Mutual Information in Conformal Field Theories in Higher Dimensions

John Cardy

University of Oxford
Conference on Mathematical Statistical Physics Kyoto 2013
arXiv:1304.7985; J. Phys. A: Math. Theor. 46 (2013) 285402

Outline

- Quantum entanglement in general and its quantification
- Path integral approach
- Area law in higher dimensions
- Mutual information for a general CFT
- Results for a gaussian free field
- Universal logarithmic corrections

Quantum Entanglement (Bipartite, Pure State)

- quantum system in a pure state $|\Psi\rangle$, density matrix $\rho=|\Psi\rangle\langle\Psi|$
- $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
- Alice can make unitary transformations and measurements only in A, Bob only in the complement B
- in general Alice's measurements are entangled with those of Bob
- example: two spin- $\frac{1}{2}$ degrees of freedom

$$
|\psi\rangle=\cos \theta|\uparrow\rangle_{A}|\downarrow\rangle_{B}+\sin \theta|\downarrow\rangle_{A}|\uparrow\rangle_{B}
$$

Measuring bipartite entanglement in pure states

- Schmidt decomposition:

$$
|\Psi\rangle=\sum_{j} c_{j}\left|\psi_{j}\right\rangle_{A} \otimes\left|\psi_{j}\right\rangle_{B}
$$

with $c_{j} \geq 0, \sum_{j} c_{j}^{2}=1$.

- one quantifier of the amount of entanglement is the entropy

$$
S_{A} \equiv-\sum_{j}\left|c_{j}\right|^{2} \log \left|c_{j}\right|^{2}=S_{B}
$$

- if $c_{1}=1$, rest zero, $S=0$ and $|\Psi\rangle$ is unentangled
- if all c_{j} equal, $S \sim \log \min \left(\operatorname{dim} \mathcal{H}_{A}, \operatorname{dim} \mathcal{H}_{B}\right)$ - maximal entanglement
- equivalently, in terms of Alice's reduced density matrix:

$$
\begin{gathered}
\rho_{A} \equiv \operatorname{Tr}_{B}|\Psi\rangle\langle\Psi| \\
S_{A}=-\operatorname{Tr}_{A} \rho_{A} \log \rho_{A}=S_{B}
\end{gathered}
$$

- the von Neumann entropy: similar information is contained in the Rényi entropies

$$
S_{A}^{(n)}=(1-n)^{-1} \log \operatorname{Tr}_{A} \rho_{A}^{n}
$$

- $S_{A}=\lim _{n \rightarrow 1} S_{A}(n)$
- other measures of entanglement exist, but entropy has several nice properties: additivity, convexity, ...
- it increases under Local Operations and Classical Communication (LOCC)
- it gives the amount of classical information required to specify ρ_{A} (important for numerical computations)
- it gives a basis-independent way of identifying and characterising quantum phase transitions
- in a relativistic theory the entanglement in the vacuum encodes all the data of the theory (spectrum, anomalous dimensions, ...)

Entanglement entropy in a (lattice) QFT

In this talk we consider the case when:

- the degrees of freedom are those of a local relativistic QFT in large region \mathcal{R} in \mathbb{R}^{d}
- the whole system is in the vacuum state $|0\rangle$
- A is the set of degrees of freedom in some large (compact) subset of \mathcal{R}, so we can decompose the Hilbert space as

$$
\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

- in fact this makes sense only in a cut-off QFT (e.g. a lattice), and some of the results will in fact be cut-off dependent
- How does S_{A} depend on the size and geometry of A and the universal data of the QFT?

