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Quantum Entanglement (Bipartite, Pure State)

» quantum system in a pure state |W), density matrix
p=|V){V|
» H=Has® Hp

» Alice can make unitary transformations and measurements
only in A, Bob only in the complement B

» in general Alice’s measurements are entangled with those
of Bob

» example: two spin—% degrees of freedom

) = cosf| T)al )5 +sind| {)al 1)s



Measuring bipartite entanglement in pure states

» Schmidt decomposition:

W) => glvpa® i)
J

with ¢; > 0, chj? =1.
» one quantifier of the amount of entanglement is the entropy

Sa=->_Igflog|c® = S5
j

» if ¢y =1, rest zero, S = 0 and |¥) is unentangled

» if all ¢; equal, S ~ log min(dim# 4, dim# z) — maximal
entanglement



» equivalently, in terms of Alice’s reduced density matrix:
pa = Trg|V) (V|

Sp=—Trapalogps = Sp
» the von Neumann entropy: similar information is contained

in the Rényi entropies

SAM =1 =n)""logTraps”

> Sy = limpy_; SA(n)



other measures of entanglement exist, but entropy has
several nice properties: additivity, convexity, . ..

it increases under Local Operations and Classical
Communication (LOCC)

it gives the amount of classical information required to
specify pa (important for numerical computations)

it gives a basis-independent way of identifying and
characterising quantum phase transitions

in a relativistic theory the entanglement in the vacuum

encodes all the data of the theory (spectrum, anomalous
dimensions, ...)



Entanglement entropy in a (lattice) QFT

In this talk we consider the case when:

>

the degrees of freedom are those of a local relativistic QF T
in large region R in RY

the whole system is in the vacuum state |0)

Ais the set of degrees of freedom in some large (compact)
subset of R, so we can decompose the Hilbert space as

H=Has®@Hs

in fact this makes sense only in a cut-off QFT (e.g. a
lattice), and some of the results will in fact be cut-off
dependent

How does S, depend on the size and geometry of A
and the universal data of the QFT?



Rényi entropies from the path integral (d = 1)

A B

— o0

» wave functional W({a}, {b}) is proportional to the
conditioned path integral in imaginary time from r = —oc to
T=0:

w({a}, (b)) = 22 /a R O ER

where S = [°_ L(a(r),b(r))dT
» similarly W*({a}, {b}) is given by the path integral from
7=010 400



Example: n=2
pa(ay, ) = /db\ll(a1,b)\ll*(a2,b)

TrApE\:/da1dagdb1db2 V(ay, b))V (az, b1)V(az, b2)V* (a1, ba)

//\>

Trapa? = Z(C®))/ 22

where Z(C(®)) is the euclidean path integral (partition function)
on an 2-sheeted conifold ¢(®)



» in general
Trapa” = Z(CM)/ 27

where the half-spaces are connected as

—=

A B

to form ¢(n,

» conical singularity of opening angle 27 n at the boundary of
Aand BonT=0

» in 1+1 dimensions many results are known, e.g for a single
interval of Iength ¢ina CFT (Holzhey et al., Calabrese-JC)

S ~ (¢/6)(1 + n~")log(¢/e)



Higher dimensions d > 1

B |’ :
-

> the conifold C” is now locally {2d conifold} x R9~1,
formed by sewing together n copies of {7 > 0} x R~ " to n
copies of {r < 0} x R~ along 7 = 0, so that copy j is
sewntoj+1forre A andjtojforre

S o« log(Z(C{™)/Z") ~ Vol(9A) - e (@)

> [Srednicki 1992]
» coefficient is non-universal



Mutual Information of multiple regions

B

» the non-universal ‘area’ terms cancel in
n n n
I(n)(A1 ) A2) = 81(41) + S/(‘\z) B 81(41)UA2

» this mutual Rényi information is expected to be universal
depending only on the geometry and the data of the CFT

» however this dependence is very difficult to compute, even
in 1+1 dimensions (Calabrese-JC-Tonni)



Operator Expansion Method
For any region X

z(cy
Sg(") =1 -n)"log ( (z)rf )>

So
(n) (n  an) Z(C'(qn)UA 12"
() = S+ S0, = (1) log [ Z
z(e{™z(c)
Zc(”)
(;;J/‘z) (W) gasyn

n—1 )
Z Clloy TT @5 ()

{Ki} j=0
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() (n)
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Zn Zn {K} ~{K}
G
» last equation flows from orthonormality of 2-point
functions, valid in any CFT
» this gives an expansion of l(”)(A1,A2) in increasing powers
of 1/r, valid for large r
» first term comes from the identity operator with X, = 0 v/,
but this cancels in I(" (A4, Ap)
» leading terms come from taking either 1 or 2 of the Xy, # 0



