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Introduction

/

@In recent years holography or gauge/gravity
duality has provided a new tool to handle
strong coupling problems.

@ It has been spectacularly successful at explaining
certain features of the quark-gluon plasma such
as its low viscosity/entropy density ratio.

@ An insightful picture, though not complete , has
been developed for glueballs ,and mesons
spectra.

@ This naturally raises the question of whether
one can apply holography to baryons and the
“Strong interaction” namely to nuclear
interactions and nuclear matter.



Questions to investigate in nuclear holography

@ Isthe large Nc and large A world similar to reality
@ Static properties of baryons

@ Nuclear interactions

@ The nuclear binding energy puzzle

@ Nuclear matter at zero and finite temperature

@ The structure of the QCD phase diagram



dinding energy puzzle

@ The interactions between nucleons are strong so
why is the nuclear binding non-relativistic, about
1.7% of M ¢* namely 16 Mev per nucleon.

@ The usual explanation of this puzzle involves a near-
cancellation between the attractive and the
repulsive nuclear forces. [Walecka |

@ Attractive due to ¢ exchange -400 Mev
@ Repulsive  dueto ® exchange + 350 Mev
@ Fermion motion + 35 Mev

Net binding per nucleon - 15 Mev



@Stringy holographic baryons

@The laboratory: the generalized Sakai Sugimot
model

@Baryons as flavor gauge instantons

@A brief review of static properties of Baryons
@Nuclear interaction: repulsion and attraction

@The DKS model and the binding energy puzzle



@ Chains of baryons-generalities

@The 1d and 3d toy models of point
charges.

@ Exact ADHM 1d chain of instantons
@ The two instanton approximation

@Phase transitions between lattice
structures

@The phase diagram of QCD at large Nc

@Summary and open questions






@ How do we identify a baryon in holography ?

@ Since a quark corresponds to a string, the baryon has to
be astructure with N_ strings connected to it.

@ Witten proposed a baryonic vertex in AdS.xS5 in the form
of a wrapped D5 brane over the S5.

@ On the world volume of the wrapped D5 brane there is a
CS term of the form

G
Scs= a /\ 5o
S5 xR 4T




Baryonic vertex
|

@ The flux of the five form is

@ This implies that there is a charge N, for the
abelian gauge field. Since in a compact space one
cannot have non-balanced charges there must be

N . strings attached to it.



@ External baryon - Nc strings connecting the
baryonic vertex and the boundary
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-
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Wrapped
D brane



@ Dynamical baryon - Nc strings connecting the baryonic
vertex and flavor branes

boundary
\[u\ p
Flavor brane SR

Wrapped D
brane




Barnyond as (ndtantond in the
generalized Sakai Sagimoro



Baryons in a confining gravity background

@ Holographic baryons have to include a baryonic
vertex embedded in a gravity background " *dual” to
the YM theory with flavor branes that admit chiral
symmetry breaking

@ A suitable candidate is the Sakai Sugimoto model
which is based on the incorporation of D8 anti D8
branes in Witten’s model



The brane setup of the Sakai Sugimoto model

Sakai-Sugimoto Model

N; x D8




Structure of geometries with confining dual

/
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[Witten, Sakai & Sugimoto, ... ]
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@ The holographic meson= string in curved space
that connect the tip of the U shat at two points in x

@ [s mapped into a rotated string with massive

endpoints
N A







@ We need to determine the location of the baryonic
vertex in the radial direction.

@ In the leading order approximation it should
depend on the wrapped brane tension and the
tensions of the Nc strings.

@ We can do such a calculation in a background that
corresponds to confining (like gSS) and to
deconfining gauge theories. Obviously we expect
different results for the two cases.



T cation of the baryonicvertex in the radial-&'rréc{nis

determined by * "static equillibrium”.

S = —T4 / dtdQ4E{_¢J -\/— det gD4 — ;'?\"TETf / dtd'ﬂ--\/— det string

The energy is a decreasing function of x=uB/uKK and hence it
will be located at the tip of the flavor brane

A
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It is interesting to check what happens in the //U

~__—deconfining phase.

For this case the result for the energy is

1

1
gdeconf(r rO) 3 1 - 1’3 + (JI.’-O — :I.’-)

For x>x« low temperature stable baryon
For x<xo  high temperature dissolved baryon
The barvonic vertex falls into the black hole




The location of the baryonic vertex at finite temperature
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Baryons as Instantons in the SS model ( review

@ In the SS model the b.vis immersed in the flavor
branes.

@ The baryon takes the form of an instanton in the
5d U(N;) gauge theory.

D4 wrapped on sS4 ~ instanton on D8 =~ Skyrmion
[Witten, Gross-Ooguri 1998] [Atiyah-Manton 1989] [Skyrme 1961]

Realization of Atiyah-Manton: U (:+*) = Pexp {- /’m dz A (2", )}

Skyrmion Instanton

@ The instanton isa BPST-like instanton in the
(xi,z) 4d curved space. In the leading order in A it
1S exact.

baryon # Instanton #

1
N =—ftrFf\F
B 82




Baryon ( Instanton) size

@ For Nr= 2 the SU(2) yields arising potential

@ The coupling to the U(1) via the CS term hasa run
away potential .

@ The combined effect

E Al \total
SU(2) part
(N =2)

U(1l) part
>

y .
Pmin p (size)
“stable” size but unfortunately of the order of /> so
stringy effects cannot be neglected in the large A

limit.




