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Outline

Lattice models of statistical mechanics and field theory,

Quantum Yang-Baxter equation. Star-triangle relation.
low-temperature (quasi-classical) limit and its relation to classical
mechanics.

New “master” solution to the star-triangle relation (STR) contains

all previously known solutions to STR
Ising & Kashiwara-Miwa models
Fateev-Zamolodchikov & chiral Potts models

elliptic gamma-functions & Spiridonov’s elliptic beta integral

Low-temperature (quasi-classical) limit of the “master solution”.

relation to the Adler-Bobenko-Suris classical non-linear integrable
equations on quadrilateral graphs,
new integrable models of statistical mechanics where the Boltzmann
weights are determined by classical integrable equations (Q4).
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Space of solutions to the Yang-Baxter equation

YBE is an overdetermined system of algebraic equations. Its general
solution is unknown even in the simplest cases.

Known solutions, various methods:
Onsager, McGuire, Yang, Baxter, . . . (over 65 different authors; native
languages: Russian 26, Japanese 15, English 9, German 4, French 4, . . . ,
Norwegian 1.)

Algorithmic recipes (Drinfeld,Jimbo) Universal R-matrix for quantized
(affine) Lie algebras, or quantum groups.

3D-generalization: tetrahedron equation, Zamolodchikov (1980) followed
by Baxter, Bazhanov, Kashaev, Korepanov, Mangazeev, Maillet-Nijhoff,
Sergeev, Stroganov,. . .

New result (VB-Mangazeev-Sergeev): 3D integrable model with
POSITIVE Boltzmann weights
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Yang-Baxter equation in statistical mechanics

Local “spins”: σi ∈ (set of values), σi ∈ R

Z =
∑
{spins}

e−E(σ)/T ,

E({σ}) =
∑

(ij)∈edges

ε(σi, σj),

Boltzmann weights

W (σi, σj) = e−ε(σi,σj)/T

Z =
∑
{spins}

∏
(ij)∈edges

W (σi, σj).

The problem: calculate partition function when number of edges is infinite,

logZ = −Nf/T +O(
√
N), N →∞

Solvable analytically if the Boltzmann weights satisfy the Yang-Baxter
equation
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Two types of Boltzmann
weights, depending on the
arrangement of rapidity line
wrt the edge

Wp−q(x, y) and W p−q(x, y).
p q

x y

Wp−q(x, y)

p qx

y

W p−q(x, y)

Simplest form of the Yang-Baxter equation: the star-triangle relation

∑
σ

W p−q (σ, b) Wp−r (c, σ) W q−r (a, σ) = Wp−q (c, a)W p−r (a, b) Wq−r (c, b) .
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General structure of Boltzmann weights

In general, weights W are related to W via

W p−q(x, y) =
√
S(x)S(y)Wη−p+q(x, y) ,

where S(x) are one-“spin” weights and η is the non-zero crossing parameter
(value of an open angle).
In most cases the Boltzmann weights W are symmetric,

Wp−q(x, y) = Wp−q(y, x) .

Let for shortness
p− q = α1 , q − r = α3 .

The star-triangle relation takes the form (assume continuous spins)∫
dx0 S(x0)Wη−α1(x1, x0)Wα1+α3(x2, x0)Wη−α3(x3, x0)

= Wα1
(x2, x3)Wη−α1−α3

(x1, x3)Wα3
(x1, x2)
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Planar graph G, where L is the medial graph
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Low-temperature limit

Partition function

Z =

∫ ∏
(ij)

Wαij (xi, xj)
∏
m

S(xm) dxm, αij =

{
p− q, 1st-type
η − p+ q, 2nd-type

Assume, there is a temperature-like parameter ε, such for ε→ 0

Wα(x, y) = e−Λα(x,y)/ε+O(1) , S(x) = ε−1/2e−C(x)/ε+O(1)

logZ = −1

ε
E(x(cl)) +O(1), E(x) =

∑
(ij)

Λαij (xi, xj) +
∑
m

C(xm)

and the variables x(cl) = {x(cl)
1 , x

(cl)
2 , . . .} solve the variational equations

∂E(x)

∂xj

∣∣∣
x=x(cl)

= 0

Can one obtain in this way the Q4 system of Adler-Bobenko-Suris, 2003?