Rényi entropies from the path integral $(d=1)$

- wave functional $\Psi(\{a\},\{b\})$ is proportional to the conditioned path integral in imaginary time from $\tau=-\infty$ to $\tau=0:$
$\Psi(\{a\},\{b\})=Z_{1}^{-1 / 2} \int_{a(0)=a, b(0)=b}[d a(\tau)][d b(\tau)] e^{-(1 / \hbar) S[\{a(\tau)\},\{b(\tau)\}]}$
where $S=\int_{-\infty}^{0} L(a(\tau), b(\tau)) d \tau$
- similarly $\Psi^{*}(\{a\},\{b\})$ is given by the path integral from
$\tau=0$ to $+\infty$

Example: $n=2$

$$
\rho_{A}\left(a_{1}, a_{2}\right)=\int d b \Psi\left(a_{1}, b\right) \Psi^{*}\left(a_{2}, b\right)
$$

$\operatorname{Tr}_{A} \rho_{A}^{2}=\int d a_{1} d a_{2} d b_{1} d b_{2} \psi\left(a_{1}, b_{1}\right) \psi^{*}\left(a_{2}, b_{1}\right) \Psi\left(a_{2}, b_{2}\right) \psi^{*}\left(a_{1}, b_{2}\right)$

$$
\operatorname{Tr}_{A} \rho_{A}{ }^{2}=Z\left(\mathcal{C}^{(2)}\right) / Z_{1}^{2}
$$

where $Z\left(\mathcal{C}^{(2)}\right)$ is the euclidean path integral (partition function) on an 2 -sheeted conifold $\mathcal{C}^{(2)}$

- in general

$$
\operatorname{Tr}_{A} \rho_{A}{ }^{n}=Z\left(\mathcal{C}^{(n)}\right) / Z_{1}^{n}
$$

where the half-spaces are connected as

to form $\mathcal{C}^{(n)}$.

- conical singularity of opening angle $2 \pi n$ at the boundary of A and B on $\tau=0$
- in 1+1 dimensions many results are known, e.g for a single interval of length ℓ in a CFT (Holzhey et al., Calabrese-Jc)

$$
S_{A}^{(n)} \sim(c / 6)\left(1+n^{-1}\right) \log (\ell / \epsilon)
$$

Higher dimensions $d>1$

- the conifold $\mathcal{C}_{A}^{(n)}$ is now locally $\{2 d$ conifold $\} \times \mathbb{R}^{d-1}$, formed by sewing together n copies of $\{\tau>0\} \times \mathbb{R}^{d-1}$ to n copies of $\{\tau<0\} \times \mathbb{R}^{d-1}$ along $\tau=0$, so that copy j is sewn to $j+1$ for $r \in A$, and j to j for $r \in B$

$$
S_{A}^{(n)} \propto \log \left(Z\left(\mathcal{C}_{A}^{(n)}\right) / Z^{n}\right) \sim \operatorname{Vol}(\partial A) \cdot \epsilon^{-(d-1)}
$$

- this is the 'area law' in 3+1 dimensions [Srednicki 1992]
- coefficient is non-universal

Mutual Information of multiple regions

- the non-universal 'area' terms cancel in

$$
I^{(n)}\left(A_{1}, A_{2}\right)=S_{A_{1}}^{(n)}+S_{A_{2}}^{(n)}-S_{A_{1} \cup A_{2}}^{(n)}
$$

- this mutual Rényi information is expected to be universal depending only on the geometry and the data of the CFT
- however this dependence is very difficult to compute, even in $1+1$ dimensions (Calabrese-Jc-Tonni)

Operator Expansion Method

For any region X

$$
S_{X}^{(n)}=(1-n)^{-1} \log \left(\frac{Z\left(\mathcal{C}_{X}^{(n)}\right)}{Z^{n}}\right)
$$

So

$$
I^{(n)}\left(A_{1}, A_{2}\right) \equiv S_{A_{1}}^{(n)}+S_{A_{2}}^{(n)}-S_{A_{1} \cup A_{2}}^{(n)}=(n-1)^{-1} \log \left(\frac{Z\left(\mathcal{C}_{A_{1} \cup A_{2}}^{(n)}\right) Z^{n}}{Z\left(\mathcal{C}_{A_{1}}^{(n)}\right) Z\left(\mathcal{C}_{A_{2}}^{(n)}\right)}\right)
$$