Baryons as instantons in the SS model

@ The probe brane world volume gd - 5d upon
Integration over the S4. The 5d DBI+ CS is approximated

5 = Sym + Scs

ﬂ , 1 : :
Svym = —K f d*rdz tr {_{) h( ::')Fjv + A()ﬂi

. N, U(Ny)
Scg = —— we (A
S 24’?2 ﬁf@LxR 5 ( )
vhrere
h(z)= (142273 k(z) =1+ 22



o One decomposes the flavor gauge fields to SU(2) and U(1)
@ In a 1/A expansion the leading term is the YM action

@ Ignoring the curvature the solution of the SU(2) gauge field
with baryon #= instanton #=1 is the BPST instanton

Ap(r) = =i f(€) gOng™
¢2 ~
§) = — £ = — X — 7Z)?
_, (z—Z)—i(fr—X)-T
glr) = -
&




Baryons in the generalized SS model

@ With the generalized non-antipodal with non trivial
msep namely for uo different from ua- ukk with general

C=u,/ ugg u T4

Ny|D8-branes

.lt“} -------------

HB ------------
barvpn vertex

UKKpeeasaaaannn

@ We found that the size scales in the same way with A.
We computed also the baryonic properties



Baryonic spectrum

Theory
M~ My + (\ﬁ

mass

A

> €

Note:

A

141 2
(+1)2 + ‘"”EJW np+nzi) Mgk

GeV
A

—— 2

1.5

Mg = (classical soliton mass) + O(NY)

~ O(Ne)

Experiment

(I = J states from PDG)
*) Evidence for existence is poor

0

I

0

We only consider the mass difference,
since O(N?) term in My is not known,

I

T
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The spectrum of nucleons and deltas

@ The spectrum using best fit approach

N baryons (np.nz) My My pn,n. |A baryons (np,nz) My
n(940) (0,0) 1027 A(1232) (0,0) 1282
N (1440) (1,0) 1374 A(1600) (1,0) 1629
N (1535) (0,1) 1374 A(1700) (0.1) 1629
N (1650) (1,1) 1721 A(1920) (2,0),(0,2) 1976
N(1710) (2,0),(0,2) 1721 A(1940) (1. 1) 1976
N (2090) (2,1).(0,3) 2068

N(2100) (1,2),(3,0) 2068

Table 3: The baryon masses by the use of the minimal y? fitting.



Hadronic properties of the generalized model

our model  experiment  discrepancy|%]

mp 746 MeV 776 MeV —3.86
May 1160 MeV 1230 MeV —5.31
S a2y 1.51 1.31 15.2
n{ 940}
.. 0.813 fm 0.806 fm 0.920
(r?) A 0.594 fm 0.674 fm —11.9
gr=o 1.99 1.76 13.1

gr—1 8.41 9.41 —10.7







holographic nuclear interaction

@ In real life, the nucleon has a fairly large radius ,
Rnucleon ~ 4/Mpmeson.

@ But in the holographic nuclear physics with A >> 1, we
have the opposite situation

Rbaryon ~ 1/ (\/7\ M),

@ Thanks to this hierarchy, the nuclear forces between two
baryons at distance r from each other fall into

3 distinct zones



Zones of the nuclear interaction

@ The 3 zones in the nucleon-nucleon interaction

V

intermediate zone

Rbal‘.'fﬂl'l ~ 1;&'1-{1\/1 j’fn_lgscm -~ l,"zjf-[i




Intermediate Zone of the nuclear interaction

@ In the intermediate zone Roayon € 1 € (1/M)

@ The baryons do not overlap much and the fifth
dimension is approximately flat.

@ At first blush, the nuclear force in this zone is
simply the 5D Coulomb repulsive force between two
point sources,

N? 9 L 277N, 9 1
4k A2 2AMy T 12

-Lf’r (-}" } p




Nuclear attraction |

@ We expect to find a holographic attraction due to the
interaction of the instanton with the fluctuations of the
embedding which is the dual of the scalar fields

@ The attraction term should have the form
L e ~(|)T1‘[F2]

@ In the antipodal case ( the SS model) there is a symmetry
under 8x, -> -6x, and since asymptotically x, is the
transverse direction

d~0x,
such an interaction term does not exist.



Attraction versus repulsion

@ In the generalized model the story is different.
@ Indeed the 5d effective action for Ay, and ¢ is

9

,‘_'Jf_lj-,d — /HAJ'H}H‘

iy Hg J_ — L_

. 7 ( 1 N x_ o ﬂ_ .
NAMy[—tr[Fi v + —(0h0)’] = N[o(TrFyy) — Les

]

@ For instantons F="F so there is a competition

between
repulsion attraction
A TrF? oIt F2

@ The attraction potential also behaves as
V ~1/1?

scalar




Attraction versus repulsion

@ The ratio between the attraction and repulsion in the
intermediate zone is

__ 1 at tractive

| =

T —_
C alr —

x (1-¢7),

|/ repulsive
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Nuclear potential in the far zone

@ We have seen the repulsive hard core and attraction in
the intermediate zone.

@ To have stable nuclei the attractive potential has to
dominate in the far zone.

@ In holography this should follow from the fact that the
lightest isoscalar scalar is lighter than the
corresponding lightest vector meson.

@ In SS model this is not the case.

@ Maybe the dominance of the attraction associates with
two pion exchange( sigma)?.



Multi meson exhange at large A

What are the effects of large A

@ Baryon mass increases, Mbaryon ~ ANCMmeson, while
baryon radius ShI’iIlkS, Rbaryon “’1/ )\AI/Z Xl/Mmeson.

]- i?\'rc
...... ararng — , g, ~ — .
° MMM . MBB I

Meson’s couplings decrease as A"-1/2:

-l?\'ri_‘. . :
> ..... < Vo s (for fixed r)




The role of the large A limit

@ At one loop there are two types of diagrams

’ N
/ A 3 -
————— -’ A™ ~ Gyps X Inmr ™ \2




The role of the lare A limit

@ However, for non-relativistic baryons, the box and
the crossed-box diagrams almost cancel each other,
with the un-canceled part having

Ad T
uncanceled \Q | | \
V &

@ In other words, the contribution of the double-
meson exchange carries the same power of Nc but
is suppressed by a factor 1/A






A" holographic analog of Walecka’s model?

/

@ Can one find another holographic laboratory apart
from the SS model where the lightest scalar particle
is lighter than the lightest vector particle which

interacts with the

Daryon.

@ Can we find a mod
@ Generically, simila

el of an almost cancelation?
r to the gSS model in other

holographic models the vector is lighter.

@ The Goldstone mechanism may provide a lighter

scalar.



