Simple analytical results for quenches in 1D quantum gases

Pasquale Calabrese

University of Pisa

M. Collura, S. Sotiriadis, P. Calabrese, Phys. Rev. Lett. 110, 245301 (2013) + arXiv:1306.5604. M. Kormos, M. Collura, P. Calabrese, ArXiv:1307.2142 + unpublished

Earlier works with J. Cardy, F. Essler, and M. Fagotti

Quantum quench dynamics

- A many-body quantum system is prepared in the groundstate of H_0 , *i.e.* $|\Psi_0\rangle$
- At t=0, $H_0 \implies H$, *i.e.* an Hamiltonian parameter is quenched
- For t > 0, it evolves unitarily: $|\Psi(t)\rangle = e^{-iHt} |\Psi_0\rangle$
- No contact with "external" world
- How can we describe the dynamics?

von Neumann in 1929 posed the question [1003.2133]

It stayed a purely academic question: for condensed matter systems the coupling to the environment is unavoidable

Not anymore in cold atoms!

Quantum Newton cradle

T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006)

few hundreds ⁸⁷Rb atoms in a 1D trap

Essentially unitary time evolution

Can a steady state be attained? Surprisingly, YES

- 1D system relaxes slowly in time, to a non-thermal distribution

- 2D and 3D systems relax quickly and thermalize:

Can a steady state be attained? Surprisingly, YES

- 1D system relaxes slowly in time, to a non-thermal distribution

Probing relaxation

S Trotzky et al, Nature Phys. 8, 325 (2012)

- Numerical DMRG and experiment agree perfectly
- The stationary state looks thermal

Probing relaxation

S Trotzky et al, Nature Phys. 8, 325 (2012)

- Numerical DMRG and experiment agree perfectly
- The stationary state looks thermal

COMMON BELIEF: - Generic systems "thermalizes" - Integrable systems are different Deutsch '91, Srednicki '95 Rigol et al '07

But the system is always in a pure state!

Reduced density matrix

K

 $|\Psi(t)\rangle$ time dependent pure state

 $\rho(t) = |\Psi(t)\rangle\langle\Psi(t)|$ density matrix of AUB (Infinite)

Reduced density matrix: $\rho_A(t) = Tr_B \rho(t)$

The expectation values of all local observables in A are

 $\langle \Psi(t) | O_A(x) | \Psi(t) \rangle = Tr[\rho_A(t) O_A(x)]$

Stationary state: If for any finite subsystem A it exists the limit

$$\lim_{t\to\infty}\rho_{\rm A}(t)=\rho_{\rm A}(\infty)$$

Consider the Gibbs ensemble for the whole system AUB

 $\rho_{\rm T} = {\rm e}^{-H/T_{\rm eff}}/{\rm Z}$ with

$$\langle \Psi_0 | H | \Psi_0 \rangle = \operatorname{Tr}[\rho_{\mathrm{T}} H]$$

Teff "is" the energy in the initial state: no free parameter!!

Reduced density matrix for subsystem A: $\rho_{A,T}=Tr_B\rho_T$

The system thermalizes if for any finite subsystem A

 $\rho_{\mathrm{A},\mathrm{T}} = \rho_{\mathrm{A}}(\infty)$

The infinite part B of the system "acts as an heat bath for A"

Generalized Gibbs Ensemble

[Rigol et al 2007]

What about integrable systems?

 I_m is a complete set of local (in space) integrals of motion $[I_m, I_n] = 0 \quad [I_m, H] = 0 \quad I_m = \sum_{n} O_m(x)$

The GGE density matrix is

$$\rho_{\text{GGE}} = e^{-\sum \lambda_m I_m} / Z \quad \text{with } \lambda_m \text{ fixed by } \quad \langle \Psi_0 | I_m | \Psi_0 \rangle = \text{Tr}[\rho_{\text{GGE}} I_m]$$
Again no free parameter!!

Reduced density matrix for subsystem A: $\rho_{A,GGE}$ =Tr_B ρ_{GGE}

The system is described by GGE if for any finite subsystem A

$$\rho_{A,GGE} = \rho_A(\infty)$$

[Barthel-Schollwock '08] [Cramer, Eisert, et al '08] + [PC, Essler, Fagotti '12]

B is not a standard heat bath for A: infinite information on the initial state is retained!

Local quenches
1 little energy, localized
2 non-translational invariant

Local quenches
1 little energy, localized
2 non-translational invariant

Quantum quenches

How to attack the problem:
Purely numerically (tDMRG, exact diagonalization)
"approximate theories", (CFT, Luttinger, RG...)
Exploiting integrability
Solving "free theories"

Quantum quenches in "free" theories

• Mass quenches in (lattice) field theories

PC-Cardy '07, Barthel-Schollwock '08, Cramer, Eisert, et al '08, Sotiriadis et al '09.....

• Luttinger model quartic term quench

Cazalilla '06, Cazalilla-Iucci '09, Mitra-Giamarchi '10....

• Transverse field quench in Ising/XY model

Barouch-McCoy '70, Igloi-Rieger '00-13, Sengupta et al '04, Rossini et al. '10, PC, Essler, Fagotti '11-13......

• Few more.....

