A master solution of the Yang-Baxter equation and classical discrete integrable equations.

Vladimir Bazhanov

(in collaboration with Sergey Sergeev \& Vladimir Mangazeev)
Australian National University

Mathematical Statistical Mechanics, Kyoto University, 1 August 2013

Outline

- Lattice models of statistical mechanics and field theory,
- Quantum Yang-Baxter equation. Star-triangle relation.
- low-temperature (quasi-classical) limit and its relation to classical mechanics.
- New "master" solution to the star-triangle relation (STR) contains
- all previously known solutions to STR
- Ising \& Kashiwara-Miwa models
- Fateev-Zamolodchikov \& chiral Potts models
- elliptic gamma-functions \& Spiridonov's elliptic beta integral
- Low-temperature (quasi-classical) limit of the "master solution".
- relation to the Adler-Bobenko-Suris classical non-linear integrable equations on quadrilateral graphs,
- new integrable models of statistical mechanics where the Boltzmann weights are determined by classical integrable equations $\left(Q_{4}\right)$.

Space of solutions to the Yang-Baxter equation

- YBE is an overdetermined system of algebraic equations. Its general solution is unknown even in the simplest cases.
- Known solutions, various methods:

Onsager, McGuire, Yang, Baxter, ... (over 65 different authors; native languages: Russian 26, Japanese 15, English 9, German 4, French 4, ..., Norwegian 1.)

- Algorithmic recipes (Drinfeld,Jimbo) Universal R-matrix for quantized (affine) Lie algebras, or quantum groups.
- 3D-generalization: tetrahedron equation, Zamolodchikov (1980) followed by Baxter, Bazhanov, Kashaev, Korepanov, Mangazeev, Maillet-Nijhoff, Sergeev, Stroganov,...
- New result (VB-Mangazeev-Sergeev): 3D integrable model with POSITIVE Boltzmann weights

Local "spins": $\sigma_{i} \in$ (set of values), $\quad \sigma_{i} \in \mathbb{R}$

$$
\begin{gathered}
Z=\sum_{\{s p i n s\}} e^{-E(\sigma) / T}, \\
E(\{\sigma\})=\sum_{(i j) \in \text { edges }} \epsilon\left(\sigma_{i}, \sigma_{j}\right),
\end{gathered}
$$

Boltzmann weights

$$
\begin{gathered}
W\left(\sigma_{i}, \sigma_{j}\right)=e^{-\epsilon\left(\sigma_{i}, \sigma_{j}\right) / T} \\
Z=\sum_{\{s p i n s\}} \prod_{(i j) \in \text { edges }} W\left(\sigma_{i}, \sigma_{j}\right) .
\end{gathered}
$$

The problem: calculate partition function when number of edges is infinite,

$$
\log Z=-N f / T+O(\sqrt{N}), \quad N \rightarrow \infty
$$

Solvable analytically if the Boltzmann weights satisfy the Yang-Baxter equation

Two types of Boltzmann weights, depending on the arrangement of rapidity line wrt the edge
$W_{p-q}(x, y)$ and $\bar{W}_{p-q}(x, y)$.

Simplest form of the Yang-Baxter equation: the star-triangle relation

$\sum_{\sigma} \bar{W}_{p-q}(\sigma, b) W_{p-r}(c, \sigma) \bar{W}_{q-r}(a, \sigma)=W_{p-q}(c, a) \bar{W}_{p-r}(a, b) W_{q-r}(c, b)$.

General structure of Boltzmann weights

In general, weights \bar{W} are related to W via

$$
\bar{W}_{p-q}(x, y)=\sqrt{S(x) S(y)} W_{\eta-p+q}(x, y),
$$

where $S(x)$ are one-"spin" weights and η is the non-zero crossing parameter (value of an open angle).
In most cases the Boltzmann weights W are symmetric,

$$
W_{p-q}(x, y)=W_{p-q}(y, x) .
$$

Let for shortness

$$
p-q=\alpha_{1}, \quad q-r=\alpha_{3} .
$$

The star-triangle relation takes the form (assume continuous spins)

$$
\begin{aligned}
& \int d x_{0} S\left(x_{0}\right) W_{\eta-\alpha_{1}}\left(x_{1}, x_{0}\right) W_{\alpha_{1}+\alpha_{3}}\left(x_{2}, x_{0}\right) W_{\eta-\alpha_{3}}\left(x_{3}, x_{0}\right) \\
&=W_{\alpha_{1}}\left(x_{2}, x_{3}\right) W_{\eta-\alpha_{1}-\alpha_{3}}\left(x_{1}, x_{3}\right) W_{\alpha_{3}}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Planar graph G, where \mathcal{L} is the medial graph