Write

$$
\frac{Z\left(\mathcal{C}_{A_{1} \cup A_{2}}^{(n)}\right)}{Z^{n}}=\left\langle\Sigma_{A_{1}}^{(n)} \Sigma_{A_{2}}^{(n)}\right\rangle_{\left(\mathbb{R}^{d+1}\right)^{n}}
$$

where

$$
\Sigma_{A}^{(n)}=\frac{Z\left(\mathcal{C}_{A}^{(n)}\right)}{Z^{n}} \sum_{\left\{k_{j}\right\}} C_{\left\{k_{k}\right\}}^{A} \prod_{j=0}^{n-1} \Phi_{k_{j}}\left(r_{A}^{(j)}\right)
$$

$$
\begin{aligned}
\frac{Z\left(\mathcal{C}_{A_{1} \cup A_{2}}^{(n)}\right)}{Z^{n}} & =\frac{Z\left(\mathcal{C}_{A_{1}}^{(n)}\right)}{Z^{n}} \frac{Z\left(\mathcal{C}_{A_{2}}^{(n)}\right)}{Z^{n}} \sum_{\left\{k_{j}\right\},\left\{k_{j}^{\prime}\right\}} C_{\left\{k_{j}\right\}}^{A_{1}} C_{\left\{k_{i}^{\prime}\right\}}^{A_{2}} \prod_{j=0}^{n-1}\left\langle\Phi_{k_{j}}\left(r_{A_{1}}^{(j)}\right) \Phi_{k_{j}}\left(r_{A_{2}}^{(j)}\right)\right\rangle \\
& =\frac{Z\left(\mathcal{C}_{A_{1}}^{(n)}\right)}{Z^{n}} \frac{Z\left(\mathcal{C}_{A_{2}}^{(n)}\right)}{Z^{n}} \sum_{\left\{k_{j}\right\}} C_{\left\{k_{j}\right\}}^{A_{1}} C_{\left\{k_{j}\right\}}^{A_{2}} r^{-2 \sum_{j} x_{k_{j}}}
\end{aligned}
$$

- last equation flows from orthonormality of 2-point functions, valid in any CFT
- this gives an expansion of $I^{(n)}\left(A_{1}, A_{2}\right)$ in increasing powers of $1 / r$, valid for large r
- first term comes from the identity operator with $x_{k_{j}}=0 \forall j$, but this cancels in $I^{(n)}\left(A_{1}, A_{2}\right)$
- leading terms come from taking either 1 or 2 of the $x_{k_{j}} \neq 0$

The coefficients $C^{A}{ }_{\left\{k_{j}\right\}}$

These may be computed by inserting a complete set of operators on a single conifold $\mathcal{C}_{A}^{(n)}$:
$\left\langle\prod_{j^{\prime}} \Phi_{k_{j^{\prime}}^{\prime}}\left(r^{\left(j^{\prime}\right)}\right)\right\rangle_{\mathcal{C}_{A}^{(n)}}=\left\langle\left(\prod_{j^{\prime}} \Phi_{k_{j^{\prime}}}\left(r^{\left(j^{\prime}\right)}\right)\right)\left(\sum_{\left\{k_{j}\right\}} C_{\left\{k_{j}\right\}}^{A} \prod_{j=0}^{n-1} \Phi_{k_{j}}\left(r^{(j)}\right)\right)\right\rangle_{\left(\mathbb{R}^{d+1}\right)^{n}}$
Using orthonormality

$$
\left.C^{A}{ }_{\left\{k_{j}\right\}}=\lim _{\left\{r r^{(j)}\right\} \rightarrow \infty_{j}}\left|r^{(j)}\right|^{\sum_{j} x_{k_{j}}} \prod_{j} \Phi_{k_{j}}\left(r^{(j)}\right)\right\rangle_{\mathcal{C}_{A}^{(n)}}
$$

- note that $C^{A}{ }_{\left\{k_{j}\right\}} \propto R_{A}{ }^{\sum_{j} x_{k_{j}}}$ by dimensional analysis
- the 1- and 2-point functions on $\mathcal{C}_{A}^{(n)}$ are still very hard to compute, and we have succeeded only for a free field theory

Free scalar field theory (gaussian free field)