All of them rely on a linear mapping between pre- and post-quench mode operators

paradigmatic Bethe ansatz solvable model with infinitely many local conserved charges Most general global quench: $c_0 \rightarrow c$

In the TD limit, beyond present knowledge, both time-evolution and GGE

paradigmatic Bethe ansatz solvable model with infinitely many local conserved charges

Most general global quench: $c_0 \rightarrow c$

In the TD limit, beyond present knowledge, both time-evolution and GGE

"Easier" global quench: $c_0=0 \rightarrow c$

Simple initial state: $|\psi_0(N)\rangle = \frac{1}{\sqrt{N!}}\hat{\xi}_0^N|0\rangle$ $\hat{\phi}(x) = \frac{1}{\sqrt{L}}\sum_q e^{iqx}\hat{\xi}_q$

 Very difficult to address the time evolution
 GGE construction: the expectation values of local charges diverges [firstly pointed out by JS Caux now in Kormos et al 1305.7202, problem bypassed by q-boson regularization]
$$\begin{split} & [\hat{\Phi}(x), \hat{\Phi}(y)] = [\hat{\Phi}(x), \hat{\Phi}^{\dagger}(y)] = 0 \qquad x \neq y, \\ & [\hat{\Phi}(x)]^2 = [\hat{\Phi}^{\dagger}(x)]^2 = 0, \quad \{\hat{\Phi}(x), \hat{\Phi}^{\dagger}(x)\} = 1 \end{split}$$

The easiest global quench: $c=0 \rightarrow c=\infty$ (BEC \rightarrow TG)

[studied numerically by Gritsev et al. 2010]

$$\begin{split} & [\hat{\Phi}(x), \hat{\Phi}(y)] = [\hat{\Phi}(x), \hat{\Phi}^{\dagger}(y)] = 0 \qquad x \neq y, \\ & [\hat{\Phi}(x)]^2 = [\hat{\Phi}^{\dagger}(x)]^2 = 0, \quad \{\hat{\Phi}(x), \hat{\Phi}^{\dagger}(x)\} = 1 \end{split}$$

It is a non-linear transformation in the eigenmodes:

$$\hat{\Phi}^{(\dagger)}(x) = P_x \hat{\phi}^{(\dagger)}(x) P_x \qquad P_x = |0\rangle \langle 0|_x + |1\rangle \langle 1|_x$$

The easiest global quench: $c=0 \rightarrow c=\infty$ (BEC \rightarrow TG)

[studied numerically by Gritsev et al. 2010]

$$\begin{split} & [\hat{\Phi}(x), \hat{\Phi}(y)] = [\hat{\Phi}(x), \hat{\Phi}^{\dagger}(y)] = 0 \qquad x \neq y, \\ & [\hat{\Phi}(x)]^2 = [\hat{\Phi}^{\dagger}(x)]^2 = 0, \quad \{\hat{\Phi}(x), \hat{\Phi}^{\dagger}(x)\} = 1 \end{split}$$

It is a non-linear transformation in the eigenmodes:

$$\hat{\Phi}^{(\dagger)}(x) = P_x \hat{\phi}^{(\dagger)}(x) P_x \qquad P_x = |0\rangle \langle 0|_x + |1\rangle \langle 1|_x$$

Diagonalization of the post-quench Hamiltonian:

$$JW: \quad \hat{\Psi}(x) = \exp\left\{i\pi \int_0^x dz \hat{\Phi}^{\dagger}(z) \hat{\Phi}(z)\right\} \hat{\Phi}(x) \qquad \qquad H = \int dx \, \partial_x \hat{\Psi}^{\dagger}(x) \, \partial_x \hat{\Psi}(x)$$
Fourier:
$$\hat{\eta}_k = \int_0^L dx \frac{\mathrm{e}^{-ikx}}{\sqrt{L}} \hat{\Psi}(x) \qquad \qquad H = \sum_{k=-\infty}^\infty k^2 \hat{\eta}_k^{\dagger} \hat{\eta}_k$$
Fourier:
$$\hat{\eta}_k = \int_0^L dx \frac{\mathrm{e}^{-ikx}}{\sqrt{L}} \hat{\Psi}(x) \qquad \qquad H = \sum_{k=-\infty}^\infty k^2 \hat{\eta}_k^{\dagger} \hat{\eta}_k$$

1 Non-local charges: $\hat{n}_k = \hat{\eta}_k^{\dagger} \hat{\eta}_k$ 2 Local charges: $\hat{I}_j = \int dx \,\hat{\Psi}^{\dagger}(x) (-i)^j \frac{\partial^j}{\partial x^j} \hat{\Psi}(x) = \sum_k k^j \hat{n}_k$ Linear relation I_j vs n_k The two GGEs are equivalent: $\sum \gamma_j I_j = \sum \lambda_k n_k$

Two-point fermionic correlation

$$\langle \hat{\Psi}^{\dagger}(x)\hat{\Psi}(y)\rangle \text{ does not depend on time because Fourier transform of } n_k \\ \langle \hat{\Psi}^{\dagger}(x)\hat{\Psi}(y)\rangle = \sum_{j=0}^{\infty} \frac{(-2)^j}{j!} \int_x^y dz_1 \cdots \int_x^y dz_j \langle \hat{\Phi}^{\dagger}(x)\hat{\Phi}^{\dagger}(z_1)\cdots \hat{\Phi}^{\dagger}(z_j)\hat{\Phi}(z_j)\cdots \hat{\Phi}(z_1)\hat{\Phi}(y)\rangle \\ \stackrel{\text{expansion of JW + normal ordering}}{} \text{ How to get this?}$$