Λα(x, y) = −i
∫ x−y

0
dξ log

ϑ4((ξ − iα) | τ)

ϑ4(ξ + iα | τ)
− i

∫ x+y

π/2
dξ log

ϑ4(ξ − iα | τ)

ϑ4(ξ + iα | τ)

C(x) = 2
(
|x| −

π

2

)2
. |x| <

π

2
(1)
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Z-invariance (Baxter 1979)

Partition function depends only on the boundary data (i.e., on values of
boundary spins and values of rapidities) but not on details of the lattice inside.

Baxter’s factorization theorem (1979)

logZ = − 1

T

∑
<ij>

f(αij) +O(
√
N)

V. Bazhanov (ANU) Master solution of YBE 1 August 2013 9 / 39



Low-temperature limit of the star-triangle relation

∫
ε−1/2dx0 exp

{
− E?(x0)

ε
+O(1)

}
= exp

{
− EM

ε
+O(1)

}
where

E? = Λη−α1
(x0, x1) + Λα1+α3

(x0, x2) + Λη−α3
(x0, x3) + C(x0) ,

EM = Λα1(x2, x3) + Λη−α1−α3(x1, x2) + Λα3(x1, x2)

the STR implies
E? = EM

at the stationary point
∂E?
∂x0

= 0

Any solution of STR, admitting low-temperature expansion, leads to classical
discrete integrable system, whose action is invariant under star-triangle moves
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Chiral Potts and Kashiwara-Miwa models

N -state chiral Potts model (Albertini, McCoy et al’87,
Baxter-Perk-AuYang’87)

Wpq(a, b) =

(
µp
µq

)(a−b) a−b∏
k=1

yq − ωkxp
yp − ωkxq

ωN = 1, and (xp, yp, µp) is a point on genus ≥ 1 algebraic curve

Positive Boltzmann weights. Reduces to Ising model for N = 2.
Contains ZN model (Fateev-Zamolodchikov’82)
R-matrix

Rcdab = Wpq(a, b)W pq(b, c)Wpq(d, c)W pq(a, d)

intertwines two cyclic representations of Uq(ŝl(2))
(VB-Stroganov’90)
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Chiral Potts and Kashiwara-Miwa models

N-state model with broken ZN symmetry (Kashiwara-Miwa’86)

Wθ(a, b) = rθ(a− b) tθ(a+ b)

rθ(n) =

n∏
k=1

ϑ1( πN (k − 1
2)− θ

2N )

ϑ1( πN (k − 1
2) + θ

2N )
, tθ(n) =

n∏
k=1

ϑ4( πN (k − 1
2)− θ

2N )

ϑ4( πN (k − 1
2) + θ

2N )
,

Reduces to Ising model for N = 2.
In the trig. case reduces to ZN model (Fateev-Zamolodchikov’82)
The correponding R-matrix intertwines two (special) cyclic
representations of Sklyanin algebra (Hasegawa-Yamada’90)
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Chiral Potts and Kashiwara-Miwa models

Is there a generalised KM-model corresponding to the most general
cyclic representations of the Sklyanin algebra? (VB-Stroganov,90
unpublished)

Wθ(a, b) = rθ(a− b, α− β) tθ(a+ b, α+ β)

rθ(n, φ) =

[
N (θ+φ)

N (θ−φ)

]n/N n∏
k=1

ϑ1( πN (k − 1
2)− 1

2N (θ−φ))

ϑ1( πN (k − 1
2) + 1

2N (θ+φ))

What is the meaning of the additional parameters?
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Master solution to the star-triangle relation

Elliptic gamma-function

Γ(x+ 1)

Γ(x)
= x ,

Γtrig(x+ δ)

Γtrig(x)
∼ sinh (x) ,

Γell(x+ δ)

Γell(x)
∼ ϑ1(x|τ)
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Elliptic gamma-function

Let q, p be the temperature-like parameters (elliptic nomes)

q = eiπτ
′
, p = eiπτ Im(τ, τ ′) > 0 .