Tme DKS model /

@ In the DKS model we placeNf D7 and anti-D7
branesin the Klebanov Strassler model.

."-. Ii:' )

A\ Iy J._f

Y

\ P
— N/
\ /)’
l"‘._ |'I_'r rE

(a) (b)

@ In the undeformed conifold the D7 anti D7 branes
spontaneously break the conformal symmetry



Spontaneous breaking of scale invariance

@ Adding brane anti-branes to the Klebanov Witten
model is different than in the SS model. The

asymptotic difference is fixed ¥6 . independent of ro
4

@ The mode ot changing ro isa " "dilaton” a Goldstone
boson associated with breaking scale invariance.



Baryons in the DKS model

@ The baryons are D3-branes wrapping the S3 of the
conifold with M strings connecting the D3 and the flavor

branes

@ When ro is significantly close to re the geometry can be
effectively approximated by the flat one and creates only
a mild force. The string tension wins, and the D3-brane

is pulled towards the D7-D7 branes and dissolves there
becoming an instanton

@ The model has the following hierarchy of ligh particles:

@ The mass of glueballs remains the same as in the KS and
therefore is ro-independent. The typical scale of the

glueball mass is

e

! o e
IMigh p

il

A=gsM




Meson masses in the DKS model

@ In the regime ro > re the theory is (almost)
conformal and therefore the mass of mesons can
depend only on the scale of symmetry breaking ro

Y o

Mmeson ™ — Mg,
o A re

@ The pseudo-Goldstone boson o is parametrically
lighter

.2
! 2
?‘I::I




The net baryonic potential

@ The net potential in the far zone in this case can be
written in the form

. ]_ _ ,:—Ii'.'.;,,-|;r| _ E_Ii'-'crlirl
- T'Ti-?u - |-'_1-'| |_._1-.|

@ For ro ~ rQ the approximate cancelation of the
attractive and the repulsive force can occur naturally

@ It is valid only for |x| large enough.

@ If mo < mw, the potential is attractive at large
distances no matter what the couplings are.



Binding energy and near cacelation

@ On the other hand if go is small enough, at
distances shorter than 1/mw the vector interaction
“wins” and the potential becomes repulsive.

@ The binding energy

Eluin-zling -

T
o=
gg ..'.]l _Irf__l'f

is suppressed by a small dimensionless number x,
which is related to the smallness of the coupling go
and the fact that mo and mw are of the same order.

@ k is phenomenologically promising as it represents
the near-cancelation of the attractive and repulsive
forces responsible for the small binding energy in

hadron physics.






The crystal structure of holographic nuclear matter

@Is nuclear matter at large Nc the same as for finite Nc?

@ Let’s take an analogy from condensed matter — some
atoms that attract at large and intermediate distances
but have a hard core- repulsion at short ones.

@ The parameter that determines the state at T=0 p=o0 is

K

T
)

e
e

1172,

i

/ Ko~ Qﬂ.fﬂyﬁ:ll diameter)?

de Bour parameter

v

is the kinetic term rc is the radius of the atomic hard core and ¢ is the maximal
depth of the potential.



The solid structure of holographic nuclear matter

When Ap exceeds 0.2-0.3 the crystal melts.

For example,

@ Helium has As = 0.306, K/U =1 quantum liquid

@ Neon has As = 0.063, K/U = 0.05; a crystalline solid
@ For large Nc the leading nuclear potential behaves as

V(i L. Do, Jo, Joy N.) = N xX Ac(r) + Nox Ag(r)(Ii12)(J1J2)

+ N. x Ap(r)(Ii1s) [3(ﬂ~]l)(ﬂ']2) - (Ji‘]?”

+ ()( 1;.-"\":] .

@ Since the well diameter is Nc independent and the
mass M scales as~Nc




The solid structure of holographic nuclear matter

@ The maximal depth of the nuclear potential is ~ 100 Mev
sowe takeittobe ¢~ N.x 30 ,the massscales as

My ~ N, x 300 MeV re ~ 0.7

Consequently

Hence the critical value is Nc=8

Liquid nuclear matter Nc<8

Solid Nuclear matter N¢>8






. Lattice nuclear matter

@ To zeroth order in 1/A the SU(Nf ) gauge fields are
self-dual = ADHM solutions with 4Nf degenerate
moduli per baryon (the 4D locations of the
instantons, their radii, and the SU(Nf orientations)

@ At first order, the degeneracy is lifted by Coulomb

interactions (via abelian electric and scalar fields)
and the curvature which enters g(z)

@ Aswe have just seen at large Nc nuclear matter
is a solid.



Lattice nuclear matter

@ We study 3 types of toy models of lattices

@ (i) Baryons as point charges of 1d and 3d.

@ (ii) 1d exact instanton chains

@ (iii) Two instanton inteaction approximation

@ We investigate the phase diagram of holographic
solid nuclear matter.

@In particular: whether at high enough density
instantons spill to the holgraphic spatial
dimension?

@Is the GS configuration abelian on non-abelian?



Forcing the system to be one dimensional

@ Recall the 5d flavor gauge action of the gSS model

- d 1 i . "
S = / dz d- [92(;—) (&P ) + (DM D)

+ Nexws(F,A) + Nee(z) x tr(®{F™, Flu} )]
81’?2 _ ) ) 2 L W
where 5 = )\A-’C.Mm(l 4 (My2)? + O((My2) J).
g=\z

c(z) = O(1), details not important except ¢ < 1.

@ We force the system to be a 1d chain by adding a
harmonic potential to the charge in the other directions

Q72

= NAM (142022 + M2 (03 + 43)?)
9yMm



The general structure of holographic nuclear matter

@ At low densities g(z) dominates. Each instanton
falls to the bottom of the U , i.e to the z=o0,
hyperplane. The instantons form a 3d lattice

> (2

)aOa0m 0050020, 020202050 20505050 SUNRREPPREE

@ This phase of the holographic nuclear matter is
dual to the baryonic crystal of large Nc QCD
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The general structure of holographic nuclear matter

@ At higher density the 1/r"2 repulsion pushes the
instantons into the holographic dimension forming a 4d
lattice
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@ In the z direction the lattice has a width AZ>> lattice
spacing === many baryons on each 3d point.

