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Non-demolition measurements and Q-jumps

Quantum jumps of light recording the birth and death
of a photon in a cavity

Sébastien Gleyzes', Stefan Kuhr'f, Christine Guerlin', Julien Bernu', Samuel Deléglise', Ulrich Busk Hoff',
Michel Brune', Jean-Michel Raimond' & Serge Haroche'?
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- How to measure photons without destroying them ?

— How to record the cavity states ?
— How to observe quantum jumps? Are they detector dependent ?

— What determines the Q-jump dynamics ?

The photon system is probed indirectly via another quantum system.
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Cavity QED experiments

-- Testing light/photon (the quantum system) with matter (the quantum probes).

System (S)= photons in a cavity.
Probes (P)= Rydberg atoms (two state systems)

Preparation Probe measurement

of the probes

Photons in a cavity Courtesy of LKB-ENS.

-- Indirect measurements:
3 Direct (Von Neumann) measurements on an auxiliary system (the probes).

i No direct observation of the cavity (the system).

-- Probe like gyroscope (spin half system).

-- Interaction like rotation of the gyroscope U = exp|i0 0° Nphoton]
(with an angle depending on the number of photons)
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Progressive field-state collapse and
quantum non-demolition photon counting

Christine Guerlin', Julien Bernu', Samuel Deléglise', Clément Sayrin', Sébastien Gleyzes', Stefan Kuhr'+,

Michel Brune', Jean-Michel Raimond' & Serge Haroche'*
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P.d.f. of the photon numbers

— Why does the p.d.f. change after each indirect measurement ?
— How does it evolve? why does it become peaked (collapsed) ?

— How does it represent the cavity state ?
— What does continuous-in-time quantum measurement mean ?

(Here: a "discrete version’ of time continuous measurement)

Figure 2 | Progressive collapse of
field into photon number state.

Hc, Photon number
probabilities plotted versus photon
and atom numbers n and N. The
histograms evolve, as N increases
from 0 to 110, from a flat
distribution inton=5and n=7

peaks.

Courtesy of LKB-ENS,
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Outline:

s = —

Classical probability theory
with a bit of quantum mechanics, |

Part I:

-- A view on (quantum) noise.
(repeated interactions)

-- Repeated (quantum) measurements, Bayes’ law and collapses.
(via the martingale convergence theorem).

-- Pointer states, exchangeability and de Finetti’s theorem.
(objective or subjective probabilities)

Part 1l | Making real «virtual |

| fluctuations |

-- Time continuous measurement and Q-jumps.
(Bi-stability (multi-stability) and Q-jumps)

-- Real time imaging of thermal and quantum fluctuations.
(observing quantum fluctuations continuously in time.)
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Preparation Probe measurement
' apparatus

of the probes
Quantum non-demolition \&ﬁ
=
——————

measurement and
random bayesian updating.

I

Courtesy of LKB-ENS.

Photons in a
cavity

-- Repeated cycles of interaction plus probe measurement:

Partial gain of information at each iteration, because of system-probe entanglement.
V=1 e

-- Probe measurements give values + or - ; =TT
Recursion for the photon number p.d.f. from data of sequences

——  up-dating of the trial/estimated p.d.f. at each step,
using an a priori model for the output conditional probabilities

rObe‘Nphoton) Ptrial(Nphoton) 1

Pa priori(%tate
Pnormalisation(%%g ee)

: probey __
Pestlmated (Nphoton‘ state) S

\_

-- Bayesian approach (encoded into Q-mechanics) :
And the updating is random (because of Q-mechanics)

-- What happens during one cycle ?
-- What happens for an iteration of cycles ?

-- A two step analysis :!

Probability
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Quantum mechanics implies «classical» Bayes’ rules

Or what happens during one interaction + measurement cycle?

-- Preparation: -- probe: 9)

-- system: ( ) =3, Cla)|a) , Qola)= C(a)? )

-- Interaction: A delicate point : we suppose that there is a basis of system states
*preserved™ by the probe-system interaction, i.e.:

U ‘04> & ’¢> s ‘CV> %Y Ua‘¢> for U the evolution operator of the probe-system interaction
i This will be related to the existence of *pointer states*, to exchangeability,...