Two-point fermionic correlation

 $\langle \hat{\Psi}^{\dagger}(x)\hat{\Psi}(y)\rangle \text{ does not depend on time because Fourier transform of } n_k \\ \langle \hat{\Psi}^{\dagger}(x)\hat{\Psi}(y)\rangle = \sum_{j=0}^{\infty} \frac{(-2)^j}{j!} \int_x^y dz_1 \cdots \int_x^y dz_j \langle \hat{\Phi}^{\dagger}(x)\hat{\Phi}^{\dagger}(z_1)\cdots \hat{\Phi}^{\dagger}(z_j)\hat{\Phi}(z_j)\cdots \hat{\Phi}(z_1)\hat{\Phi}(y)\rangle \\ \stackrel{\text{expansion of JW + normal ordering}}{} \text{ How to get this?}$

We known for canonical bosons:

$$\langle \hat{\phi}^{\dagger}(x)\hat{\phi}^{\dagger}(z_{1})\cdots\hat{\phi}^{\dagger}(z_{j})\hat{\phi}(z_{j})\cdots\hat{\phi}(z_{1})\hat{\phi}(y)\rangle = \frac{1}{L^{j+1}}\langle N|(\hat{\xi}_{0}^{\dagger})^{j+1}(\hat{\xi}_{0})^{j+1}|N\rangle = \frac{1}{L^{j+1}}\frac{N!}{(N-j-1)!}$$

A carefully lattice regularization shows that canonical and HC bosons "are the same", because in the TD limit $_N \langle \text{BEC} | a_l^{\dagger} a_l | \text{BEC} \rangle_N \approx \nu e^{-\nu}$ with $\nu = N/M$, M lattice sites and LL is $\nu \rightarrow 0$

$$\langle \hat{\Psi}^{\dagger}(x)\hat{\Psi}(y)\rangle = \frac{N}{L} \sum_{j=0}^{\infty} \frac{[-2|x-y|/L]^j}{j!} \frac{(N-1)!}{(N-j-1)!} = n\left(1 - \frac{2n|x-y|}{N}\right)^{N-1} \xrightarrow{N \to \infty} ne^{-2n|x-y|}$$

Fourier transform gives $n_k = \frac{4n^2}{k^2 + 4n^2}$ and hence the GGE

Two-point fermionic correlation

 $\langle \hat{\Psi}^{\dagger}(x)\hat{\Psi}(y)\rangle \text{ does not depend on time because Fourier transform of } n_k \\ \langle \hat{\Psi}^{\dagger}(x)\hat{\Psi}(y)\rangle = \sum_{j=0}^{\infty} \frac{(-2)^j}{j!} \int_x^y dz_1 \cdots \int_x^y dz_j \langle \hat{\Phi}^{\dagger}(x)\hat{\Phi}^{\dagger}(z_1)\cdots \hat{\Phi}^{\dagger}(z_j)\hat{\Phi}(z_j)\cdots \hat{\Phi}(z_1)\hat{\Phi}(y)\rangle \\ \stackrel{\text{expansion of JW + normal ordering}}{} \text{ How to get this?}$

We known for canonical bosons:

$$\langle \hat{\phi}^{\dagger}(x)\hat{\phi}^{\dagger}(z_{1})\cdots\hat{\phi}^{\dagger}(z_{j})\hat{\phi}(z_{j})\cdots\hat{\phi}(z_{1})\hat{\phi}(y)\rangle = \frac{1}{L^{j+1}}\langle N|(\hat{\xi}_{0}^{\dagger})^{j+1}(\hat{\xi}_{0})^{j+1}|N\rangle = \frac{1}{L^{j+1}}\frac{N!}{(N-j-1)!}$$

A carefully lattice regularization shows that canonical and HC bosons "are the same", because in the TD limit $_N \langle \text{BEC} | a_l^{\dagger} a_l | \text{BEC} \rangle_N \approx \nu e^{-\nu}$ with $\nu = N/M$, M lattice sites and LL is $\nu \rightarrow 0$

$$\langle \hat{\Psi}^{\dagger}(x)\hat{\Psi}(y)\rangle = \frac{N}{L} \sum_{j=0}^{\infty} \frac{[-2|x-y|/L]^j}{j!} \frac{(N-1)!}{(N-j-1)!} = n\left(1 - \frac{2n|x-y|}{N}\right)^{N-1} \xrightarrow{N \to \infty} ne^{-2n|x-y|}$$

Fourier transform gives $n_k = \frac{4n^2}{k^2 + 4n^2}$ and hence the GGE

The GGE bosonic correlation is given by Wick theorem $\langle \hat{\phi}^{\dagger}(x) \hat{\phi}(y) \rangle_{\text{GGE}} = ne^{-2n|x-y|}$ Important: $\hat{I}_j = \int \frac{dk}{2\pi} k^j n_k = \int \frac{dk}{2\pi} k^j \frac{4n^2}{k^2 + 4n^2}$ diverges for $j \neq 0$, but no problem for n_k GGE

