❖ In holographic RG parlance, the Damour membrane is the effective dynamics 
obtained after integrating out the UV modes; this induces the multi-trace 
boundary conditions.



A hierarchy of effective field theories

Blackfolds

Fluid/Gravity

Membrane paradigm
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