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Outline

1. Introduction to Quantum Quenches and some general notions.
2. A new formalism for analyzing quenches in integrable models.

3. Generalized Gibbs Ensembles and the late-time behaviour
after quenches in integrable models

e GGE and dynamical correlations.
e Time evolution of reduced density matrices (TFIM).

e GGE expectation values of local observables for quenches
in the spin-1/2 XXZ chain.
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A. Introduction and some general notions
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Quantum Quenches in isolated many-particle systems

A. Consider an isolated quantum system in the thermodynamic
limit; Hamiltonian H(h) (short-ranged), h e.g. bulk magnetic field

B. Prepare the system in the ground state |¥ ) of H(ho)
C. At time t=0 change the Hamiltonian to H(h)
D. (Unitary) time evolution |¥ (1)) = exp(-iH(h)t) |¥)

E. Goal: study time evolution of local (in space) observables
COMIOINY ) , COMIOX)O Y (1)) , <Y HIOxx, 1) O 2y, t2)l ¥ (1))
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Local Relaxation

Given that we are considering an isolated system, does the
system relax in some way ?

® It can never relax as a whole.
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Local Relaxation
Given that we are considering an isolated system, does the

system relax in some way ?

® It can never relax as a whole.

Initial state |1 > after the quench is a pure state

| (1)> = exp(-iH(h)1) | > = 3, exp(-iEnt) <nl > |n>.

Can always choose “observables” O that never relax, e.g.

O=0t= |1><2|+|2><]| <) (DIOIY (#)> = A cos([Ei-E2]t+ @)
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Local Relaxation

Given that we are considering an isolated system, does the
system relax in some way ?

® It can never relax as a whole.

® It can relax locally (in space).

® Entire System: AuB

® Take A infinite, B finite
® Ask questions only about B:

Expectation values

CPH)I0s(X)IWP (1))
of local ops:

Physical Picture: A acts like a bath for B.
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Local Relaxation

Given that we are considering an isolated system, does the
system relax in some way ?

® It can never relax as a whole.

® It can relax locally (in space).

No time-averaging involved !!!

Physical Picture: A acts like a bath for B.
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Subsystems and Reduced Density Matrices

| > = initial (pure) state of the entire system AuB (A infinite)

Density matrix: o (t)=|¥ ()< (1)l

Reduced density matrix: 0s(t)=tra 0 (1)

0 s contains all local correlation functions in B:

pB(t) = 5V Z (B(E)|or! ... 0pf[W(2)) o7 ... 0p° a j=0,X,Y,z

for B=[l,..,£] in a spin-1/2 quantum spin chain
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Definition of the Stationary State

If limi—w 038(t)= 08s(e0) exists for any finite subsystem B:

— system approaches a stationary state; (¥ ) Os(x)l¥ (t)) become

time-independent for all local operators.
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How about quenches in quantum intfegrable models?
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How about quenches in quantum intfegrable models?

Have local integrals of motion [Im, In]=[Im, H(h)]=0.
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. . : Grady ‘82
Example: transverse-field Ising chain Droson ‘08

af  _« z z B
define operators Sjjte =0 051 05 ) Tt

I+:H( ):—JZ S’j+1+h0']Z-

_ _]Z ot 4207 — h[STE 4+ SYY ] I, involve spins
on n+2
I, = JZ o +SYY L —h[S¥E, +5%. ]  neighbouring
sites

_ Ty i
1, __JZSj]+n Sj]—l-n
J
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How about quenches in quantum intfegrable models?

Have local integrals of motion [Im, In]=[Im, H(h)]=O.

— (Y| In | () independent of time

Expectation: Time evolution of local operators/stationary state
should be “special”.
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How about quenches in quantum intfegrable models?

Have local integrals of motion [Im, In]=[Im, H(h)]=O.

— (Y| In | () independent of time

Expectation: Time evolution of local operators/stationary state
should be “special”.

Stationary state:

M. Rigol, V. Dunjko, V. Yurosvki . .
& M. Olshanii, PRL9S, 050405 (2007) ‘@eneralized Gibbs Ensemble
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RDM formulation of the Generalized Gibbs Ensemble

Let I, be local integrals of motion [In, In]=[Im, H(h)]=0

Define GGE density matrix by: 0 qe=exp(-Z Am In)/Zge
A m fixed by tr[ 0 g6 Iml= <Y (0)l Inm ¥ (0))
Reduced density matrix of B: 0 g68=1ra 0 4G

The system is described by a GGE if for any finite subsystem B

(oo)- cf Barthel &
O 8 = 0 gG,B Schollwock ‘09
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B. A new formalism for quenches in integrable models
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B. A new formalism for quenches in integrable models

In integrable models we can construct a basis of eigenstates

We then want to calculate

(W(D)|O]¥(?) > > (D, OB ) (B, | T (0)) e Fm =)

This is difficult. To study thermodynamic limit we must sum
infinitely many terms & in general must deal with late time

W\ 17 . .
(“infrared”) divergencies.
cf Calabrese, Essler & Fagotti 11, ‘12
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Idea: follow Yang&Yang approach to thermodynamics

1. )=o), S () = /D[p]esp(...).