AZ

T1,T9, T3




The general structure of holographic nuclear matter

@ From the 3D point of view, the 4D lattice means
overlapping baryons l

@ Quarks are no longer confined to individual

baryons

!

@ The 4D instanton lattice of the holographic QCD is

dual to the quar

(Quark fermi lic

kyonic phase of the nuclear matter.
uid — weakly coupled for large Nc

— with baryon-]
surface.)

ike excitations near the fermi






Phase transitions in chain of point charges

@ We want to consider a 1 D chain of point charges.

@ For that we turn on a potential in the transverse
directions x1, x2 and z.

871_2 _ g 29 ‘ . ¢
7 = NAM (14 M2+ M2 (3 + 23)%)
Iy M

@ We put a preference to dislocationsin zvia M’ > M

@ At low density the chain is straight

@ When the density is increased we find



Phase transitions for chains of point particles

‘@ Let us now study the transitions quantitatively
@ The instanton density is replaced by

(.

I(x) = Z 6 (x — nd)

n—=—ao<

@ For the straight chain the non abelian energy per instanton

d
Exa = NAM / das / A3z I(z) (1 4+ M"2(22 + 23) + M222) = N AM (1 ML)+ _.M'E,-:z)
0 ‘

@ T'he minimum 1s at Xx1=x2=z=0

@ The Coulomb energy is

N. =2
Be = 4\1{2 rm’ M 1242



The energy for a zig zag configuration

@ For a zig-zag with displacement ¢ the total Ec is

2 —

i‘\'rc ]_ ]_ ;'I\'FL-_ i i TE
Fe=par ( 2 GaEt 2 Gary (2;:}2) ~ M (4&3‘3 " T6ed t"”“h?)

even nz0 odd n

@ Expanding in e®2 we get

. -“'l\." “"_1E2 ,_GE-—I 6
I N\ 2 e [0 . ) ( 8
E E[) + “‘v,:}k?llf £+ SV ( 1343 + 19046 + C [G ]I)

@ Thus there is a critical separation distance

d=d,

m—

RIES Y VSN

@ For spacing slightly smaller that dc the system
admits a zig-zag structure with
V&

-5

il

(€) =+ Y2\ /d (d, — d)



Transitions to multi-layers

o

@ At higher densities the following sequence of
transitions take place

lmp 2 mp 4w 3w 4

@ The structure of the phase transition is given in the
figure of the energy as a function of d( or p)

@ Thus the lesson from this toy model is that when
squeezed the baryons do not seat anymore in the
regular chain sites but instead pop into the
holographic dimension

@ The question of course is how is this picture
modified once we discuss instantons.
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Point charges transitions into multi-layer system

Hlayers A configuration energy per baryon
2 2
1 0 © © 0606 00 00 |5F
[ 2 .'I.I|C"
2 +e 06°20%9090%90°9 |¢ tanh =
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36 3
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ib) 3D lattice of point charges

@ Repeating this analysis in 3D we find that the
minimal energy is achieved for close packing.

@ This means the largest inter-distance between
nearest neighbors for a given density.

@ In 3D it is the FCC lattice.

@ Above a critical density the analog of the 1D zig-zag
will turn the FCC into two sublattices with broken
cubic symmetry.

@ A structure of BCC will transform into two SC sub-
lattices.

@ For a 2d case the transition is like that a chessboard
where the white and the black are displaced



3D lattice of point charges

@ Now Ec diverges, however for the stability analysis
we are interested only in the variation of the energy
so constant infinity can be subtracted.

@ The regularized energy per instanton is

r 3 Ne Ap2e? et ;6
_E — .Ei] = _-.\r ,:/\_-HLI'EFE —|— E (- Iij]._l _|_ ff‘, _|_ (’}L‘LFJ)

i

where

&,HQ:Z ! ; "r:Z,. ! V3

2 2 22 2 2 2
oda (M1 + N5 +n3) odd \'] T 75 T 13)

@ This implies a critical spacing

—

1 &,H 1
JlT..ﬂ —_— — - |III -~ 0.(;9
=V N M







1d chain : The ADHM construction

@For the 1d chain of instantons, we first
determine the ADHM data, namely solve
the self duality condition subjected to the
symmetries.

@We then compute the non-abelain and
coulomb energies of the chain as a
function of the geometrical arrangement
and the SU(2) orientations.

@From this we determine the structure of
the multi instanton configurations and
the corresponding phase transitions.



The ADHM construction of a chain of instantons

@ For instanton # N of SU(2) the ADHM data includes

X;l"” TH . yH

4 NxN real matrices ¥eal N vector
ri i =1,2,3 Pauli matrices -4 unit matrix

@ They have to fulfill the following ADHM equation

(LT + v @y —y" @y*) = M (DT + " @y — v @y")




The ADHM construction

@ For a periodic 1D infinite chain, we impose
translational symmetry

St —= 4 dH

@ The S tran.actson T'# and y*. asfollows

mn

{{ to keep the z#1 — T'* invariant })

(hr) = D Gl T")Spn = (yhit"

_l'_r — '511:. (I,-{;:TSI l,"lz} LSHI?_ﬂH — rj‘??l,ﬂ-"‘l {.-‘F,I'-f- == (0 0 0 {f\]



The ADHM construction

@ Consequently translation symmetry requires
ithyl = a exp( ag) — y = (0,0,asin(n¢/2), acos(nd/2))

and TH = do** x nd,,, + f‘“(-m. —n)

LT

@ The dlagonal re are the 4D coordinates of the
centers, Yn combine the radii and SU(2) orientations

@ Combining with the ADHM constraint we get

yh @yt = a® cos[(m —n)o/2],
4 -
]'_']"H T — {‘Fr'i' fl}'?ﬂ TL =
1 2
]'_]"H T — F?ﬂ-ﬂ — 0
2 - T
. a sin [(m —n)o/2| .
r = — x ( )9/2] for m % n but 0 for m = n.

mn fd m —n



Chain of instantons- The ADHM construction

@ For our purposes we will need to know only the
instanton density

1
I(x) = 352 FMNPQ FyunFpg

expressed in terms of the ADHM data.