-- After interaction: -- probe + system: ) C(a) |o) @ Uy|9)

-- After probe measurement. If output probe measurementis |%)

- probe + system :oc (£, C(a)(i|Ual9) |a)) ® i)

4 ' )
@E (= 2 QO(O‘) with p(ila) = |(i|Us|a)|?

l.e. Bayes’ rules
- 4

-- New state distribution :
... and new system state.
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Evolution of the probability distributions:
Random Bayesian up-dating...

Pick a basis a of states of the Q-system.
Start with a probability distribution (initial system state):

Qo (), ZQO((%) — L,

Let i be the output measurements on the probes.

Data (probe-system interaction) are probabilities to measure ¢ p(i|a), Z e —
conditioned on the Q-system to be in state a i

P:= ProEes Outtgoing probes
g after interaction
% with the Q-system
Iterations...

r' * outputs....
= Quantum Systém \ P

Let Q_{n-1}(a)be the probability distribution of the Q-system after (n-1) cycles,
The output of the n-th probe measurement is 7_n with probability : 77, (Z)

Then, , N

@ul@) = 5 plinla) Qua (@), with  Zy = plinja) Quor ()

\_ J
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Collapse of the p.d.f. Q.(a) asn—oo (A classical statement...)

~N

J

p
Qnla) = p(zn|oz)ZQn_1(oz)7 TR L SIHBIONEY iy S Ly — Zp(in\oz) Q2@

k (87

Claim:

* Peaked distributions are stable (stability of the pointer states):

Qn(a) = 4.~ are solutions. Then, outputs i_n are i.i.d. with probability: P(in|Y)

* Probability distributions converge a.s. (and in L1) towards peaked distributions

r

-

(HSRE (A — 0,

n—aoo

\

Prob|y, = 8] = Qo(B) )

(collapse of the wave function):

with a realisation dependent target Yw

(Von Neumann rules for quantum measurements)

* The convergence is exponential : [ Qn(a) ~exp|l—n S(v,|a)] (a# ’yw)]

with S(v|a) =

Zp i) log =

a relative entropy.
@h)
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Mesoscopic collapses :

f Quantum to classical transition.

§ Mesoscopic measurements.

"Collapse is nothing more than the updating of that calculational device
on the basis of additional experience". D. Mermin, arkiv:1301.6351

... A Bayesian point of view.
...and some robustness or universality in quantum measurements

What about if we don’t record the probe outputs?

-- statistical ensemble of peaked distribution = diagonal density matrix

——— Progressive decoherence: t (a|pn|a) = Qo(a) = const.
| (@lonlB) = ((UsUs))" (@lpolB) — 0

Elements of a proof :

- Qn () are bounded martingales,i.e. E[Q,(a)|Fn_1] = Qn_1(c)
as such they converge a.s.and in L

-- Asymptotically, the outputs are i.i.d. with asymptotic frequencies : V» (%) ~n—o0 1 P(%|V0)

-- The limit is independent of the initial trial distribution. (Important for the experiment).
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Quantum noise and repeated ‘e Probe
quantum interaction. kY

probes pparatus

e.g.as in cavity QED experiments....

ﬁ.
Photons in Courtesy of LKB-ENS.
a cavity

S = Quantum System

i

> —
Out-going probes :
. . — with .
after interaction — \
with the Q-system | { Mmeasurements |
\, or not! /

P:= Proges
>

>

kY
Iterations... - *

-- Hilbert space: H=H;3H1® - - QH,®---
-- Algebras of observable: B, =A;0A41® - 0A, &1
-- Filtration: A, G B, @ B i tor nt s

-- Gain of information : by testing output observable on the n-th first probes,
but a probabilistic gain because of Q.M.

-- Measure some observable on the (n-th) output probes (not on the Q-system):

—> & The quantum filtration is reduced to a classical filtration. (Quantum Trajectories)
§ (classical random process, the events are the out-put measurements)
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Macroscopic measurement apparatus:  Measure whether the system is in state a,
i.e. measure observable with eigenstates a.

Data of the apparatus: the p.d.f. p(i|a) on Z, for all c.

S = Quantum System For each infinite cycle, the apparatus
provide the infinite sequence,
> > ! :
) y | (le o o o y an .« o o )

V i.e. the frequencies N (i|a)

———— - — — — =

Compare the empirical histogram of the output
measurements, with the given distributions p(i |a)

—> Target state = result of the measure

Partial collapse for mesoscopic measurements.