Low-temperature limit

Partition function

$$
Z=\int \prod_{(i j)} W_{\alpha_{i j}}\left(x_{i}, x_{j}\right) \prod_{m} S\left(x_{m}\right) d x_{m}, \quad \alpha_{i j}= \begin{cases}p-q, & 1^{\text {st }} \text {-type } \\ \eta-p+q, & 2^{\text {nd }} \text {-type }\end{cases}
$$

Assume, there is a temperature-like parameter ε, such for $\varepsilon \rightarrow 0$

$$
\begin{gathered}
W_{\alpha}(x, y)=e^{-\Lambda_{\alpha}(x, y) / \varepsilon+\mathcal{O}(1)}, \quad S(x)=\varepsilon^{-1 / 2} e^{-C(x) / \varepsilon+\mathcal{O}(1)} \\
\log Z=-\frac{1}{\varepsilon} \mathcal{E}\left(x^{(c l)}\right)+O(1), \quad \mathcal{E}(x)=\sum_{(i j)} \Lambda_{\alpha_{i j}}\left(x_{i}, x_{j}\right)+\sum_{m} C\left(x_{m}\right)
\end{gathered}
$$

and the variables $x^{(c l)}=\left\{\boldsymbol{x}_{1}^{(c l)}, x_{2}^{(c l)}, \ldots\right\}$ solve the variational equations

$$
\left.\frac{\partial \mathcal{E}(x)}{\partial x_{j}}\right|_{x=x^{(c l)}}=0
$$

Can one obtain in this way the Q4 system of Adler-Bobenko-Suris, 2003?

$$
\begin{gather*}
\Lambda_{\alpha}(x, y)=-\mathrm{i} \int_{0}^{x-y} d \xi \log \frac{\vartheta_{4}((\xi-\mathrm{i} \alpha) \mid \tau)}{\vartheta_{4}(\xi+\mathrm{i} \alpha \mid \tau)}-\mathrm{i} \int_{\pi / 2}^{x+y} d \xi \log \frac{\vartheta_{4}(\xi-\mathrm{i} \alpha \mid \tau)}{\vartheta_{4}(\xi+\mathrm{i} \alpha \mid \tau)} \\
\mathcal{C}(x)=2\left(|x|-\frac{\pi}{2}\right)^{2} . \quad|x|<\frac{\pi}{2} \tag{1}
\end{gather*}
$$

Z-invariance (Baxter 1979)

Partition function depends only on the boundary data (i.e., on values of boundary spins and values of rapidities) but not on details of the lattice inside.

Baxter's factorization theorem (1979)

$$
\log Z=-\frac{1}{T} \sum_{<i j>} f\left(\alpha_{i j}\right)+O(\sqrt{N})
$$

Low-temperature limit of the star-triangle relation

$$
\int \varepsilon^{-1 / 2} d x_{0} \exp \left\{-\frac{\mathcal{E}_{\star}\left(x_{0}\right)}{\varepsilon}+\mathcal{O}(1)\right\}=\exp \left\{-\frac{\mathcal{E}_{\Delta}}{\varepsilon}+\mathcal{O}(1)\right\}
$$

where

$$
\begin{aligned}
& \mathcal{E}_{\star}=\Lambda_{\eta-\alpha_{1}}\left(x_{0}, x_{1}\right)+\Lambda_{\alpha_{1}+\alpha_{3}}\left(x_{0}, x_{2}\right)+\Lambda_{\eta-\alpha_{3}}\left(x_{0}, x_{3}\right)+C\left(x_{0}\right) \\
& \mathcal{E}_{\Delta}=\Lambda_{\alpha_{1}}\left(x_{2}, x_{3}\right)+\Lambda_{\eta-\alpha_{1}-\alpha_{3}}\left(x_{1}, x_{2}\right)+\Lambda_{\alpha_{3}}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

the STR implies

$$
\mathcal{E}_{\star}=\mathcal{E}_{\Delta}
$$

at the stationary point

$$
\frac{\partial \mathcal{E}_{\star}}{\partial x_{0}}=0
$$

Any solution of STR, admitting low-temperature expansion, leads to classical discrete integrable system, whose action is invariant under star-triangle moves