1
I(x) = — = (11 log det(L(x))

where

L(z) = ("1 =T")(a*1 =T*) + o* @ "




The ADHM construction

@ To evaluate the determinant , it is natural to use
Fourier transform from infinite matrices into linear
operators acting on periodic functions of # (mod 27)

@ A lengthy calculation yields the following determinant

i

det(L) = (CDbh— o

d

Ta? Oy (27 — @)ra ma? (27 — @)ra
h — sk i h
drq sinh d ) (co::. ! d * drs sin d

re +r3 — (ra?/d)? . | b (2m — @)ra

_|_

— COB5

sinh sinh

21110 d d

2?1:'4

d

)




The total energy of the spin chain

@The total energy is the sum of the non-
abelian and coulomb energies.

o@We first determine the spread < x;* >
3) _/t’f:_l/ff a2 I{r — ! [l log clet{j'i})
0 1672

This gives us

2 2 2 5 a® a*
<‘r1> = (13)" = o (*3) ) + 12 X O(21 — @) .




The non-abelian energy

@ We add a ' "potential” to constrain the multi-
instanton configuration to a 1d by assuming a 5d
guage coupling of the form

Q2

= N.AM (1 + _-'“Lfg(,r.‘:l‘} —I—;i’% + rﬁ) + {'.J[:_-'“lfifr;l})

IJED ()

9 For small instanton «< M~ the non-abelian

Exa = NAM (1 + M? (2] + 23 +23) + O(M*a"))

i
M2

42

= N.\M (1 + 2M*a® + x O(2m — @) + U(M*r:*})



Coulomb energy

@ The abelian electric potential obeys

.-\.-* 2
'32’—3

Ao(z) = Olog det(L(x)) + const

@ Thus the Coulomb energy per instanton is given by

E(_‘) = /(f:4[(f r(i_) 4[}
2(; 0

Ne : 3. (¢ o 2
= 2562\ L (:134‘/‘(:’ x (U,Ulogdet(L))

@ For large lattice spacing d>>a

_E(_j —~

N, | 1 Ar? + 3(7 — ¢)? 5
' [ + + 3( ?) + U(uz_,-‘ff'i)

AM 30d?




Minimum for overlapping instantons

@ Combining the non-abelian and Coulomb energies
and minimizing with respect to the instanton radius
and twist angle we find

a|@min| = ag — + O(ag/d?). ¢|@Qmin] = 7

ao is the equilibrium radius of a standalone instanton

(2/5)14 Ogrl/2 2 1/4 .
g = MV or M (40{;_.; — 25) for original A, Mk .




The zig-zag chain

@ The gauge coupling keeps the centers lined up along
the x4 axis for low density.

@ At high density, such alignment becomes unstable
because the abelian Coulomb repulsion makes them
move away from each other in other directions.

@ Since the repulsion is strongest between the nearest
neighbors, the leading instability should have
adjacent instantons move in opposite ways forming a
z1gzag pattern

aIq

‘.'. '-.-" I'.'.' . ‘

A

dX3n] = ex (—=1)"



The Zig-Zag }

@ We study the instability against transverse motions.

@ In particular we restrict the motion to z=x3 by
making the instaton energies rise faster in x1 and x2

.
T

= NAM (1 + M™?(2] +23) + M?25 + O(2*M%), M >N

"2 .-. :--\.
Ilff!:”r.;.i_.z I'

@ The ADHM data is based on keeping

.Uﬁ = [:0.0.4.1 :::ill[:nf_;l,.-":j}.r: CDH(HU_,.-"'Q;]}. Fim = dno,,,

@ While changing

ST = Gpn X 0X7[1]

TreTe



The energies of the zigzag deformation

@ The zigzag deformation changes the width

< 2> < 3) “2 ( 2> (4’2 + ﬁzﬁi + K
ol — ol i == —. H = — [
1 L2, 9 3, 9 A2

]

@ Hence the non abelian energy reads

= Enale=10] + ﬂ'})’uﬂfg % €2

@ The Coulomb energy
Ne | 1 3m? 2 tanh(me/d) 4
© = : — 4+ O(a?/
Fo =015 T 2o@ T soe X aeq O/

@ The net energy cost for small zigzag

A'Tc —4 FE _G F4

AEn = AEna + AEc = NAM? x é2 | —— s
t NA T 84 ' e T G00a°

MV | 24044

+ U{ﬁ;’dﬁj}




The zigzag phase transition

@ For small lattice spacing d < dcrit, the energy
function has a negative coefficient of 2 but positive
coefficient of

@ Thus, for d < dcrit the straight chain becomes
unstable and there is a second-order phase
transition to a zigzag configuration.

@ The critical distance is

T 1
b
V240 MM

d > depyy =

7

“¥

a

{F} ~ T X y‘f{fc{{fc — -‘.ﬂ




The phase transitions

@ Free energy, zig-zag parameter and phase asa
function of the density
E.e. o

twist angle ¢ 0

T oN M
_ﬂuﬂ1
/ e

N zigzag amplitude e

[3’ cl f) ;‘2






'Two —-Instanton interaction approximation

@ In the low density regime the two body forces
dominate the interactions. The multi-body forces
are suppressed by (a/ D)2

@ We sketch the proof of this statement and compute
the corresponding two body energy.