But also «classical Bayesian measurement apparatusy.

Generalizations:

-- with different probes, probe measurements, randomly chosen, etc..
-- continuous in time description, continuous measurements, etc....

———» Applications: e.g. control and state manipulations......
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Time continuous measurement and Q-jumps:

Making real Bohr's «virtuals quantum jumps

-- As a model for discrete repeated measurement but with short time interval
f L . N f
i -- hamiltonian evolution (T=0): p — Unhamilton 2 Uy mitton

! -- measurement (POVM) : p— (FipF})/m;, with F; := (i|Umeas.|%))

-- If time duration of «probe+system interaction cyclesy is small:
dp = i[H, p| dt + (dp)meas Random time continuous measurements,
(randomness due to (random) output probe measurements)

-- If (i]1)) # 0 (a condition on probe data), these are diffusive like equations (Belavkin’s egs.)

For spin |/2 probes : discrete (+,+,—,+, —, -+ ) — B; := brownian motion.

(dp)meas Ea Lmeas (,0) dt - Dmeas (,0) dBt (in law)

For a Q-bit system : /C Teollapse = 72
0), |1)

dQr = v Qt(1 — Q) dB, for Q¢ = (0]pt|0).

-- Non-demolition measurement : H and the measured observable commute.
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Time continuous measurement and Q-jumps (Il):

-- What happens if the H and the measured observable do not commute!
A system (spin half) under continuous measurement.

[d@t = —(wp + 7 sin 20, )dt — 2y sin 0 dB; j

§ Take H = wy 0? and measure S§% = g3
With: p= 1 (1+ cosfo® +sinfo?)

~2 < w, Slightly deformed Rabi oscillations .
(measurement does take place)
1 | I
I

e | '
HEHILHI |

i i

-- Technically: Kramers like transition for a two well potential random process.

2
VT > Wo,  Teollpase K Tevolution

MWW Q-jumps between the two eigen-states

Y
Tﬂip = Tevolution/TCOHapse

7, \
Conclusion -- Measuring an observable commuting with H : (progressive) collapse.

-- Measuring an observable not commuting with H : Q-jumps.
\ Y,
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Real Time Imaging of Quantum and Thermal
Fluctuations.

Reservoir
-- For system in contact

with a thermal reservoir
and under continuous measurements.

K ﬂ i ‘Outputs
uantum System

-- Quantum/Thermal fluctuations and Q-jumps:

What are the quantum trajectories !

-- Evolution under thermal contact:

Pn — ﬁn c= Mtherm[pn] c= ZBk Pn B]JL
3 k
¢ -- Recursive indirect measurements:

—4

L {

1= b =

. | .
IV | | L

. e PR (N | PISUY T N1 W I TOIY 8 Y TSR [ I N | P

SO0 lesS 1.5¢405 deelS 54405 eSS

ﬁn — Pn+1 = Mfr?eas [ﬁn] = anﬁan]; /7Tin

with probability m; := Tr(FinﬁnFq;]:,b)

Energy cascade and Q-jumps
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Real Time Imaging of Quantum and Thermal Fluctuations (lI).

-- Time continuous formulation: 00 = (@ e, = (00 e,
Two time scales : Deterministic thermal Random time continuous
Teollapse << Ttherm. evolution (Lindblad) measurements
e -
-- For two states systems p=@Q|0)(0|+ (1 —-Q)|1)(1] (72 > A)
(with spin half probes):
| dQ: = X |p — Q] dt + v Q(1 — Q¢) dBx. )

* Waiting times :
Tl =z 7-therm/pv TO = 7-therm/(l h p)a TO/Tl = 667 T '"_"
and exponentially distributed. " ’ |
* Jump times : ‘.

7_jump L= 7_colla,pse 1Og(T‘cherm/’TCOIIaJpse)

controlled by the measurement process,

* Stationary measure: Nl u | Li P

Close to Gibbs but not quite.

Generalisations with many states and arbitrary probes (OK), and Applications......

with more thermal bath (off-equilibrium).
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Understanding repeated QND measurements
and mesoscopic measurements :
An interesting exercise in probability/Q.M. theory,
with some (probable) quantum applications...

Thank you.
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