Dynamical density-density correlation function

By definition we have:

$$\langle \hat{\rho}(x_1, t_1) \hat{\rho}(x_2, t_2) \rangle = \frac{1}{L^2} \sum_{k_1, k_2, k_3, k_4} e^{-i(k_1 - k_2)x_1 - i(k_3 - k_4)x_2} e^{i(k_1^2 - k_2^2)t_1} e^{i(k_3^2 - k_4^2)t_2} \langle \psi_0 | \hat{\eta}_{k_1}^{\dagger} \hat{\eta}_{k_2} \hat{\eta}_{k_3}^{\dagger} \hat{\eta}_{k_4} | \psi_0 \rangle$$

4-pt function non trivial because Wick theorem holds in usual form only for $t=\infty$ (and t=0). To get it let's go back to real space:

$$\langle \psi_0 | \hat{\eta}_{k_1}^{\dagger} \hat{\eta}_{k_2} \hat{\eta}_{k_3}^{\dagger} \hat{\eta}_{k_4} | \psi_0 \rangle = \frac{1}{L^2} \int_0^L dz_1 dz_2 dz_3 dz_4 e^{i(k_1 z_1 - k_2 z_2 + k_3 z_3 - k_4 z_4)} \langle \psi_0 | \hat{\Psi}^{\dagger}(z_1) \hat{\Psi}(z_2) \hat{\Psi}^{\dagger}(z_3) \hat{\Psi}(z_4) | \psi_0 \rangle$$

In a nutshell: expand the string, treat hc boson as canonical bosons, sum up the 24 terms...

$$\langle \hat{\Psi}^{\dagger}(z_1)\hat{\Psi}(z_2)\hat{\Psi}^{\dagger}(z_3)\hat{\Psi}(z_4)\rangle = \delta(z_2 - z_3)n\mathrm{e}^{-2n|z_4 - z_1|} + \sum_{\mathcal{P}}\theta(z_{\mathcal{P}})\sigma_{\mathcal{P}}n^2\mathrm{e}^{-2n(z_{\mathcal{P}_4} - z_{\mathcal{P}_3} + z_{\mathcal{P}_2} - z_{\mathcal{P}_1})}$$

in the integral this "anomalous" term is fundamental!

Dynamical density-density correlation function

Plugging in the integral

the rest is Wick...

 $\langle \psi_0 | \hat{\eta}_{k_1}^{\dagger} \hat{\eta}_{k_2} \hat{\eta}_{k_3}^{\dagger} \hat{\eta}_{k_4} | \psi_0 \rangle = n(k_1) \delta_{k_2, k_3} \delta_{k_1, k_4} + (\delta_{k_1, k_2} \delta_{k_3, k_4} - \delta_{k_2, k_3} \delta_{k_1, k_4}) n(k_1) n(k_3) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2) + \delta_{k_1, -k_4} \frac{k_1 k_2}{4n$

Summing over momenta

$$\begin{aligned} \langle \hat{\rho}(x,t)\hat{\rho}(x+\Delta x,t+\Delta t)\rangle &= \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}} \mathrm{e}^{-i\frac{\Delta x^2}{4\Delta t}} \int \frac{dk}{2\pi} e^{ik\Delta x-ik^2\Delta t} n(k) + \\ & n^2 - \left|\int \frac{dk}{2\pi} e^{ik\Delta x-ik^2\Delta t} n(k)\right|^2 + \left|\frac{1}{2n}\int \frac{dk}{2\pi} \mathrm{e}^{ik\Delta x+ik^2(2t+\Delta t)} kn(k)\right|^2 \end{aligned}$$

Dynamical density-density correlation function Plugging in the integral the rest is Wick... $\langle \psi_0 | \hat{\eta}_{k_1}^{\dagger} \hat{\eta}_{k_2} \hat{\eta}_{k_3}^{\dagger} \hat{\eta}_{k_4} | \psi_0 \rangle = n(k_1) \delta_{k_2, k_3} \delta_{k_1, k_4} + (\delta_{k_1, k_2} \delta_{k_3, k_4} - \delta_{k_2, k_3} \delta_{k_1, k_4}) n(k_1) n(k_3) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_$ Summing over momenta $\left\langle \hat{\rho}(x,t)\hat{\rho}(x+\Delta x,t+\Delta t)\right\rangle = \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{-i\frac{\Delta x^2}{4\Delta t}}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi|\Delta t|}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{-i\frac{\Delta x^2}{4\Delta t}}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi}e^{-i\frac{\Delta x^2}{4\Delta t}}$ $n^{2} - \left| \int \frac{dk}{2\pi} e^{ik\Delta x - ik^{2}\Delta t} n(k) \right|^{2} + \left| \frac{1}{2n} \int \frac{dk}{2\pi} e^{ik\Delta x + ik^{2}(2t + \Delta t)} kn(k) \right|^{2}$