2. evaluate path integral by saddle point approximation
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g O\v
Caux&eEssler 13 (T (2)|OT(t)) = <;I’<$)(|t()9|(|1ig)>> n <;g)(|t)|!l,(g)>>

|D> = simultaneous eigenstate of all local conservation

lClWS ImICD> = amICD>

such that CYO) InlY(0)) = an

|@> can be constructed e.g. by a generalized TBA ';A:j:e,ll&z‘

once the expansion of 1% (0)) in eigenstates of H(h) is

Known.
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Caux&Essler ‘13 (‘I’(t)|0|\1’(t)) — <;I’<$)(|t()9|(|1ig)>> 4 (;g)(ii!;}'(g)})

Much more efficient way of calculating dynamics!

e.g. (T@)OIB() =D (F(0)|®ry)(P,|O|D)e™ FrmEm)!

m

Late-time dynamics dominated by small “excitations” over |®)
Em ~ Eq;

Have reproduced some known results for Ising using this
formalism (rather non-trivial checks). Applications to sine-Gordon

and Lieb-Liniger models under way. Bertini, Essler,

talk by J.-S. Schuricht
Caux
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Description of the stationary state

GGE: limi—otra | (t)><) ()l=tral 0 g6l

Our description:  liMmi—etra |0 ()><® (H)l=tral D>< D]

So expectation values of local operators in the stationary
state are given by using a single simultaneous eigenstate
of all conservation laws.

Goldstein, Lebowitz,

¢ analogous result for Gibbs ensemble: Tumulka, Zanghi ‘06

e Similar to “"generalized microcanonical ensemble”  Cassidy, Clark
& Rigol ‘11
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So locally (in space) |®) looks the same as the GGE (and
the “diagonal ensemble”). Globally they all differ.
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C. Some new results on GGEs & integrable models
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1. The GGE applies to dynamical correlation functions. Zsi'e'? yngetst
agotti

More generally: if Hm (U(2)|O01...0,|¥(t)) = Tr [pstat O1- - - O]

t— 00

then lim (W (2)[O1(t1). .. On(tn)|¥ (1)) = Tr [pstat O1(t1)- - - On(tn)]

t— 00

fOI" ﬁ Xed 1'1, 1'21 oo :"'n

, Lieb&Robinson ‘72
ultimately follows from Bravyi, Hastings& Verstraete ‘06

Explicit results for (¥(t)lof(t1)oy (t2)|¥ (1)) in Ising. |
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2. Some conservation laws are more important than others.

m———pp  Transverse Field Ising Chain  Fagotti & Essler'13
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Transverse Field Ising Chain

L
Hamiltonian: H(ho) = =J ) 05051 + hoo
71=1
Zo symmetry: rotation by 7 around x-axis. o; — —0;, a=y,z.

A
Phase Diagram: ! Quantum
Critical Point
order parameter: (0})
. O : >
((o%) #0 always) 0 1 | ho

(0%) #0 T>0: order melts
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Transverse Field Ising Chain

Hamiltonian:

quenches: ho—h

Barouch, McCoy & Dresden ‘70
Igloi & Rieger ‘00, ‘11

Rossini et al ‘09, 10

Calabrese, Essler & Fagotti 11, 12
Schuricht & Essler ‘12

Essler, Evangelisti & Fagotti 12
Foini, Cugliandolo & Gambassi ‘12
Heyl, Polkovnikov & Kehrein 12
Viehmann et al ‘13
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How fast is the approach to the t—co limit? |

- How close is p&(t) to 0 g8 ?

Define a distance:  p, ; lp—p |l
PP - Nz Allrp = 4/Tr[ATA
VIeTE+17 1% 141 \/ ATA]

® ho>1 (Z2 unbroken): Can reduce this to expression in terms of
2Nx2N matrix (o sis 2¥x2N matrix).

e ho<l (Z, broken): pgis not Gaussian — use cluster

Calabrese &

decomposition + causality ("Calabrese-Cardy horizon”) (.4, 05
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Distance D'““® =D(pi(t), pga,¢) between quench and generalized
Gibbs reduced density matrices for sub-system sizes ¢ = 10,...,150

D(GGE) E

0.01 3 o 10
: 150

Jt h,=1.2—h=3

D(GGE).+-3/2 gt |ate times. Holds for any quench ho—h
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(Gibbs) |

01

¢
[ ] v
[ ] R .

Difference between GGE and thermalization (Gibbs)? l

Distance to a Gibbs ensemble at the appropriate temperature

Distance between quench
and Gibbs reduced density
matrices for sub-system
sizes 10-150.

D(Gibbs), const at late times.
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Do we really need all conservation laws? |

Define a truncated GGE by keeping only the y most local
pt(:%)GE = —QXP(Z Z Amyln ) :

_00

conservation laws:

Distance D® = D(pq(t), p&cys o)
between quench and
truncated GGE reduced
density matrices for sub-
system size ¢ =10.