The crossing parameter η > 0 is given by

e−2η = pq , iη =
1

2
π(τ + τ ′) .

In what follows, we consider the primary physical regimes

η > 0 , p, q ∈ R or p∗ = q .

The elliptic gamma-function is defined by

Φ(z) =

∞∏
j,k=0

1− e2izq2j+1p2k+1

1− e−2izq2j+1p2k+1
= exp

∑
n 6=0

e−2izn

k(qn − q−n)(pn − p−n)

 .
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Properties of Φ:

Φ(z) is π-periodic,
Φ(z + π) = Φ(z) ,

logΦ is odd,
Φ(z)Φ(−z) = 1 ,

Zeros and poles:

Zeros of Φ(z) = {−iη − jπτ − kπτ ′ mod π , j, k ≥ 0} ,

Poles of Φ(z) = {+iη + jπτ + kπτ ′ mod π , j, k ≥ 0} ,

Exponential formula for Φ(z) is valid in the strip

−η < Im(z) < η .

Diference property:

Φ(z − πτ ′

2 )

Φ(z + πτ ′

2 )
=

∞∏
n=0

(1− e2izp2n+1)(1− e−2izp2n+1) ∼ ϑ4(z | τ) ,

and similarly with τ � τ ′.
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Boltzmann weights
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Weights W and W

Define the weights W and W by

Wα(x, y) = κ(α)−1 Φ(x− y + iα)

Φ(x− y − iα)

Φ(x+ y + iα)

Φ(x+ y − iα)

and

Wα(x, y) =
√
S(x)S(y)Wη−α(x, y) , S(x) =

eη/2

2π
ϑ1(2x | τ)ϑ1(2x | τ ′) .

Normalization factor (partition function per edge – exact solution) κ(α) is
given by

κ(α) = exp

∑
n 6=0

e4αn

n(pn − p−n)(qn − q−n)(pnqn + p−nq−n)

 .

It satisfies
κ(η − α)

κ(α)
= Φ(iη − 2iα) , κ(α)κ(−α) = 1 .
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Plots

Plot of the real π-periodic
function

Rα(x) =
Φ(x+ iα)

Φ(x− iα)

for p = q = 1
2 and

red: α = η
4

blue: α = η
2

black: α = 3η
4
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Plots

Plot of the real π-periodic
function

Rα(x) =
Φ(x+ iα)

Φ(x− iα)

for α = η/4 and

red: p = q = 0.5

blue: p = q = 0.6

black: p = q = 0.7
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Properties of W and W

The weights Wα(x, y) and Wα(x, y) are real positive for

x, y ∈ R and 0 < α < η

The weights are symmetric and π-periodic,

Wα(x, y) = Wα(y, x) = Wα(−x, y) = Wα(x+ π, y) = . . . .

Difference properties of the weights:

Wα(x− πτ ′

2 , y)

Wα(x+ πτ ′

2 , y)
=
ϑ4(x− y + iα | τ)

ϑ4(x− y − iα | τ)

ϑ4(x+ y + iα | τ)

ϑ4(x+ y − iα | τ)

and similarly with τ � τ ′.
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Connection with the theory of elliptic hypergeometric functions

As a mathematical identity the star-triangle relation for this solution is
equivalent to Spiridonov’s celebrated elliptic beta integral (2001).

This identity lies in the basis of the theory of elliptic hypergeometric
functions.