Dynamical density-density correlation function Plugging in the integral the rest is Wick... $\langle \psi_0 | \hat{\eta}_{k_1}^{\dagger} \hat{\eta}_{k_2} \hat{\eta}_{k_3}^{\dagger} \hat{\eta}_{k_4} | \psi_0 \rangle = n(k_1) \delta_{k_2, k_3} \delta_{k_1, k_4} + (\delta_{k_1, k_2} \delta_{k_3, k_4} - \delta_{k_2, k_3} \delta_{k_1, k_4}) n(k_1) n(k_3) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_$ Summing over momenta $\left\langle \hat{\rho}(x,t)\hat{\rho}(x+\Delta x,t+\Delta t)\right\rangle = \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi}e^{-i\frac{\Delta x^2}{4\Delta t}}\int \frac{dk}{2\pi}e^{-i\frac{\Delta x^2}{4\Delta t}}n(k) + \frac{1+i\operatorname{sgn}(\Delta t)}{2\pi}e^{-i\frac{\Delta x^2}{4\Delta t}}$ $n^{2} - \left| \int \frac{dk}{2\pi} e^{ik\Delta x - ik^{2}\Delta t} n(k) \right|^{2} + \left| \frac{1}{2n} \int \frac{dk}{2\pi} e^{ik\Delta x + ik^{2}(2t + \Delta t)} kn(k) \right|^{2}$

Dynamical density-density correlation function Plugging in the integral the rest is Wick... $\langle \psi_0 | \hat{\eta}_{k_1}^{\dagger} \hat{\eta}_{k_2} \hat{\eta}_{k_3}^{\dagger} \hat{\eta}_{k_4} | \psi_0 \rangle = n(k_1) \delta_{k_2, k_3} \delta_{k_1, k_4} + (\delta_{k_1, k_2} \delta_{k_3, k_4} - \delta_{k_2, k_3} \delta_{k_1, k_4}) n(k_1) n(k_3) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_$ Summing over momenta $$\begin{split} \langle \hat{\rho}(x,t)\hat{\rho}(x+\Delta x,t+\Delta t)\rangle \ &= \ \frac{1+i\,\mathrm{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}\mathrm{e}^{-i\frac{\pi^2}{4\Delta t}}\int\frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \\ & n^2 - \left|\int\frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k)\right|^2 + \left|\frac{1}{2n}\int\frac{dk}{2\pi}\mathrm{e}^{ik\Delta x+ik^2(2t+\Delta t)}kn(k)\right|^2 \end{split}$$

Dynamical density-density correlation function Plugging in the integral the rest is Wick... $\langle \psi_0 | \hat{\eta}_{k_1}^{\dagger} \hat{\eta}_{k_2} \hat{\eta}_{k_3}^{\dagger} \hat{\eta}_{k_4} | \psi_0 \rangle = n(k_1) \delta_{k_2, k_3} \delta_{k_1, k_4} + (\delta_{k_1, k_2} \delta_{k_3, k_4} - \delta_{k_2, k_3} \delta_{k_1, k_4}) n(k_1) n(k_3) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4n^2} n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) n(k_1) n(k_2) n(k_1) n(k_2) n(k_1) n(k_2)}{4n^2} n(k_1) n(k_2) n(k_1) n(k_2) n(k_1) n(k_2) n(k_1) n(k_2) n(k_1) n(k_2) n(k_1) n(k_2)$ Summing over momenta $$\begin{split} \langle \hat{\rho}(x,t)\hat{\rho}(x+\Delta x,t+\Delta t)\rangle \ &= \ \frac{1+i\,\mathrm{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}\mathrm{e}^{-i\frac{kx^2}{4\Delta t}}\int\frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \\ & n^2 - \left|\int\frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k)\right|^2 + \left|\frac{1}{2n}\int\frac{dk}{2\pi}\mathrm{e}^{ik\Delta x+ik^2(2t+\Delta t)}kn(k)\right|^2 \end{split}$$

Dynamical density-density correlation function Plugging in the integral the rest is Wick... $\langle \psi_0 | \hat{\eta}_{k_1}^{\dagger} \hat{\eta}_{k_2} \hat{\eta}_{k_3}^{\dagger} \hat{\eta}_{k_4} | \psi_0 \rangle = n(k_1) \delta_{k_2, k_3} \delta_{k_1, k_4} + (\delta_{k_1, k_2} \delta_{k_3, k_4} - \delta_{k_2, k_3} \delta_{k_1, k_4}) n(k_1) n(k_3) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{4 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_3} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \delta_{k_2, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_1, -k_4} \frac{k_1 k_2}{4 n^2}}{2 n^2} n(k_1) n(k_2) + \frac{\delta_{k_$ Summing over momenta $$\begin{split} \langle \hat{\rho}(x,t)\hat{\rho}(x+\Delta x,t+\Delta t)\rangle \ = \ \frac{1+i\,\mathrm{sgn}(\Delta t)}{2\sqrt{2\pi|\Delta t|}}\mathrm{e}^{-i\frac{4x^2}{4\Delta t}}\int\frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k) + \\ n^2 - \left|\int\frac{dk}{2\pi}e^{ik\Delta x-ik^2\Delta t}n(k)\right|^2 + \left|\frac{1}{2n}\int\frac{dk}{2\pi}\mathrm{e}^{ik\Delta x+ik^2(2t+\Delta t)}kn(k)\right|^2 \end{split}$$