@ Recall the ADHM data

S — ST H A ;oo
rﬂ-” X ;;Ll ' r-m;én = Mn }?1 = AnlYn

I (') + YY) =0

- mTn

U Er.x [1“,&: ) FH] mn + Ay X T (:U Iﬂ_ ,ff.n.( —T )) = ()




Perturbative solution of the ADHM equation

@ We solve the ADHM equation and the constraints

associated with the

SO(N)

instantons chain in a power series of (a/ D)

symmetry of an N

r
Momn

o'l

LTI

o2

FLTTETL

o3

LTTLTL

rm?én - o
M (X

-
_}*n]ﬂ

‘ J{:rn o }{ﬂ. ‘ 2
i (X —

-"K Tt :I s

1 . ,
X Sy 1 (_U,m_i,fn

,K mo

?]a ; [:"}i-']'?l-
2 LLL

T Ar-n.) L

O(A)

h U

(1) L(2) (3)
LT + X pmn + O pmn + -

—it"))

e (1) (1) _
X E MY b Onen =

f£m.n

=
‘ X m

o j{ﬂ- | 2

E: na
X e\ g ¥

f=£m,n

(2) _
An

= ()({'!-QED\JI.

O(a’ /D%,

O(a®/D%).

@ The leading term depends only on two instanton data




Perturbative solution of the ADHM equation

@ Given the ADHM data the instanton number
density is

1 ,
I(r) = — — L1 log det (L[;Jr))

Lipn(x) = Z(rf;m — ;;:*"‘cﬁgm_) (Fi,; — .-;r“hfﬂ_) + Sy, t (,f;_iljun)

Fil

@ Using integration by parts we can compute several
moments of the instanton density

ﬁﬁ;;:f(..a-) = A,
/{'fé:}' I(.‘I-’j X r’ = ’rr(l"‘”),
/;34.}7 I(x) x aMe" = n-(F“F“) + %[ggw tl‘(T)
— 1

where 1., = ja,a, tl‘(jULjU.n_).

[ 1) x At = LIMTETY) + 169 ae(TVT) + 2% e(TMT) + Low i



T y

@ The non-abelian energy is given by quadratic moment
with u=v=4

Ena = NAM? x ﬁf‘:rf () % ()

Two-body
interactions

Individual
potential energy




The non-abelian energy

@ Thus to leading order of the non abelian energy
only the two intanton interaction are relevant

net interaction __ A7 \ 1.3 E : 4 2
5 - .'7\' L-r_/\ .'_1I J:r (f I-"]"?l'ﬂ-)

m=£n

5 1111; eraction

= 3 ZE%M} (m.,n) + (\{./\USIBJD“}) multi-body terms,
m#£n

2body \ aNT Y3 ! fi;_;(j{m - J{n)r.x 1 } F g ’
Exva (m,n) = 2NAM? X { aya, X X % |2 X 5 tl‘(,f,f_mjun[—?T ])
<im - <in|4p

3 2 Q
_ NAMPaZal g o
— Y % XU | Y Un (_"i--" mn " )315‘
S| m T “in (4D

— O(NM?a*/D?).

where
X o ¢
\]:L;Ln - (?\Tﬂm \Tﬁzﬂ) - ‘J:i im‘

“An T SAm




@ The Coulomb energy of the multi-instanton system

[(x9)
_ 4 31]
/\\1:1’—// e IQ‘JL—IQ‘Q

@ The diagonal terms of L(x) are much larger than the off-
diagonal so we take a power series of the ratio

\ —1
I(2) = ——5 00 logdet(L)
=D TV@) + 53 To) + ¢ Y Tipal) + -+
n m#n different
fm.n
where Wy - 1
L (xr) = T DD log (Ln_n(.ir.])_.
T
x +l Lor Lo,
I(Q} T _ DD mnt=nmn ‘
i A
I{S} —2 (0] L:‘f’-m.L:rnnL-n.E

f . (iﬁ ] p— A M
e 1672 LE’ 4 L-m-m L-n.-n.



The Coulomb energy

@ The net Coulomb energy

net j\r‘: i 1 - ! "
ol = mar {; 7 n; X 7 2ol ) (\)(” ” )}

Self
Interaction

including
inteference

Point
charge
Coulomb
epulsio

Density in
inter
instanon
space

Note that the self interaction terms dominate the net
Coulomb energy



The Coulomb energy

@ The contribution of the two instanton interference
terms is compareble to the direct repulsion. The
three or more body interactions are negligable

@ The final expression for the Coulomb energy

T

net

‘n m
n n m#n

4 ()(f‘:.gf-fﬂél]

ANM

4/5 _ 1 1 [a?
v (S mewm (5 (B

2
z> x (tr?(y!u,,)

T




The total tow body total energy

@ Combining the non-abelain and Coulomb energies

glonl = 3ot () o LS EP N () 43T (L) +
T

m#En different
famn

yodv ) - : Ay 2 /\inufﬁ l l
g (p) = N.M (Aﬂﬂ x (X;)" + 5 X a? + S ”2)
//\2 1'[4 “’m“n X tr ( jn un(_"';";\?mn . FJ:
r : 1 /a2 a?
hody ¢ ~ ‘,.\.-c 1 1 m ) t $
521 Iy l:-fH-_- '”-J = 2/\;\-{ ‘Km — J‘KHMD + + — L} (({_%_ + {'J'-_?n) ( I ("-')'I;rﬂ n)
L0 ( a? 1 )
\ -\ D? AN2 )2

E i " _ll.\:r 1{.!'2 J_N:T ]
3 body e _ 7 c ~ c At . -
E (L,m.n) = O ()xﬂ.f?ﬂ%l VIVE D%’J . ete., ete.



The total tow body total energy

@ We plug the equilibrium radii  @» = a0 + O(a’/D?)

@ We finally get the two instanton interaction energy

QNC 1
5/\M X — Xol%

Egbod}r('nr.,'n.) =

1 1. }L ¢ CAT —
2 + tr ( mun) + ftr (um In (_"i""?\":rn.:rz T))




Linear chains of instantons

n e 7

@ For 1D lattice geometry  Xx* = (nD,0,0.0).

