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phase separation classical topic of statistical mechanics empha-
sizing role of boundary conditions and notion of interface

1 L
exact analytic results for bulk magnetization have been available
for 2D Ising

iIssues in 2D:
e general results
e role of integrability

e universality

answers provided by field theory



Pure phases and Kinks

ferromagnet with spin o taking discrete values, and 2nd order
transition at T,

scaling limit <« Euclidean field theory

Q,
below T¢: degenerate vacua |2q) .K/.
12
Q, Koz
elementary excitations in 2D : kinks |K_(6)) connecting °Q,

124) and |€2) (e, p) = (Mg, cOsh 0, my,sinh 0)

1€2,), |S2) non-adjacent if connected by [Kac (01)Ke,(02) ... K. (6;)) with
7 >1 only

iMp_ oo IR . pure phase a () = (Qa|o(x,y)|a)




Phase separation (adjacent phases)

surface tension:
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magnetization profile:

(0(x,0))ap = Z%ZKBab(gNU(iB, 0)|Bab(—§)> 012 = 61—02
~ 'féoi'z [ %1l go (91]65) eI T+ R0 mR > 1
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[Berg, Karowski, Weisz, '78; Smirnov, 80's; GD, Cardy, '98] Does not require
integrability

(0(2,0))ap = 3[(0)a + (0] — 2[(0)a — (o)) erf(y/22 )
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Ising: (o)y+ = —(0o)_, co =0 (by parity); {(o)_1+ ~ (o)1 erf( Q?maz)
matches lattice result [Abraham, '81]

g-state Potts:
O-C(a;):és(x),c_l/Q7 c=1,...,q
<0'c>a — (qéac - 1)%

Cgb,c = [2 — Q((Sac + 5bc)]B(Q)

<

B(3) =, B(4)=

Py
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e non-local (erf) term amounts to sharp separation between pure phases

e local (gaussian) term sensitive to interface structure



percolation:

sites randomly occupied with probability p

on the plane: infinite cluster for p > p¢

P=prob. site € infinite cluster

maps on g — 1 Potts

on the strip, take only configurations
without clusters connecting left b o
and right parts of the boundary |

Ps(xz,0)=prob. (x,0) € cluster spanning at x < 0 (p > pc)
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Passage probability and interface structure

<0'(CC, O)>ab — fj_ogo du O'ab(:lj|u) p(u) a b
p(u)du = passage probability in (u,u+du) | S -
a b

oap(z|u) = O(u—2x){(0) e+ (x—u){o)p+Agd(z—u)+ A1 (z—u)+. ..
o =1{5 ¢

matches field theory for p(u) = «/i—% e—QmUQ/R, Ag =<

e |local terms account for branching



for y = 0O field theory leads to

N — 1 2m _—2mu?/Rp? R
p(u,y)—p(y)\/ﬂRe mu”/Rp=(y) V]y| <5 as R — oo

pw) =1 - ()2

—— the interface behaves as a brownian bridge

e brownian bridge property rigorously known for Ising and Potts
[Greenberg, Joffe, '05; Campanino, Joffe, Velenik, '08]

e field theory says that it holds for any interface between adja-
cent phases



Wetting

is the ability of a phase to maintain contact with a surface

0 < 0. < m: partial wetting

0. = 0: complete wetting

equilibrium condition at contact points known as Young's law



half plane: Yz

B, = boundary condition at x = 0
breaking the symmetry in direction a ot--—--- -~

(o(z,9))B, = B,(RQlo(x,y) | B, = (0)a, T — 0

Hp |2)p, = EB|S2)B, Hp |Kp,(0))p, = (Ep+mcosh@) |Ky,(0))B,

boundary condition changing fields:

uap(y) switches from By to By

a
Bo(Q1tap (W) | Kpa(0)) g, = e ¥ NI F, () u gy) 6
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Fu(0) = ab+ 0(6%)




pinned interfaces:
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(o(z,0))p, — { Egil‘;’ ]x%:?; wall-interface distance ~ VR

Ising: (o)4+ = —(o)_; matches lattice result [Abraham, '80]



passage probability :

(0(2,00)p,y, ~ (0)a [ dup(w) + (o) [ dup(),  ma>1

X

matches field theory for )

—_ 4 (2m 3/2 2 —meQ/R ~l
p(z) = I ( R ) e
general result provided : ’ 5 o e mo ™

i) adjacent phases

ii) no boundary bound states



boundary bound states: ) b
g
kink-boundary amplitude has pole at § = ju < — a
b g
u
. b
| Kpa (0 =~ iu)) g, ~ [2) g1
Epr=FEgp+mcosu, O<u<m l'%\b\:\ - Ko R
. ' g
Fu(0 = iu) = 525 B, (2| 1ap(0)[S2) 51 b
€2) g now leading as R — oo
L (Ri2)
2 _ Rcosu 4
2B ™~ |Ba(S21ap(0)[2) pr | 7™ .
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(o(x > %’O)>Baba — (0)q VR = mR diverges faster than 1/u?



field theory +— wetting phenomenology dictionary .
splitting and recombination of Bg +— partial wetting
u = contact angle

Epr = Ep +mcosu <— Young's condition

m(cosu — 1) = spreading coefficient

u = 0 +— complete wetting

(1—z4)v
A [dy ¢(0,y) boundary interaction: wu = u((TC—T& ¢ )

u = 0 determines wetting transition temperature Ty (\) < Te



Double interfaces

suppose going from |Q2,) to |€2p) requires two kinks
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Ashkin-Teller 01,00 = *1

— Z {Jlo1(x1)o1(x2) + o2(x1)02(x2)] + Jao1(x1)o1(x2)o2(x1)0o2(x2)}

(T172)

(+-) (++)

4 degenerate vacua below T, '\\ /'

scaling limit — sine-Gordon

S+ = m o e
() (-

_ w8
B 2m Sin 5Br ) Ja >0
2 (+)(—) =
2m Jg <0
‘gj = 1 — 2arcsin(z2M52%) on square lattice -

double interface between (——) and (4++4) for J, <0



(dilute for ¢ < 4) Potts model at T,

kinks relate ordered vacua to disordered one [GD, '99; GD, Cardy,
'00] 1

q=3
3 '/6\' 2

field theory gives

(1., 012 ~ P |25 (12 2672 - 2 erf(z)e = 4 erf(2)

—I—qﬁl (\/z% e erf(z))] — \/%:U

(cf. asymptotics of Ising (coo) [McCoy, Wu, '78; Abraham, Upton, '93])

2 2
=- passage probability p(z1,z0) = 727—7;{} (21 — z9)2 e~ (F1T22)

mutually avoiding interfaces



Conclusion

e field theory yields exact asymptotic results for phase separation
in 2D

e reason is not integrability, but that interfaces are particle tra-
jectories = results are general

e Notion of interface emerges directly in the continuum

e although mR > 1 projects to low energies, relativistic particles
essential for kinematical poles (— erf) and contact angle

e phase separation basic application of kinematical poles, mas-
sive boundary states and boundary changing operators, boundary
bound states

e SLE describes fractal curves at criticality; connection with the
off-critical case of this talk?