Features: 1 Only the last term depend on *t*2 Wick, i.e. GGE, gives the rest, hence for *t*→∞ GGE is valid
3 auto-correlation (*∆x*=0) is time-independent [numerically noticed in Gritsev et al]

Equal time density correlation

$$\left\langle \hat{\rho}(x_1,t)\hat{\rho}(x_2,t)\right\rangle = n^2 + n\mathrm{e}^{-2n|x_1-x_2|}\delta(x_2-x_1) - n^2\mathrm{e}^{-4n|x_1-x_2|} + \left|\frac{1}{2n}\int\frac{dk}{2\pi}\mathrm{e}^{ik(x_1-x_2)+ik^22t}kn(k)\right|^2$$

Truncated form factors data from Gritsev et al

Dynamical structure factor in GGE:

$$S(q,\omega) = \frac{8n^2(q^2+\omega)^2|q|}{[(4nq)^2+(q^2-\omega)^2][(4nq)^2+(q^2+\omega)^2]}$$

f sum-rule $\int d\omega S(q,\omega)\omega = 2\pi nq^2$

A non homogeneous initial state: Expansion of an interacting gas

Expansion of initially localized ultracold bosons in 1D and 2D optical lattices.

J.P.Ronzheimer et al, PRL 110, 205301 (2013)

1) Integrable system: Ballistic Expansion
 2) Not-integrable: Diffusive Expansion

A non homogeneous initial state: Expansion of an interacting gas

Expansion of initially localized ultracold bosons in 1D and 2D optical lattices.

J.P.Ronzheimer et al, PRL 110, 205301 (2013)

JS **Caux** and R **Konik** exploited integrability to numerically study the non-equilibrium dynamics of the **Lieb-Liniger** model after the release of a parabolic trap into a circle [PRL 109, 175301 (2012)]

1) Integrable system: Ballistic Expansion
 2) Not-integrable: Diffusive Expansion

Set up

The initial state is the ground state of TG gas in harmonic trap

$$H = \int dx \,\hat{\Psi}^{\dagger}(x) \left[-\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{1}{2} \omega^2 x^2 \right] \hat{\Psi}(x) \quad \text{in JW fermions} \quad \hat{\Psi}(x) = \exp\left\{ i\pi \int_0^x dz \,\hat{\Psi}^{\dagger}(z) \hat{\Psi}(z) \right\} \,\hat{\Phi}(x)$$

 $\frac{1}{2}\omega^2 x^2$

 $n_0(x)$

n(x,t)

In terms of the one-particle eigenfunctions $\chi_j(x)$ of the 1D harmonic oscillator

$$H = \sum_{j=0}^{\infty} \epsilon_j \hat{\xi}_j^{\dagger} \hat{\xi}_j, \quad \epsilon_j = \omega(j+1/2) \qquad \hat{\Psi}(x) = \sum_{j=0}^{\infty} \chi_j(x) \hat{\xi}_j, \quad \hat{\xi}_j = \int_{-\infty}^{\infty} dx \, \chi_j^*(x) \hat{\Psi}(x)$$

Many body initial state: $|\Psi_0\rangle = \prod_{j=0}^{N-1} \hat{\xi}_j^{\dagger} |\emptyset\rangle$ Slater determinant in fermions

Set up

The initial state is the ground state of TG gas in harmonic trap

$$H = \int dx \,\hat{\Psi}^{\dagger}(x) \left[-\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{1}{2} \omega^2 x^2 \right] \hat{\Psi}(x) \quad \text{in JW fermions} \quad \hat{\Psi}(x) = \exp\left\{ i\pi \int_0^x dz \,\hat{\Psi}^{\dagger}(z) \hat{\Psi}(z) \right\} \,\hat{\Phi}(x)$$

 $\frac{1}{2}\omega^2 x^2$

 $n_0(x)$

n(x,t)

In terms of the one-particle eigenfunctions $\chi_j(x)$ of the 1D harmonic oscillator

$$H = \sum_{j=0}^{\infty} \epsilon_j \hat{\xi}_j^{\dagger} \hat{\xi}_j, \quad \epsilon_j = \omega(j+1/2) \qquad \hat{\Psi}(x) = \sum_{j=0}^{\infty} \chi_j(x) \hat{\xi}_j, \quad \hat{\xi}_j = \int_{-\infty}^{\infty} dx \, \chi_j^*(x) \hat{\Psi}(x)$$

Many body initial state: $|\Psi_0\rangle = \prod_{j=0}^{N-1} \hat{\xi}_j^{\dagger} |\emptyset\rangle$ Slater determinant in fermions

QUENCH PROTOCOL: At time t=0 we release the harmonic trap.

The evolution is governed by the free-fermion Hamiltonian with PBC:

The TD limit for a proper quench is defined as

N, $L \rightarrow \infty$ with N/L = n but at the same time $\omega \rightarrow 0$ with ωN constant

Caux-Konik '12

The TD limit for a proper quench is defined as

N, $L \rightarrow \infty$ with N/L = n but at the same time $\omega \rightarrow 0$ with ωN constant Caux-Konik '12

What about Periodic Boundary Conditions on the initial state??