The coefficients CA{k].}

B 'p
!§|

These may be computed by inserting a complete set of
operators on a single conifold Cﬁ\"):

n—1
<H q)kjfl(f(]’))>cgn) = < (H (ij//(l’(ﬂ))) (Z ka]} H q)kj(r(j))) >
J’ J {k} j=0 (RO

CA{kj} = lim /) Z/ Hd)k I’(j

{r(/)}—>oo



» note that CA{kj} o RAZI'XKI by dimensional analysis

» the 1- and 2-point functions on C,(qn) are still very hard to
compute, and we have succeeded only for a free field
theory



Free scalar field theory (gaussian free field)

Action is proportional to [(8¢)2d?*+'x, and we normalise so
2-point function in R+ is

(p(X)p(X")) = Go(x — X') = |x — x|7(@=1)

We need to compute
lim (o) UG (XN G #1)

X, X' —
Jim X2 62(0):) o

where ¢;(x,0—) = ¢j+1(x,0+) for x € A, and

#j(x,0—) = ¢j(x,0+) for x ¢ A.

These can be though of as the potential at x’ on copy j/ due to
a unit charge at x on copy j, and the self-energy of a unit
charge at x.



The case n=2

Define ¢ = 271/2(¢g + 1)
» ¢, is continuous everywhere and so
{0+ (X)0+ (X)) = Go(x — x')
» ¢_ changes sign across AN {7 = 0}; on the other hand, if
the source x lies on 7 = 0 then (¢_(x)¢_(x’)) must be
symmetric under 7/ — —7/, so it vanishes on AN {r = 0}

X
oI X5

)
A

» (p_(x)p—_(x")) is the potential at x’ due to a unit charge at
x in the presence of a conductor held at zero potential at
An{r =0}



As x, x" — oo
(- (X)p— (X)) = Go(x — X) ~ —Cx| 7@ |x/| (0=

where C,4 is the electrostatic capacitance of AN {r = 0}.
This gives

Cx,Ca,

op2(d—1)

If Ais a sphere of radius Ry, the generalisation of a classic
result of W. Thomson gives

r(d/2)r(1/2)
Ca= wF((d+1)/2)R o

@Ay, Ag) ~

but in general the result depends on the shape of A.



Case when A; and A, are both spheres, general n

If Ais the interior of a sphere S9, we can make a conformal
mapping in R9+1 so that the boundary of A becomes R?

» the conifold is now a 2d conical singularity xR—1 so we
have cylindrical symmetry. We want the potential
G("(p, 0, z) due to the unit charge at ((2Ra)~1,0,0)

» for the moment suppose that n = 1/m, where mis a
positive integer, so the cone has opening angle 27/m



Method of images gives

m—1
GU/™(p,0,2) = > Go(p,0 + 2rk/m, z)
k=0
p=12z=0
m—1 1
GU/M(1,0,0)= >

=5 (2—2cos(6 + 2rk/m)) 91/

This is straightforward for d + 1 even, a little harder for d + 1
odd. E.g. ford =3

(1/m) m?
G (1’6’0):2—2cosm6

n=1/m>1



Self-energy

(1) o0 = lim (=T L L
0 cran = 2-2cos(f/n) 2—2cosf) 12m
2
n—1 1 n—1 1
> G, 2n/n,07 = ="

i i (2- 2003(.27rj/n))2

Once again this can be done analytically.



Final resultind =3

n* —1 RiRy 2
0 40)~ g (o)

Taking the limit n — 1 gives the mutual information

4 (RiR>\?
(A1, Ag) ~ 15 (%)

» this can computed another way: for a gaussian state, the
correlation functions determine the density matrix
(Bombelli et al., Casini-Huerta)

» but the matrix computations must still be carried out
numerically for finite r and extrapolated

» this was carried out by N. Shiba who found = 0.26
compared with £ = 0.266

For d = 2 we find
1 /RyR
(A, Az) ~ ( ! 2)

3 r2



Logarithmic corrections to area law

N

» we can use the same methods to compute the stress
tensor in the cylindrically symmetric geometry. e.g. in
d=3

(1-1/n%)a

7] ‘a-anomaly’
p

(Tpp> X

€(8/0¢)log Z(C™) = n / (T, pdpdfdPz ~ =2 x Area(DA)



» but when we map back to the sphere

11
(Tpp) o a(1 —1/n*) <¢*+R§pz+"'>

€(8/9¢€)log Z(C'M) ~ €2 x (47 R2) + universal O(1) term

S ~ e 2Area(0A) + #a(n — 1/n%)log(Ra/e)
[Casini/Huerta, Fursaev/Soludukhin,. . .]

> d+1
» relation to a-theorem?



Summary

» mutual information in the ground state of relativistic field
theory encodes data (scaling dimensions, OPE
coefficients...) of general CFTs (= critical systems) in
higher dimensions

» we have treated example of free field theory, difficult to go
further quantitatively

» universal log corrections to area law in even d + 1 encode
the a-anomaly