Its connection with the Yang-Baxter equation (star-triangle relation)
was not hitherto known
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Particular cases of the master solution

“Trigonometric” limit.

τ = ib/R , τ ′ = ib−1/R , R→∞

Gamma-function with small argument

Φ(
π

R
σ) → ϕ(σ) = exp

{
1

4

∫
pv

dw

w

e−2iσw

sinh (bw) sinh (w/b)

}
Gamma-function with big argument

Φ(
π

R
σ + const) → 1 , const = O(R0) .

Two regimes of the star-triangle equation:

xj = const +
π

R
σj and xj =

π

R
σj .
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Low temperature limit

We consider the low-temperature limit outside the primary physical regime:

p2 = e2iπτ and q2 = e−T/N
2

ω , ω = e2πi/N , T → 0 .

Asymptotic of W: the low-T expansion

Wα(x, y) = exp
{
−Λα(x, y)

T

}
·Wα(x, y) · (1 +O(T ))

where the Lagrangian density Λα(x, y) is π
N periodic in x and y while the

finite part Wα(x, y) is π-periodic.
Asymptotic of the partition function:

Z =

∫
. . .

∫
0≤xm≤π

exp
{
−E({x})

T
+O(1) +O(T )

}∏
m

dxm√
T
, T → 0 ,

where E({x}) is an action for a classical discrete integrable system. The
ground state of the system is highly degenerate due to π/N periodicity.
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π
N -comb structure

Plot of

abs
(

Φ(x+ iα)

Φ(x− iα)

)
with p = 1

2 and

q = 0.99 · eiπ/5 .

The peaks are at

x =
π

N
(n+ 1

2 ),
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Star-triangle equation in the low temperature limit

Expression for the Lagrangian density:

Λα(x, y) = 2iN

∫ x−y

0
dξ log

ϑ3(N(ξ − iα) |Nτ)

ϑ3(N(ξ + iα) |Nτ)
+ 2iN

∫ x+y

π/2N
dξ log

ϑ3(N(ξ − iα) |Nτ)

ϑ3(N(ξ + iα) |Nτ)

Λη−α(x, y) =
π2

2
− (Nx)2 − (Ny)2

+2iN

∫ x−y

0
dξ log

ϑ1
(
N(iα+ ξ) |Nτ

)
ϑ1
(
N(iα− ξ) |Nτ

) + 2iN

∫ x+y

π/2N
dξ log

ϑ1
(
N(iα+ ξ) |Nτ

)
ϑ1
(
N(iα− ξ) |Nτ

) . (2)

C(x) = 2
(
x−

π

2

)2
. 0 < x <

π

N
(3)

Energy for the regular square lattice

E(X) =
∑
(ij)

Λ(α |xi, xj) +
∑
(kl)

Λ(η − α |xk, xl) +
∑
m

C(xm) , (4)

Variational equations (Adler-Bobenko-Suris Q4 eqns.)

∂E(X)

∂xi
= 0, ⇒ Ψ3

(
x, xr

)
Ψ3(x, x`) = Ψ1

(
x, xu

)
Ψ1(x, xd) ,

Ψj(x, y) =
ϑj
(
N(x− y + iα) |Nτ

)
ϑj
(
N(x+ y + iα) |Nτ

)
ϑj
(
N(x− y − iα) |Nτ

)
ϑj
(
N(x+ y − iα )|Nτ

) , j = 1, 2, 3, 4.