Chiral Potts and Kashiwara-Miwa models

N-state chiral Potts model (Albertini, McCoy et al' 87 , Baxter-Perk-AuYang'87)

$$
W_{p q}(a, b)=\left(\frac{\mu_{p}}{\mu_{q}}\right)^{(a-b)} \prod_{k=1}^{a-b} \frac{y_{q}-\omega^{k} x_{p}}{y_{p}-\omega^{k} x_{q}}
$$

$\omega^{N}=1$, and $\left(x_{p}, y_{p}, \mu_{p}\right)$ is a point on genus ≥ 1 algebraic curve

- Positive Boltzmann weights. Reduces to Ising model for $N=2$.
- Contains Z_{N} model (Fateev-Zamolodchikov'82)
- R-matrix

$$
R_{a b}^{c d}=W_{p q}(a, b) \bar{W}_{p q}(b, c) W_{p q}(d, c) \bar{W}_{p q}(a, d)
$$

intertwines two cyclic representations of $U_{q}(\widehat{s l}(2))$
(VB-Stroganov'90)

Chiral Potts and Kashiwara-Miwa models

N-state model with broken Z_{N} symmetry (Kashiwara-Miwa'86)

$$
\begin{gathered}
W_{\theta}(a, b)=r_{\theta}(a-b) t_{\theta}(a+b) \\
r_{\theta}(n)=\prod_{k=1}^{n} \frac{\vartheta_{1}\left(\frac{\pi}{N}\left(k-\frac{1}{2}\right)-\frac{\theta}{2 N}\right)}{\vartheta_{1}\left(\frac{\pi}{N}\left(k-\frac{1}{2}\right)+\frac{\theta}{2 N}\right)}, \quad t_{\theta}(n)=\prod_{k=1}^{n} \frac{\vartheta_{4}\left(\frac{\pi}{N}\left(k-\frac{1}{2}\right)-\frac{\theta}{2 N}\right)}{\vartheta_{4}\left(\frac{\pi}{N}\left(k-\frac{1}{2}\right)+\frac{\theta}{2 N}\right)},
\end{gathered}
$$

- Reduces to Ising model for $N=2$.
- In the trig. case reduces to Z_{N} model (Fateev-Zamolodchikov'82)
- The correponding R-matrix intertwines two (special) cyclic representations of Sklyanin algebra (Hasegawa-Yamada'90)

Chiral Potts and Kashiwara-Miwa models

Is there a generalised KM-model corresponding to the most general cyclic representations of the Sklyanin algebra? (VB-Stroganov, 90 unpublished)

$$
\begin{gathered}
W_{\theta}(a, b)=r_{\theta}(a-b, \alpha-\beta) t_{\theta}(a+b, \alpha+\beta) \\
r_{\theta}(n, \phi)=\left[\frac{\mathcal{N}(\theta+\phi)}{\mathcal{N}(\theta-\phi)}\right]^{n / N} \prod_{k=1}^{n} \frac{\vartheta_{1}\left(\frac{\pi}{N}\left(k-\frac{1}{2}\right)-\frac{1}{2 N}(\theta-\phi)\right)}{\vartheta_{1}\left(\frac{\pi}{N}\left(k-\frac{1}{2}\right)+\frac{1}{2 N}(\theta+\phi)\right)}
\end{gathered}
$$

What is the meaning of the additional parameters?