The TD initial density profile $n_0(x) = \frac{\sqrt{2N\omega - \omega^2 x^2}}{\pi} \theta(\ell - |x|)$ $\ell = \sqrt{2N/\omega}$ Thomas-Fermi vanishes for $x > \ell$

We require the additional (physical) condition

initial average density

 $L > 2\ell \longrightarrow \sqrt{\omega N} > 2\sqrt{2n} \longrightarrow n_0 > n$

The TD limit for a proper quench is defined as

N, $L \rightarrow \infty$ with N/L = n but at the same time $\omega \rightarrow 0$ with ωN constant Caux-Konik '12

What about Periodic Boundary Conditions on the initial state??

The TD initial density profile $n_0(x) = \frac{\sqrt{2N\omega - \omega^2 x^2}}{\pi} \theta(\ell - |x|)$ $\ell = \sqrt{2N/\omega}$ Thomas-Fermi vanishes for $x > \ell$

We require the additional (physical) condition

$$L > 2\ell \longrightarrow \sqrt{\omega N} > 2\sqrt{2}n \longrightarrow n_0 > n_0$$

initial average density

In which sense there is a long time limit??

In global quenches we consider always $\lim_{t\to\infty} \lim_{L\to\infty} O(t)$ to have a limit and avoid revivals In finite systems this is *t*,*L* large with *vt*<*L* but, in this case, we'd get infinite line expansion, i.e. zero density, i.e. no particles and no GGE The revival time is $t \propto L^2$ [also Kaminishi, Sato, Deguchi 2013], thus we require

Interpretation: Stationarity comes from the interference of the particles going around *L* many times

The initial state is a Slater determinant

Free fermions Hamiltonian governing evolution

ERMIONIC CORRE

At any time the many-body state is a Slater Det and Wick theorem holds

 $C(x,y;t) \equiv \langle \hat{\Psi}^{\dagger}(x,t)\hat{\Psi}(y,t)\rangle = \sum_{j=0}^{N-1} \phi_{j}^{*}(x,t)\phi_{j}(y,t)$ $\phi_{j}(x,t) \text{ is the solution of the one-particle problem}$

Write $\phi_j(x,t)$ with PBC in terms of the solution in infinite space $\phi_j^{\infty}(x,t)$

$$\phi_j(x,t) = \sum_{p=-\infty}^{\infty} \phi_j^{\infty}(x+pL,t) \qquad \phi_j^{\infty}(x,t) = \frac{1}{\sqrt{1+i\omega t}} \left(\frac{1-i\omega t}{1+i\omega t}\right)^{j/2} e^{-i\frac{t\omega^2 x^2}{2(1+\omega^2 t^2)}} \chi_j\left(\frac{x}{\sqrt{1+\omega^2 t^2}}\right)$$
Minguzzi-Gangardt 2005

Physical Interpretation:

Density is simple! In the TD limit:

believed us simple. In the LD mint,

$$n(x,t) = \frac{1}{\sqrt{1 + \omega^2 t^2}} \sum_{p=-\infty}^{\infty} n_0 \left(\frac{x + pL}{\sqrt{1 + \omega^2 t^2}}\right)$$

$$n_0(x) \text{ is density at initial time}$$

$$n_0(x) = \sqrt{2N\omega - \omega^2 x^2}/\pi$$

$$n = \frac{1/2}{\omega N} = 5$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$n = \frac{1/2}{\omega N} = 5$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$n = \frac{1}{2}, \omega N = 5$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$n = \frac{1}{2}, \omega N = 5$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$n = \frac{1}{2}, \omega N = 5$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$n = \frac{1}{2}, \omega N = 5$$

$$n = \frac{1}{2}, \omega N = 5$$

$$n = \frac{1}{2}, \omega N = 5$$

$$n = 10 \quad N = 100 \quad N = \infty$$

$$n = \frac{1}{2}, \omega N = 5$$

$$n = 10 \quad N = 100 \quad N = \infty$$

$$n = \frac{1}{2}, \omega N = 5$$

$$n = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N = 100 \quad N = \infty$$

$$N = 10 \quad N$$

2

In the TD limit:

$$C(x,y;t) = \frac{e^{i\frac{\omega^2 t(x^2 - y^2)}{2(1 + \omega^2 t^2)}}}{\sqrt{1 + \omega^2 t^2}} \sum_{p = -\infty}^{\infty} e^{i\frac{\omega^2 t(x - y)pL}{1 + \omega^2 t^2}} \sum_{j=0}^{N-1} \chi_j \left(\frac{x + pL}{\sqrt{1 + \omega^2 t^2}}\right) \chi_j \left(\frac{y + pL}{\sqrt{1 + \omega^2 t^2}}\right)$$

In the TD limit:

$$C(x,y;t) = \frac{e^{i\frac{\omega^2 t(x^2 - y^2)}{2(1 + \omega^2 t^2)}}}{\sqrt{1 + \omega^2 t^2}} \sum_{p = -\infty}^{\infty} e^{i\frac{\omega^2 t(x - y)pL}{1 + \omega^2 t^2}} \sum_{j=0}^{N-1} \chi_j \left(\frac{x + pL}{\sqrt{1 + \omega^2 t^2}}\right) \chi_j \left(\frac{y + pL}{\sqrt{1 + \omega^2 t^2}}\right)$$