\X.m_—Xn\Q = D?x (m — n)? while J (£1,0,0)

@ This 1d structure is enforced by a 5D gauge coupling

872

g3 (1o, 13, 14)

= NAM(1+ M2 + Mad + M3ad + O(M*s)

h—

@ Let’s us consider first the regime where
M3, M3 < M*

@ So the impact on the instanton size of m,m; is
negligble



Linear chains of instantons

@ The net energy as a function of the orientations

Ne 1 .
SAM D2 8 (m —n)? { o ( mu”) o (UL'””(‘_?TI'))}

?'.I".l‘ I u I

£ int _

@ We minimize the energy with respect to the
orientations of nearest neighbors pairs.

Ym o oyl oy, = costhy, X (iT3) + sint, x (im) for some angle ¢,

Un = €XP (";{-’:;'nﬁ) X ('e"Tg)ﬂ' —

@ The most general solution of these equations

+lcos @, X 1 + sin g, X (ity)] for even n.

+lcos @, X (iT3) + sin o, X (in)] for odd n,



Linear chains

@ All these configurations have the same energy, thus
there is a huge degeneracy of chains with

5 interaction
per instanton

\.-' fixed n 1
’ 1
V\W[I)Q:K (m —n)? : {2 i (”mu”) o (
mz#En ‘
N, 1 % for odd ¢,
VIR IR T e
f:-]rn—-n.#ﬂ § O evell fr
N, 1 1 9 1
: v i L
i (3T k3 T &)
SAM D (2 o~ T
i\"rc 1 ?TQ n (] .H.Q ?TQ
—— X - >< I — _— = @ — .
SAM D? 2 4 2 12 2

f

u']’?l- ,”-]r].

(—'5T1))}




Regular patterns

@ Among the configurations are certain regular patterns

e The antiferromagnetic chain, with 2 alternating mstanton orientations:
Yevenn — j:l Yoddn = =iT3. (412)

In this configuration which obtais for ¢, = 0 the vy, (modulo sign) span a Zs

subgroup of the SO(2) x Zo.

1 a3

¢t (Cartesian axes :

Yn=0 (mod 4) — j:]- Yn=1 (mod 4) — j:TB: Yn=2 (mod 4) — 71,  Yn=3 (mod 4) — t75.

(4.13)
e Period = 2k = 6,8, 10, ... configurations spanning prismatic groups Zj. X Zs:
N .. w(n—1) . . omn—=1) .
Yevenn = COS o X1 4+ sin o X(iT1).  Yoddn = COS Tx(z T3 ) + sin Tx(: T2)
(4.14)

e Period = 2k = 6,8, 10. ... configurations spanning dihedral groups Doy, which obtain
L. el

for ¢, =n x (7/2k)



Ted @?ﬂ mi D @D OC

Klein group

,G % 3%46) ?@‘ @ @ =No

prismatic group Zs x Zs

od é@:@ oY ool

dihedral group Ds

XzG é-@n&—@» '@ @«@—*Z@_



9% bo-o e

Yn=+it3

Yn=-it3

Yn=+it1

Yn=-i’t 1

Yn=+it2

Yn=-it2

® O ®

© 0 0

Yn=+1

Yn=-1

Yn= cos(n/3)+sin(n/3)itl

Yn= cos(2m/3)+sin2m/3)i

Yn=+it1

Yn=-it1

ye

&
¢
&

Yn= cos(m/3)+sin(n/3)itl

Yn= cos(n/3)+sin(r/3)itl

n= cos(1/6) it3+sin(n/6)it2

YnT cos(57/6) it3+sin(5m/6)it2



The general case of linear chain

@ For the regimeM,, M, ~ M the huge degeneracy is
lifted and the net energy is

N. - Q(m.n)
51111: = 52 —
net Z f” }\1{D2 X Z N.’ — H)Q

n#m maEn

where

(.u){,"r”“”) djf l + tr ( *.rn'un) + C_‘*l tr (U-L--”-n.(_iTI))
+ CTS tr (:U.L_,ff.n_(_"‘iTQ)) + (' tr (an n(_";TS))

and with
(o def ‘Mﬁ%
“B T 372 L A2 . g2

Cy + Cq3 +Cy = 1.



Relaxation method

@ We now minimize the energy with respect to the
orientation using a computer relaxation method.

@ We take a lattice of 200 SU(2) matrices VY, .

@ In each run we started with random elements of SU(2)

Yn

@ We let the Y, relax to the minimum energy via

dyn(t) K% oEm
dt W

A mobility constant

0E  def . S
0y = Un (_?'T) V& (”” = Yn(l + 15 T)) ‘;:D
o Tl



@ We find that the lattices are link-periodic with

even n —m, yly = cos((n—m)p) xi"™ 4+ sin((n —m)p) x "t

odd n —m. ;uil,f;ﬂ_ = cos((n—m)o x£0) x """ 34 sin((n —m)p £60) x x it

@ The average interaction energy per instanton is

fixed n

N ( D) (m - } average _D)
5 interaction — c % — —
per instanton FJ/\JIDQ < Z ( n — m )2 > 5\ ‘L.JTDQ Z
m#n ; OVET T2 (0
[ W)
Tx(14 G+ Gy — (Cy— ) (-f__n.-,(zm)

= Barpe < | Al

f“_‘*xf‘_"'\

C3 + Cy — (O3 — ) *3'*--’-“*(29))




Link-periodic chains

@ Minimizing the energy with respectto ¥ and 0

(1) ¢ = 4= = =0
‘ 2 " Cy+ Cy
2 = -Ix=—2_ 4=0
- 2 " Oy + O
B) o= xS g_1x
| 2 Cy+C3 2
(4) ¢ = 15 x 98 § =z
S R e s N
@ Thus there are two degenerate ground states related

by . .
o =¥



Instanton zigzags |

@ The zigzag chains analyzed previously using the
point charge approximation and the exact ADHM
solution can be determined also using the two body
approximation.