Master solution to the star-triangle relation

Elliptic gamma-function

$$
\frac{\Gamma(x+1)}{\Gamma(x)}=x, \quad \frac{\Gamma_{\text {trig }}(x+\delta)}{\Gamma_{\mathrm{trig}}(x)} \sim \sinh (x), \quad \frac{\Gamma_{\mathrm{ell}}(x+\delta)}{\Gamma_{\mathrm{ell}}(x)} \sim \vartheta_{1}(x \mid \tau)
$$

Elliptic gamma-function

Let q, p be the temperature-like parameters (elliptic nomes)

$$
\mathrm{q}=e^{\mathrm{i} \pi \tau^{\prime}}, \quad \mathrm{p}=e^{\mathrm{i} \pi \tau} \quad \operatorname{Im}\left(\tau, \tau^{\prime}\right)>0
$$

The crossing parameter $\eta>0$ is given by

$$
e^{-2 \eta}=\mathrm{pq}, \quad \mathrm{i} \eta=\frac{1}{2} \pi\left(\tau+\tau^{\prime}\right)
$$

In what follows, we consider the primary physical regimes

$$
\eta>0, \quad \mathrm{p}, \mathrm{q} \in \mathbb{R} \quad \text { or } \quad \mathrm{p}^{*}=\mathrm{q}
$$

The elliptic gamma-function is defined by

$$
\Phi(z)=\prod_{j, k=0}^{\infty} \frac{1-e^{2 \mathrm{i} z} \mathrm{q}^{2 j+1} \mathrm{p}^{2 k+1}}{1-e^{-2 \mathrm{i} z} \mathrm{q}^{2 j+1} \mathrm{p}^{2 k+1}}=\exp \left\{\sum_{n \neq 0} \frac{e^{-2 \mathrm{i} z n}}{k\left(\mathrm{q}^{n}-\mathrm{q}^{-n}\right)\left(\mathrm{p}^{n}-\mathrm{p}^{-n}\right)}\right\}
$$

Properties of Φ :

- $\Phi(z)$ is π-periodic,

$$
\Phi(z+\pi)=\Phi(z),
$$

- $\log \Phi$ is odd,

$$
\Phi(z) \Phi(-z)=1,
$$

- Zeros and poles:

$$
\text { Zeros of } \Phi(z)=\left\{-i \eta-j \pi \tau-k \pi \tau^{\prime} \quad \bmod \pi, \quad j, k \geq 0\right\},
$$

$$
\text { Poles of } \Phi(z)=\left\{+\mathrm{i} \eta+j \pi \tau+k \pi \tau^{\prime} \quad \bmod \pi, \quad j, k \geq 0\right\},
$$

Exponential formula for $\Phi(z)$ is valid in the strip

$$
-\eta<\operatorname{Im}(z)<\eta .
$$

- Diference property:

$$
\frac{\Phi\left(z-\frac{\pi \tau^{\prime}}{2}\right)}{\Phi\left(z+\frac{\pi \tau^{\prime}}{2}\right)}=\prod_{n=0}^{\infty}\left(1-e^{2 \mathrm{i} z} \mathrm{p}^{2 n+1}\right)\left(1-e^{-2 \mathrm{i} z} \mathrm{p}^{2 n+1}\right) \sim \vartheta_{4}(z \mid \tau),
$$

and similarly with $\tau \leftrightarrows \tau^{\prime}$.

Boltzmann weights

Weights \mathbb{W} and $\overline{\mathbb{W}}$

Define the weights \mathbb{W} and $\overline{\mathbb{W}}$ by

$$
\mathbb{W}_{\alpha}(x, y)=\kappa(\alpha)^{-1} \frac{\Phi(x-y+\mathrm{i} \alpha)}{\Phi(x-y-\mathrm{i} \alpha)} \frac{\Phi(x+y+\mathrm{i} \alpha)}{\Phi(x+y-\mathrm{i} \alpha)}
$$

and

$$
\overline{\mathbb{W}}_{\alpha}(x, y)=\sqrt{\mathbb{S}(x) \mathbb{S}(y)} \mathbb{W}_{\eta-\alpha}(x, y), \quad \mathbb{S}(x)=\frac{e^{\eta / 2}}{2 \pi} \vartheta_{1}(2 x \mid \tau) \vartheta_{1}\left(2 x \mid \tau^{\prime}\right)
$$