0.01 |

0.001 |

III 1 1 1 IIIIII 1 1 1 IIIIII
1 10 100

2=10 Jt h,=1.2—h=3

® Keeping more conservation laws gives a better description
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Do we really need all conservation laws? |

1x1077

0 —

DY = lim D(pe(t), préicm,e

gggg §§§§gg o 5
oo ~Og A 50
R AAféﬁgagéggggggggogg,,,,‘ L
- . A VV 00 000 AAAAAAAAA
O A o ¢ <
- Oo A o v 0 N ‘<€
- N . v ) _ A
O OO A o VV 0 -
O A o 4 <>
- © A o v 0 <>
5 ° A o v 0 -
O © A o ' ’ <
. o A o v ¢ <>
> O © A <o VV ’ e
. O A o . 00 <
- . A N F SRR e M
10 20 30 40 50
y= # of conservation laws kept

® Good description as soon as y=z ¢!

¢ =50

5< ¢ <50
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Which conservation laws are most important? |

Leave out the gqth conservation law:

. — yd
lim D(pe(t), Pir,e) = Do

PacCE = 5 eXP
(+9)

0.1 —g
g
A
o 7 °
Di(ﬂ?) o ©
O o
1x107 | .
O
1x10710 -
0

%%33‘322
P |
Vo =
<>
¢
V <>
VO
<>
¢ 0
0V
0
\v/
A ° 0
v
N
\v/
T A
40

60

g= index of removed conservation law

(S 0o

n=0oc=+

5¢< ¢ <50

The more local the
conservation law,

the more important
it ist!!
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Which conservation laws are most important? |

Conservation laws Ly =) [ omtioftof?, . ofmh
j

Subsystem size /¢ : must keep all I, with m< ¢ +no(h,ho)
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3. GGE and quenches in the spin-1/2 Heisenberg chain.
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3. GGE and quenches in the spin-1/2 Heisenberg chain.

1

| FASISi -5 A>T

J

HY =J% 5787, + 8Y5Y,
J

Higher conservation laws are known; generated by transfer matrix

: k
() :i(S”” 8) log 7(i 4+ \)

(k) pr(n)y
% H® g™ = 0.

A=0

T(i+A) = Tr[LL(AM)Lr-1(N) ... L1(N)],

L.\ = 1 —|—7'ZO'JZ- N sinh('g—A) 1 —TZJ;? sinh (i)
’ 2 sinh(iy + ) 2 sinh(iy + %)
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GGE density matrix

PGGE —
ZGGE

exp ( Z )\ZH(Z)>

Can be viewed as thermal density matrix of integrable
Hamiltonian

Can use (Quantum Transfer Matrix) formalism developed

for finite temperature correlators!  g,.¢ cshmann,

Klimper et al ‘04-'10

Boos, Miwa, Jimbo,
Smirnov, Takeyama ‘06-'09
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Two tasks remain:

1. Construct Quantum Transfer Matrix formalism for generalized
Hamiltonian.

— straightforward generalization of

2
H = Z ﬁH(l) Klimper and Sakai ‘02
= M

2. Determine the A

must solve lim

This is hard: cf Poszgay ‘13
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Idea: evaluate generating function

Qg (N) = % (WolT' (i + N7 i + M) | W) = —i (

using QISM
1 0 a a c
Qo (A) ~ Fo-|  Sp(Wo[Vi(@, A)... Vi(w, M)[To) , [Viu(@, M]eg = (Lo ()] [My ()]
| - 1+7%0; sinh(2%2) I —7%07 sinh(—iv*) Ao o
MM = 2 " sinh(—iy* + 52) 2 " sinh(—ivy* + %)( T
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Sp(Wo|VL(z,A) ... Vi(z,\)|Py) ,

=M\

The point:  Qw(d) ~ 7o

can be evaluated explicitly for matrix product states!!!

e.g. for product states we only need to diagonalize a 4x4 matrix.

Results:  (short-distance) correlation function of spins in the
GGE for quenches from a variety of initial states.

Interaction quenches from large A included!
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Comparsion to numerics (TDMRG): Fagotti, Calabrese, Collura, Essler

o — (W(t)|of o 1| W(t))
. o
transverse
0.05 : longitudinal B GGE

-0.15 ®

initial state |Néel,) = e 25 %7 | 1]1] ...)
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Conclusions

1. In the thermodynamic limit can describe local physics
through a single eigenstate of all conservation laws.

2. Late-time dynamics given by small excitations around this
state.

3. The GGE gives both static and dynamic correlators at
stationarity.

4. The most local conservation laws are most important for
describing the stationary state.

5. Have determined local correlators in stationary state of XXZ
after quenching from certain initial states.
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Physical interpretation of the distance |

It measures the average mean relative difference of all
expectation values of local operators:

1/2 0), —(0),
D(pr,p) = (RO)) 1= l\} <c>9>z +< <c'>)>2|'
Average defined by: f(0) = > PO)f(0),
O

Yo (93 +(9)
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