@ Recall the zigzag data

X' =nxD, X2 = (-1"xe 22 = X=0

@ We work in the general sd gauge coupnling

872

ug{_.rq. L. Tyl

F

= NAM(1 4 M2 4 M2+ M 4+ O(M*)




The phase diagram

@ The two body energy for the zigzag

- Q.(m,n)
51]‘.11:- f]”f-:lij — Z -
11'313[ ] 5 \Jlir ‘Afm - Afﬂ‘g

]’?1 i

where  Q.(m.,n) = % + tr (e;Luﬂ) + O3 Z tr mun(_-,{_q—ﬂj)
a=1,2

—

+ (1 — QCYSJ X TI‘Q (.”-11.-”?1(_.‘;?? : i?\'r*.rn.-n.)) :

@ We compute numerically the lowest energy
configuration of the orientations

Yn as a function of €/ D and Mz /M,
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The different phases

e The red dots on this diagram denote the antiferromagnetic pattern (Al) of mstanton
orientations m which the the nearest neighbors always differ by a 180° rotation around

the third axis.

+1  for even n. ; o o
Up = _. same Y, Y, = @13 for all n. (5.11)
+im3  for odd n,

The vellow dots denote another abelian pattern () in which all nearest neighbors

differ by the same U(1) C SU(2) rotation, but now the rotation angle i1s < 180°,

same yly = {,“Kl}(%{-’)ﬁg) for all n, 0 <o <. (5.12)

e The blue dots denote a non-abelian link-periodic pattern (LP1) in which the relative

rotation between nearest neighbors i1s always through a 180° angle, but the direction



The different phases

of rotation alternates between two different axes in the (12) plane, one axis for the

odd-numbered instantons and the other for the even-numbered. In SU(2) terms,

ju;kju%_i_l — (\]1(% e - 'F) = in,-T = +iAT + iBm, (5.13)
5.1
-”%ﬁ.«+1i“2;c+2 = exp(Zi,-7) = i, T = +iAr;, — iB7y.
for some A. B # 0 (A% + B? =1).
The green dots denote another non-abelian link-periodic pattern ( ). Again, the

relative rotation between nearest neighbors 1s always through a 180° angle. but the
direction of rotation alternates between two different axes. However. this time the two

axes no longer lie withing the (12) plane, thus

Yo = iAT + iBry + iCrs

.F a4 A= o —_— o
Yoyt Yokt = 1ATT — 1By — iCT3,

where A, B.C all £ 0 (A2 + B>+ C? =1).



The phase transitions

@ Both transitions from LP 1 to LP2 are second order

all three angles a3, change continuously

T

T b

-
C\ 0

@ Likewise the transition between LP2 and AF

-




The phase transitions

@ The transition between AB and LP1 and LP2 are first ordei

T
A

— ()

()
O 5]

Ck

or

— (]}

() =

0\ b}

Ck

=] 2



The phase transitions

@ There are two triple points of the phase diagram
@ At the origin there is no triple point

@ The black dot at (¢/D) ~ 0.65, (M3/M,) ~ 086 1S an
ordinary triple point between AB and LP1 LP2

@ The white circle a (Af;/0,) = 1, (¢/D) ~ 0.38 isa
critical triple point between AF and AB of second
order

T

(__) \
(>




AT S
iR R AR R G R R R R R R R B ST




Large N Phase diagram

—

@ We can summarize in terms of the holographic
QCD phase diagram in the ( temperature, chemical
potential plane)

T




Large N Phase diagram

@ Large Nc — oo but fixed Nf = 2 or 3.
@ Gluons dominate QGP.

@ Sharp confinement-deconfinement transition at Tc
almost independent on .

@ No color SC or CFL in a quark liquid at high pq= pu/Nc.

@ For pq >> A qcp the quarks form a weakly coupled Fermi
liquid. But near the Fermi surface, the quarks and the
holes combine into meson-like and baryon-like
excitations == the quarkyonic phase.

. Mbaryon oc N¢ — oo while Mmeson and Mglueball stay finite.

@ No baryons in glueball/meson gas for T < Tc, 1 < Mbaryon.
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Transitions at lare Nc and lare A

p o
| |
| |
|
IHI
N. |
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i o 1 Quark
Vacuum | —
| A Matter
|
: ~ Nuclear
|
| Matter

J.




=

Generic effects of large A

@V < Mb == transitions between different phases of
cold nuclear matter happen very close to p = Mb ==
need to zoom into the p ~ Mb region of the phase
diagram to see all the phases. At T =0

Vp

&

VACUUM DENSE QUARK MATTER
BARYONIC QUARK
| INTERMEDIATE PHASES
VACUUM MATTER MATTER
(3D lattice) (2 layers) (3 layers) (4D lattice)




QCD Phase diagram ‘

@ This is to be compared with the “lore” of QCD
phase diagram at finte Nc
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o

@ The holographic stringy picture for a baryon favors
a baryonic vertex that is immersed in the flavor
brane

@ Baryons as instantons lead to a picture that is
similar to the Skyrme model.

@ We showed that on top of the repulsive hard core
due to the abelian field there is an attraction
potential due the scalar interaction in the
generalized Sakai Sugimoto model.



@The isno "' nuclear physics” in the gSS model

@ We showed that in the DKS model one may be able
to get an attractive interaction at the far zone with
an almost cancelation which will resolve the binding
energy puzzle.

@ We showed that the holographic nuclear matter
takes the form of a lattice of instantons

@ We found that there is a second order phase + a
first order transitions that drives a chain of
instantons into a zigzag structure namely to split
into two sub-lattices separated along the
holographic direction

@ Using 2-instanton approximation we found a rich
phase structure of nuclear matter



The phase transitions

o

@ At large densities the straight chain of instantons is
unstable against formation of a zigzag (e+ o) in the
holographic dimension.

@ There is a second order phase transition, which
takes the straight chain to the zigzag.

@ For small amplitude of the zigzag the neighboring
instantons remain antiparallel as in the (e=0) case.

@ At some larger density (zigzag amplitude), the
relative orientation of instantons changes from ¢ =
m to ¢ = 117°. This occurs in a first order transition.



The phase transitions

@ For densities larger than the one of the first order
phase transition orientation changes smoothly to
asymptotical value m/2.

@ That it is the neighboring instantons in each of the
two layers prefer to orient themselves in an
antiferromagnetic way, ¢ = .

@ Notice that the orientation twist between
instantons never becomes non-abelian.