Normalization factor (partition function per edge - exact solution) $\kappa(\alpha)$ is given by

$$
\kappa(\alpha)=\exp \left\{\sum_{n \neq 0} \frac{e^{4 \alpha n}}{n\left(\mathrm{p}^{n}-\mathrm{p}^{-n}\right)\left(\mathrm{q}^{n}-\mathrm{q}^{-n}\right)\left(\mathrm{p}^{n} \mathrm{q}^{n}+\mathrm{p}^{-n} \mathrm{q}^{-n}\right)}\right\}
$$

It satisfies

$$
\frac{\kappa(\eta-\alpha)}{\kappa(\alpha)}=\Phi(\mathrm{i} \eta-2 \mathrm{i} \alpha), \quad \kappa(\alpha) \kappa(-\alpha)=1
$$

Plots

Plot of the real π-periodic function

$$
\begin{aligned}
& R_{\alpha}(x)=\frac{\Phi(x+\mathrm{i} \alpha)}{\Phi(x-\mathrm{i} \alpha)} \\
& \text { for } \mathrm{p}=\mathrm{q}=\frac{1}{2} \text { and } \\
& \text { - red: } \alpha=\frac{\eta}{4} \\
& \text { - blue: } \alpha=\frac{\eta}{2} \\
& \text { - black: } \alpha=\frac{3 \eta}{4}
\end{aligned}
$$

Plots

Plot of the real π-periodic function

$$
R_{\alpha}(x)=\frac{\Phi(x+\mathrm{i} \alpha)}{\Phi(x-\mathrm{i} \alpha)}
$$

for $\alpha=\eta / 4$ and

- red: $\mathrm{p}=\mathrm{q}=0.5$
- blue: $\mathrm{p}=\mathrm{q}=0.6$
- black: $\mathrm{p}=\mathrm{q}=0.7$

Properties of \mathbb{W} and $\overline{\mathbb{W}}$

- The weights $\mathbb{W}_{\alpha}(x, y)$ and $\overline{\mathbb{W}}_{\alpha}(x, y)$ are real positive for

$$
x, y \in \mathbb{R} \quad \text { and } \quad 0<\alpha<\eta
$$

- The weights are symmetric and π-periodic,

$$
\mathbb{W}_{\alpha}(x, y)=\mathbb{W}_{\alpha}(y, x)=\mathbb{W}_{\alpha}(-x, y)=\mathbb{W}_{\alpha}(x+\pi, y)=\ldots
$$

- Difference properties of the weights:

$$
\frac{\mathbb{W}_{\alpha}\left(x-\frac{\pi \tau^{\prime}}{2}, y\right)}{\mathbb{W}_{\alpha}\left(x+\frac{\pi \tau^{\prime}}{2}, y\right)}=\frac{\vartheta_{4}(x-y+\mathrm{i} \alpha \mid \tau)}{\vartheta_{4}(x-y-\mathrm{i} \alpha \mid \tau)} \frac{\vartheta_{4}(x+y+\mathrm{i} \alpha \mid \tau)}{\vartheta_{4}(x+y-\mathrm{i} \alpha \mid \tau)}
$$

and similarly with $\tau \leftrightarrows \tau^{\prime}$.

As a mathematical identity the star-triangle relation for this solution is equivalent to Spiridonov's celebrated elliptic beta integral (2001).

This identity lies in the basis of the theory of elliptic hypergeometric functions.

Its connection with the Yang-Baxter equation (star-triangle relation) was not hitherto known

Particular cases of the master solution

"Trigonometric" limit.

$$
\tau=\mathrm{ib} / R, \quad \tau^{\prime}=\mathrm{ib}^{-1} / R, \quad R \rightarrow \infty
$$

Gamma-function with small argument

$$
\Phi\left(\frac{\pi}{R} \sigma\right) \rightarrow \varphi(\sigma)=\exp \left\{\frac{1}{4} \int_{\mathrm{pv}} \frac{d w}{w} \frac{e^{-2 \mathrm{i} \sigma w}}{\sinh (\mathrm{~b} w) \sinh (w / \mathrm{b})}\right\}
$$

Gamma-function with big argument

$$
\Phi\left(\frac{\pi}{R} \sigma+\text { const }\right) \rightarrow 1, \quad \text { const }=\mathcal{O}\left(R^{0}\right) .
$$