In the TD limit:

$$C(x,y;t) = \frac{e^{i\frac{\omega^2 t(x^2 - y^2)}{2(1 + \omega^2 t^2)}}}{\sqrt{1 + \omega^2 t^2}} \sum_{p = -\infty}^{\infty} e^{i\frac{\omega^2 t(x - y)pL}{1 + \omega^2 t^2}} \sum_{j=0}^{N-1} \chi_j \left(\frac{x + pL}{\sqrt{1 + \omega^2 t^2}}\right) \chi_j \left(\frac{y + pL}{\sqrt{1 + \omega^2 t^2}}\right)$$

In the **large-time** limit translational invariance is recovered and

$$C(x, y; t \to \infty) = 2n \frac{J_1[\sqrt{2\omega N}(x-y)]}{\sqrt{2\omega N}(x-y)}$$

In the TD limit:

$$C(x,y;t) = \frac{e^{i\frac{\omega^2 t(x^2 - y^2)}{2(1 + \omega^2 t^2)}}}{\sqrt{1 + \omega^2 t^2}} \sum_{p = -\infty}^{\infty} e^{i\frac{\omega^2 t(x - y)pL}{1 + \omega^2 t^2}} \sum_{j=0}^{N-1} \chi_j \left(\frac{x + pL}{\sqrt{1 + \omega^2 t^2}}\right) \chi_j \left(\frac{y + pL}{\sqrt{1 + \omega^2 t^2}}\right)$$

In the **large-time** limit translational invariance is recovered and

$$C(x, y; t \to \infty) = 2n \frac{J_1[\sqrt{2\omega N}(x-y)]}{\sqrt{2\omega N}(x-y)}$$

Fourier transforming, we have the momentum distribution, i.e. the conserved charges

$$n_{GGE}(k) \equiv \langle \hat{n}_k \rangle_0 = \frac{2}{L} \sqrt{\frac{2N}{\omega}} \sqrt{1 - \frac{k^2}{2\omega N}}$$
$$\rho_{GGE} = Z^{-1} e^{-\sum \lambda_k \hat{n}_k}$$

Fourier transform does not give the charges at finite time

$$\rightarrow C(x,y;t)$$
 evolves

Non-local vs local GGE

Wick theorem allows to rewrite any observable in terms of 2-pt function, in particular the FULL reduced density matrix, which turns out to be GGE with

dashed = canonical (1 multiplier)

Static structure factor

Bosonic correlation is a Fredholm minor involving $C(x,y;t \rightarrow \infty)$

For infinite time in the TD limit: $C_B(x, y; t \to \infty) = C_F(x, y; t \to \infty) e^{-2n|x-y|} = 2n \frac{J_1\left[\sqrt{2\omega N}(x-y)\right]}{\sqrt{2\omega N}(x-y)} e^{-2n|x-y|}$ Fourier transform bosonic MDF $n_B(k) = \int_{-\sqrt{2\omega N}}^{\sqrt{2\omega N}} \frac{dq}{2\pi} n_{GGE}(q) \frac{1/n}{1+(k-q)^2/4n^2} \xrightarrow{\text{large } k} \frac{4n^2}{k^2}$ No k^{-4} "Tan-tail

Numerical evaluation of the Fredholm minor:

$$C_B(x, y; t \to \infty) \sim n - \frac{n\omega N}{4} (x - y)^2 - \frac{n^2 \omega N}{6} |x - y|^3 + O((x - y)^4)$$

resulting in a standard k^{-4} "Tan-tail" in MDF

Entanglement entropy

In the TD and long time limit, very simple result (for $\ell/L \sim O(1)$):

Two different regimes $(v = \sqrt{2\omega N})$

1 $t/L < 1/v \Rightarrow$ expansion in full space: $S_{\alpha}(\ell; t) = S_{\alpha}(\ell/\gamma(t); 0), \quad \gamma(t) = \sqrt{1 + \omega^2 t^2}$ [Vicari 2012]

2 $1/v < t/L \ll L/2\pi$, geometry (PBC) leads to equilibration

Partial table of results

	$\begin{array}{c} \text{Trap} \rightarrow \text{Ring} \\ \text{(GGE)} \end{array}$	$\begin{array}{c} \text{BEC} \rightarrow \text{TG} \\ \text{(GGE)} \end{array}$	Ground-state
Fermion correlator	$2n\frac{J_1[\sqrt{2\omega N}(x-y)]}{\sqrt{2\omega N}(x-y)}$	ne ^{-2n x-y}	$\frac{\sin(\pi n(x-y))}{\pi(x-y)}$
Boson correlator	$e^{-2n x-y }C(x,y)$	ne ^{-2n x-y}	$\frac{A}{ x-y ^{\frac{1}{2}}}$

- Simple results on quenches provide important insights for general integrable models
- GGE states are candidates for novel phases of matter with unusual correlations
- <u>Many</u> open problems:

Is GGE valid for interacting integrable systems? Cardy, Caux, Eisert, Essler, Mussardo, Konik, Rigol, Silva, Sotiriadis...

Will a generic system have a thermal steady state? Caux, Cirac, Kollath, Konik, Mussardo, Rigol, Silva...

Connection with "typicality"?

Thank you for your attention