Action is proportional to $\int(\partial \phi)^{2} d^{d+1} x$, and we normalise so 2-point function in \mathbb{R}^{d+1} is

$$
\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle \equiv G_{0}\left(x-x^{\prime}\right)=\left|x-x^{\prime}\right|^{-(d-1)}
$$

We need to compute

$$
\begin{gathered}
\lim _{x, x^{\prime} \rightarrow \infty}\left(x x^{\prime}\right)^{d-1}\left\langle\phi_{j}(x) \phi_{j^{\prime}}\left(x^{\prime}\right)\right\rangle_{\mathcal{C}_{A}^{(n)}} \quad\left(j \neq j^{\prime}\right) \\
\lim _{x \rightarrow \infty} x^{2(d-1)}\left\langle: \phi_{j}^{2}(x):\right\rangle_{\mathcal{C}_{A}^{(n)}}
\end{gathered}
$$

where $\phi_{j}(x, 0-)=\phi_{j+1}(x, 0+)$ for $x \in A$, and $\phi_{j}(x, 0-)=\phi_{j}(x, 0+)$ for $x \notin A$.
These can be though of as the potential at x^{\prime} on copy j^{\prime} due to a unit charge at \boldsymbol{x} on copy \boldsymbol{j}, and the self-energy of a unit charge at \boldsymbol{x}.

The case $n=2$

Define $\phi_{ \pm}=2^{-1 / 2}\left(\phi_{0} \pm \phi_{1}\right)$

- ϕ_{+}is continuous everywhere and so
$\left\langle\phi_{+}(x) \phi_{+}\left(x^{\prime}\right)\right\rangle=G_{0}\left(x-x^{\prime}\right)$
- ϕ_{-}changes sign across $A \cap\{\tau=0\}$; on the other hand, if the source x lies on $\tau=0$ then $\left\langle\phi_{-}(x) \phi_{-}\left(x^{\prime}\right)\right\rangle$ must be symmetric under $\tau^{\prime} \rightarrow-\tau^{\prime}$, so it vanishes on $A \cap\{\tau=0\}$

- $\left\langle\phi_{-}(x) \phi_{-}\left(x^{\prime}\right)\right\rangle$ is the potential at x^{\prime} due to a unit charge at x in the presence of a conductor held at zero potential at $A \cap\{\tau=0\}$

As $x, x^{\prime} \rightarrow \infty$

$$
\left\langle\phi_{-}(x) \phi_{-}\left(x^{\prime}\right)\right\rangle-G_{0}\left(x-x^{\prime}\right) \sim-\mathbf{C}_{A}|x|^{-(d-1)}\left|x^{\prime}\right|^{-(d-1)}
$$

where \mathbf{C}_{A} is the electrostatic capacitance of $A \cap\{\tau=0\}$. This gives

$$
I^{(2)}\left(A_{1}, A_{2}\right) \sim \frac{\mathbf{C}_{A_{1}} \mathbf{C}_{A_{2}}}{2 r^{2(d-1)}}
$$

If A is a sphere of radius R_{A}, the generalisation of a classic result of W. Thomson gives

$$
\mathbf{C}_{A}=\frac{\Gamma(d / 2) \Gamma(1 / 2)}{\pi \Gamma((d+1) / 2)} R_{A}^{d-1}
$$

but in general the result depends on the shape of A.

Case when A_{1} and A_{2} are both spheres, general n

If A is the interior of a sphere S^{d}, we can make a conformal mapping in \mathbb{R}^{d+1} so that the boundary of A becomes \mathbb{R}^{2}

- the conifold is now a $2 d$ conical singularity $\times \mathbb{R}^{d-1}$ so we have cylindrical symmetry. We want the potential $G^{(n)}(\rho, \theta, z)$ due to the unit charge at $\left(\left(2 R_{A}\right)^{-1}, 0,0\right)$
- for the moment suppose that $n=1 / m$, where m is a positive integer, so the cone has opening angle $2 \pi / m$

Method of images gives

$$
G^{(1 / m)}(\rho, \theta, z)=\sum_{k=0}^{m-1} G_{0}(\rho, \theta+2 \pi k / m, z)
$$

Specialising to $\rho=1, z=0$,

$$
G^{(1 / m)}(1, \theta, 0)=\sum_{k=0}^{m-1} \frac{1}{(2-2 \cos (\theta+2 \pi k / m))^{(d-1) / 2}}
$$

This is straightforward for $d+1$ even, a little harder for $d+1$ odd. E.g. for $d=3$

$$
G^{(1 / m)}(1, \theta, 0)=\frac{m^{2}}{2-2 \cos m \theta}
$$

This can now be continued back to $n=1 / m>1$.