Two regimes of the star-triangle equation:

$$
x_{j}=\text { const }+\frac{\pi}{R} \sigma_{j} \quad \text { and } \quad x_{j}=\frac{\pi}{R} \sigma_{j}
$$

Low temperature limit

We consider the low-temperature limit outside the primary physical regime:

$$
\mathrm{p}^{2}=e^{2 \mathrm{i} \pi \tau} \quad \text { and } \quad \mathrm{q}^{2}=e^{-T / N^{2}} \omega, \quad \omega=e^{2 \pi \mathrm{i} / N}, \quad T \rightarrow 0 .
$$

Asymptotic of \mathbb{W} : the low- T expansion

$$
\mathbb{W}_{\alpha}(x, y)=\exp \left\{-\frac{\Lambda_{\alpha}(x, y)}{T}\right\} \cdot W_{\alpha}(x, y) \cdot(1+\mathcal{O}(T))
$$

where the Lagrangian density $\Lambda_{\alpha}(x, y)$ is $\frac{\pi}{N}$ periodic in x and y while the finite part $W_{\alpha}(x, y)$ is π-periodic.
Asymptotic of the partition function:

$$
\mathcal{Z}=\int_{0 \leq x_{m} \leq \pi} \ldots \int_{T} \exp \left\{-\frac{\mathcal{E}(\{x\})}{T}+\mathcal{O}(1)+\mathcal{O}(T)\right\} \prod_{m} \frac{d x_{m}}{\sqrt{T}}, \quad T \rightarrow 0
$$

where $\mathcal{E}(\{x\})$ is an action for a classical discrete integrable system. The ground state of the system is highly degenerate due to π / N periodicity.

$\frac{\pi}{N}$-comb structure

Plot of

$$
\operatorname{abs}\left(\frac{\Phi(x+\mathrm{i} \alpha)}{\Phi(x-\mathrm{i} \alpha)}\right)
$$

with $\mathrm{p}=\frac{1}{2}$ and

$$
\mathrm{q}=0.99 \cdot e^{\mathrm{i} \pi / 5}
$$

The peaks are at

$$
x=\frac{\pi}{N}\left(n+\frac{1}{2}\right),
$$

Star-triangle equation in the low temperature limit

Expression for the Lagrangian density:

$$
\begin{gather*}
\Lambda_{\alpha}(x, y)=2 \mathrm{i} N \int_{0}^{x-y} d \xi \log \frac{\vartheta_{3}(N(\xi-\mathrm{i} \alpha) \mid N \tau)}{\vartheta_{3}(N(\xi+\mathrm{i} \alpha) \mid N \tau)}+2 \mathrm{i} N \int_{\pi / 2 N}^{x+y} d \xi \log \frac{\vartheta_{3}(N(\xi-\mathrm{i} \alpha) \mid N \tau)}{\vartheta_{3}(N(\xi+\mathrm{i} \alpha) \mid N \tau)} \\
\Lambda_{\eta-\alpha}(x, y)=\frac{\pi^{2}}{2}-(N x)^{2}-(N y)^{2} \\
+2 \mathrm{i} N \int_{0}^{x-y} d \xi \log \frac{\vartheta_{1}(N(\mathrm{i} \alpha+\xi) \mid N \tau)}{\vartheta_{1}(N(\mathrm{i} \alpha-\xi) \mid N \tau)}+2 \mathrm{i} N \int_{\pi / 2 N}^{x+y} d \xi \log \frac{\vartheta_{1}(N(\mathrm{i} \alpha+\xi) \mid N \tau)}{\vartheta_{1}(N(\mathrm{i} \alpha-\xi) \mid N \tau)} . \tag{2}\\
\mathcal{C}(x)=2\left(x-\frac{\pi}{2}\right)^{2} . \quad 0<x<\frac{\pi}{N} \tag{3}
\end{gather*}
$$

Energy for the regular square lattice

$$
\begin{equation*}
\mathcal{E}(X)=\sum_{(i j)} \Lambda\left(\alpha \mid x_{i}, x_{j}\right)+\sum_{(k l)} \Lambda\left(\eta-\alpha \mid x_{k}, x_{l}\right)+\sum_{m} \mathcal{C}\left(x_{m}\right) \tag{4}
\end{equation*}
$$