The star-triangle relation∫
dx0√
T

exp
{
−
E?(x)

T

}
W pqWqrW qr = exp

{
−
EM(x)

T

}
WpqW qrWqr

where
E? = Λp−q(x0, x1) + Λp−r(x0, x2) + Λq−r(x0, x3) ,

EM = Λp−q(x2, x3) + Λp−r(x1, x2) + Λq−r(x1, x2) ,

provides
E? = EM

on solutions of
∂E?
∂x0

= 0.
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Zeroth order

Due to π
N -periodicity of the leading term, we introduce the discrete spin

variables nj ,

xj = ξj +
π

N
nj , 0 < Re(ξj) <

π

2N
, nj ∈ ZN

where parameter ξ0 is the solution of the variational equation (in general:
parameters ξj are solution of classical integrable equations). Canceling then
the T−1 term, we come to the most general discrete-spin star-triangle
equation: ∑

n0∈ZN

W pq(x0, x1)Wpr(x0, x2)W qr(x0, x3)

= RpqrWpq(x2, x3)W pr(x1, x3)Wqr(x1, x2)

Note: we consider the star-triangle equation in the orders T−1 and T0,
however it is satisfied in all orders of T -expansion.
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Hybrid model

Z =

∫
. . .

∫
0≤xm≤π

exp
{
−E({x})

T
+O(1) +O(T)

}∏
m

dxm√
T
, T → 0 ,
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General hybrid model

I. Rapidity lattice
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General hybrid model

II. Bipartite graph, to each site assign a pair (ξj , nj), where ξj are continuous
and nj ∈ ZN .
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General hybrid model

III. Fix all boundary variables (ξi, ni).
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General hybrid model

IV. Solve classical integrable variational equations for the parameters ξj in
the bulk (Dirichlet problem for the Adler-Bobenko-Suris system)
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General hybrid model

V. All discrete-spin Boltzmann weights W and W entering the partition
function are now defined, the lattice statistical mechanics begins.
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General hybrid model

Asymptotics of the partition function:

logZ = −E({ξ(cl)})
T

+ logZ0 +O(T ) ,

where {ξ(cl)} denote the stationary point of the classical action,

∂E({ξ})
∂ξm

∣∣∣
{ξ}={ξ(cl)}

= 0 ,

and Z0 = Z0({ξ(cl)}) is the partition function for the discrete-spin system.
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A new solution of the tetrahedron equation

Yang-Baxter equation

R12R13R23 = R23R13R12 (5)

Tetrahedron equation

R123R145R246R356 = R356R246R145R123 , (6)

where R123 acts in a product of three oscillator Fock spaces, n = 0, 1, 2 . . .

R
n′
1,n

′
2,n

′
3

n1,n2,n3 = δn1+n2,n′
1+n′

2
δn2+n3,n′

2+n′
3
qn2(n2+1)−(n2−n′

1)(n2−n′
3)

×φn1
1 φn2

2 φn3
3 φ

n′
1

4

n2∑
r=0

(q−2n′
1 ; q2)n3−r

(q2; q2)n3−r

(q2+2n3 ; q2)r
(q2; q2)r

q−2r(n2+n′
1+1)

For 0 < q < 1 all nonzero matrix elements of R are positive. Layer-to-layer
transfer matrix of the size M ×N , possesses rank-size duality for Uq(ŝlN ) and
Uq(ŝlM )

T({φ}) = ⊕
µ
T ŝlNM (µ) = ⊕

ν
T ŝlMN (ν)
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Quasiclassical limit leads to 3D circular nets (Bobenko, Konopelchenko-Schief)

V. Bazhanov (ANU) Master solution of YBE 1 August 2013 36 / 39



Summary

We presented a new solution to the star-triangle equation expressed in
terms of elliptic Gamma-functions

This solution involves two temperature-like parameters (elliptic nomes p
and q)

This solution contains as specials cases all previously known solutions of
the star-triangle equation both with discrete and continuous spin
variables

When one elliptic nome tends to a root of unity, q2 → e2πi/N , we obtain
a hybrid of a classical non-linear integrable system and a solvable model
of statistical mechanics. In particular, it contains the chiral Potts and
Kashiwara-Miwa models. This is analogous to the background field
quantization in Quantum Field Theory.

Connection to superconformal indices and electric-magnetic dualities
(Dolan-Osborn, Spiridonov-Vartanov)
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THANK YOU
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