Self-energy
$\left\langle: \phi_{0}^{2}(1):\right\rangle_{\mathcal{C}^{\prime} A^{(n)}}=\lim _{\theta \rightarrow 0}\left(\frac{1 / n^{2}}{2-2 \cos (\theta / n)}-\frac{1}{2-2 \cos \theta}\right)=\frac{1-n^{2}}{12 n^{2}}$
The leading term in the mutual entropy involves (this piece) ${ }^{2}$ and

$$
\sum_{j=1}^{n-1} G^{(n)}(1,2 \pi j / n, 0)^{2}=\frac{1}{n^{4}} \sum_{j=1}^{n-1} \frac{1}{(2-2 \cos (2 \pi j / n))^{2}}
$$

Once again this can be done analytically.

Final result in $d=3$

$$
I^{(n)}\left(A_{1}, A_{2}\right) \sim \frac{n^{4}-1}{15 n^{3}(n-1)}\left(\frac{R_{1} R_{2}}{r^{2}}\right)^{2}
$$

Taking the limit $n \rightarrow 1$ gives the mutual information

$$
I\left(A_{1}, A_{2}\right) \sim \frac{4}{15}\left(\frac{R_{1} R_{2}}{r^{2}}\right)^{2}
$$

- this can computed another way: for a gaussian state, the correlation functions determine the density matrix
(Bombelli et al., Casini-Huerta)
- but the matrix computations must still be carried out numerically for finite r and extrapolated
- this was carried out by N. Shiba who found ≈ 0.26 compared with $\frac{4}{15}=0.26 \dot{6}$
For $d=2$ we find

$$
I\left(A_{1}, A_{2}\right) \sim \frac{1}{3}\left(\frac{R_{1} R_{2}}{r^{2}}\right)
$$

Logarithmic corrections to area law

- we can use the same methods to compute the stress tensor in the cylindrically symmetric geometry. e.g. in $d=3$

$$
\begin{gathered}
\left\langle T_{\rho \rho}\right\rangle \propto \frac{\left(1-1 / n^{4}\right) a}{\rho^{4}} \quad \text { 'a-anomaly' } \\
\epsilon(\partial / \partial \epsilon) \log Z\left(\mathcal{C}^{(n)}\right)=n \int\left\langle T_{\rho \rho}\right\rangle \rho d \rho d \theta d^{2} z \sim \epsilon^{-2} \times \operatorname{Area}(\partial A)
\end{gathered}
$$

- but when we map back to the sphere

$$
\left\langle T_{\rho \rho}\right\rangle \propto a\left(1-1 / n^{4}\right)\left(\frac{1}{\rho^{4}}+\frac{1}{R_{A}^{2} \rho^{2}}+\cdots\right)
$$

$\epsilon(\partial / \partial \epsilon) \log Z\left(\mathcal{C}^{(n)}\right) \sim \epsilon^{-2} \times\left(4 \pi R_{A}^{2}\right)+$ universal $O(1)$ term

$$
S_{A}^{(n)} \sim \epsilon^{-2} \operatorname{Area}(\partial A)+\# a\left(n-1 / n^{3}\right) \log \left(R_{A} / \epsilon\right)
$$

[Casini/Huerta, Fursaev/Soludukhin,. . .]

- similar result whenever $d+1$ is even
- relation to a-theorem?

Summary

- mutual information in the ground state of relativistic field theory encodes data (scaling dimensions, OPE coefficients...) of general CFTs (= critical systems) in higher dimensions
- we have treated example of free field theory, difficult to go further quantitatively
- universal log corrections to area law in even $d+1$ encode the a-anomaly