Variational equations (Adler-Bobenko-Suris Q_{4} eqns.)

$$
\begin{gathered}
\frac{\partial \mathcal{E}(X)}{\partial x_{i}}=0, \Rightarrow \Psi_{3}\left(x, x_{r}\right) \Psi_{3}\left(x, x_{\ell}\right)=\Psi_{1}\left(x, x_{u}\right) \Psi_{1}\left(x, x_{d}\right) \\
\Psi_{j}(x, y)=\frac{\vartheta_{j}(N(x-y+\mathrm{i} \alpha) \mid N \tau) \vartheta_{j}(N(x+y+\mathrm{i} \alpha) \mid N \tau)}{\vartheta_{j}(N(x-y-\mathrm{i} \alpha) \mid N \tau) \vartheta_{j}(N(x+y-\mathrm{i} \alpha) \downarrow N \tau)}, \quad j=1,2,3,4
\end{gathered}
$$

Zeroth order

Due to $\frac{\pi}{N}$-periodicity of the leading term, we introduce the discrete spin variables n_{j},

$$
x_{j}=\xi_{j}+\frac{\pi}{N} n_{j}, \quad 0<\operatorname{Re}\left(\xi_{j}\right)<\frac{\pi}{2 N}, \quad n_{j} \in \mathbb{Z}_{N}
$$

where parameter ξ_{0} is the solution of the variational equation (in general: parameters ξ_{j} are solution of classical integrable equations). Canceling then the T^{-1} term, we come to the most general discrete-spin star-triangle equation:

$$
\begin{aligned}
& \sum_{n_{0} \in \mathbb{Z}_{N}} \bar{W}_{p q}\left(x_{0}, x_{1}\right) W_{p r}\left(x_{0}, x_{2}\right) \bar{W}_{q r}\left(x_{0}, x_{3}\right) \\
&=\mathcal{R}_{p q r} W_{p q}\left(x_{2}, x_{3}\right) \bar{W}_{p r}\left(x_{1}, x_{3}\right) W_{q r}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Note: we consider the star-triangle equation in the orders T^{-1} and T^{0}, however it is satisfied in all orders of T-expansion.

Hybrid model

$$
\mathcal{Z}=\int_{0 \leq x_{m} \leq \pi} \ldots \int_{\exp }\left\{-\frac{\mathcal{E}(\{x\})}{T}+\mathcal{O}(1)+\mathcal{O}(T)\right\} \prod_{m} \frac{d x_{m}}{\sqrt{T}}, \quad T \rightarrow 0,
$$

General hybrid model

I. Rapidity lattice

General hybrid model

II. Bipartite graph, to each site assign a pair $\left(\xi_{j}, n_{j}\right)$, where ξ_{j} are continuous and $n_{j} \in \mathbb{Z}_{N}$.

General hybrid model

III. Fix all boundary variables $\left(\xi_{i}, n_{i}\right)$.

General hybrid model

IV. Solve classical integrable variational equations for the parameters ξ_{j} in the bulk (Dirichlet problem for the Adler-Bobenko-Suris system)

General hybrid model

V. All discrete-spin Boltzmann weights W and \bar{W} entering the partition function are now defined, the lattice statistical mechanics begins.

General hybrid model

Asymptotics of the partition function:

$$
\log \mathcal{Z}=-\frac{\mathcal{E}\left(\left\{\xi^{(c l)}\right\}\right)}{T}+\log \mathcal{Z}_{0}+\mathcal{O}(T)
$$

where $\left\{\xi^{(c l)}\right\}$ denote the stationary point of the classical action,

$$
\left.\frac{\partial \mathcal{E}(\{\xi\})}{\partial \xi_{m}}\right|_{\{\xi\}=\left\{\xi^{(c l)}\right\}}=0,
$$

and $\mathcal{Z}_{0}=\mathcal{Z}_{0}\left(\left\{\xi^{(c l)}\right\}\right)$ is the partition function for the discrete-spin system.

A new solution of the tetrahedron equation

Yang-Baxter equation

$$
\begin{equation*}
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \tag{5}
\end{equation*}
$$

Tetrahedron equation

$$
\begin{equation*}
R_{123} R_{145} R_{246} R_{356}=R_{356} R_{246} R_{145} R_{123} \tag{6}
\end{equation*}
$$

where R_{123} acts in a product of three oscillator Fock spaces, $n=0,1,2 \ldots$

$$
\begin{aligned}
& R_{n_{1}, n_{2}, n_{3}}^{n_{1}^{\prime}, n_{3}^{\prime}, n_{3}^{\prime}}=\delta_{n_{1}+n_{2}, n_{1}^{\prime}+n_{2}^{\prime}} \delta_{n_{2}+n_{3}, n_{2}^{\prime}+n_{3}^{\prime}} q^{n_{2}\left(n_{2}+1\right)-\left(n_{2}-n_{1}^{\prime}\right)\left(n_{2}-n_{3}^{\prime}\right)} \\
& \times \phi_{1}^{n_{1}} \phi_{2}^{n_{2}} \phi_{3}^{n_{3}} \phi_{4}^{n_{1}^{\prime}} \sum_{r=0}^{n_{2}} \frac{\left(q^{-2 n_{1}^{\prime}} ; q^{2}\right)_{n_{3}-r}}{\left(q^{2} ; q^{2}\right)_{n_{3}-r}} \frac{\left(q^{2+2 n_{3}} ; q^{2}\right)_{r}}{\left(q^{2} ; q^{2}\right)_{r}} q^{-2 r\left(n_{2}+n_{1}^{\prime}+1\right)}
\end{aligned}
$$

For $0<q<1$ all nonzero matrix elements of R are positive. Layer-to-layer transfer matrix of the size $M \times N$, possesses rank-size duality for $U_{q}\left(\widehat{s l_{N}}\right)$ and $U_{q}\left(\widehat{s l}_{M}\right)$

$$
\mathbf{T}(\{\phi\})=\underset{\mu}{\oplus} T_{M}^{\widehat{s l_{N}}}(\mu)=\underset{\nu}{\oplus} T_{N}^{\widehat{s l_{M}}}(\nu)
$$

Quasiclassical limit leads to 3D circular nets (Bobenko, Konopelchenko-Schief)

Circular Nets

Summary

- We presented a new solution to the star-triangle equation expressed in terms of elliptic Gamma-functions
- This solution involves two temperature-like parameters (elliptic nomes p and q)
- This solution contains as specials cases all previously known solutions of the star-triangle equation both with discrete and continuous spin variables
- When one elliptic nome tends to a root of unity, $\mathrm{q}^{2} \rightarrow e^{2 \pi i / N}$, we obtain a hybrid of a classical non-linear integrable system and a solvable model of statistical mechanics. In particular, it contains the chiral Potts and Kashiwara-Miwa models. This is analogous to the background field quantization in Quantum Field Theory.
- Connection to superconformal indices and electric-magnetic dualities (Dolan-Osborn, Spiridonov-Vartanov)

THANK YOU

Few references

易
Bazhanov，V．V．and Sergeev，S．M．＂A master solution of the quantum Yang－Baxter equation and classical discrete integrable equations＂，2010．arXiv：1006．0651．

Bazhanov，V．V．and Sergeev，S．M．＂Quasi－classical expansion of the Yang－Baxter equation and integrable systems on planar graphs＂，2010．To appear．

Bazhanov，V．V．，Mangazeev，V．V．，and Sergeev，S．M．Faddeev－Volkov solution of the Yang－Baxter Equation and Discrete Conformal Symmetry．Nuclear Physics B 784 ［FS］（2007）pp 234－258
Spiridonov，V．P．＂On the elliptic beta function＂．Успехи Математических Наук 56 （1）（2001）181－182．
©
Spiridonov，V．P．＂Essays on the theory of elliptic hypergeometric functions＂．Успехи Математических Наук 63 （2008）3－72．

Adler，V．E．and Suris，Y．B．＂Q4：integrable master equation related to an elliptic curve＂．Int．Math．Res．Not．（2004）2523－2553．

Bobenko，A．I．and Suris，Y．B．＂On the Lagrangian structure of integrable quad－equations＂．Lett．Math．Phys． 92 （2010）17－31．

