Free Parafermions

Paul Fendley

University of Virginia

Free fermions

The fundamental system in theoretical physics

Many properties can be computed exactly

• Keeps on keeping on e.g. topological classification, entanglement, quenches...

Appear even in some non-obvious guises

For example, spin models sometimes can be mapped onto free-fermionic systems:

1d quantum transverse-field/2d classical Ising

Kauffman, Onsager; now known in its fermionic version as the "Kitaev chain"

1d quantum XY

Jordan-Wigner; Lieb-Schultz-Mattis

2d honeycomb model

Kitaev

Such models typically remain solvable even for spatially inhomogenous couplings.

Free fermions

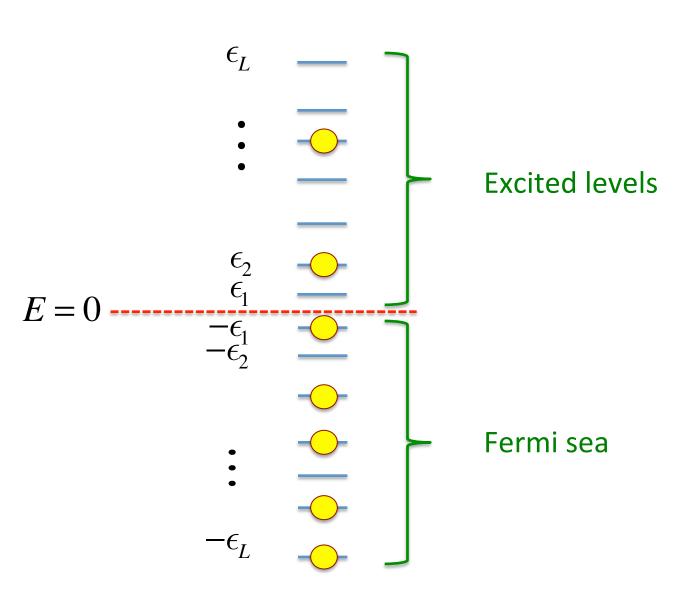
Forget statistics, forget operators, forget fields...the basic property of a free-fermion system is that the spectrum is

$$E = \pm \epsilon_1 \pm \epsilon_2 \pm \ldots \pm \epsilon_L$$

Levels are either filled or empty.

The choice of a given \pm is independent of the remaining choices, and does not effect the value of any ϵ_i .

$$E = \pm \epsilon_1 \pm \epsilon_2 \pm \ldots \pm \epsilon_L$$



Can this be generalized?

The free-fermion approach relies on a Clifford algebra.

Integrable models provide a generalization, but the algebraic structure (Yang-Baxter etc.) is much more complicated, and you work much harder for less.

Conformal field theory is also a generalization, but applies only to Lorentz-invariant critical models.

Typically a free-fermion model has a \mathbb{Z}_2 symmetry: $[(-1)^F, H] = 0$ where $(-1)^F$ counts the number of fermions mod 2. In Ising this is simply symmetry under flipping all spins.

So why isn't there a \mathbb{Z}_n version?

- Fradkin and Kadanoff showed long ago that 1+1d clock models with \mathbb{Z}_n symmetry can be written in terms of parafermions.
- Fateev and Zamolodchikov found integrable critical self-dual lattice spin models with \mathbb{Z}_n symmetry. Later they found an elegant CFT description of the continuum limit.
- Read and Rezayi constructed fractional quantum Hall wavefunctions using the CFT parafermion correlators.

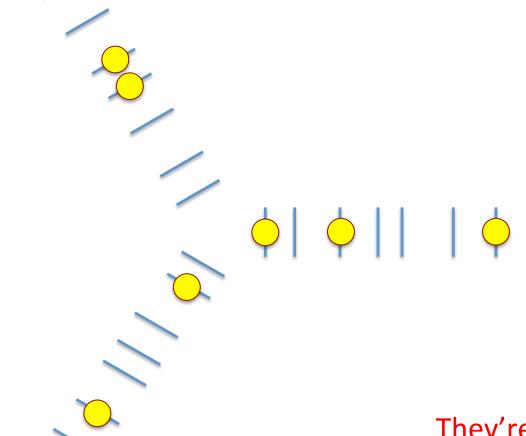
But these models are definitely not free. The lattice models are not even integrable unless critical and/or chiral.

Nonetheless, Baxter found a non-Hermitian Hamiltonian with spectrum

$$E = \boldsymbol{\omega}^{s_1} \epsilon_1 + \boldsymbol{\omega}^{s_2} \epsilon_2 \pm \dots \pm \boldsymbol{\omega}^{s_L} \epsilon_L \qquad \boldsymbol{\omega} = e^{2\pi i/n}$$

$$s_j = 0, 1, \dots n-1$$

A free parafermion sea?



For \mathbb{Z}_3 :

They're exclusons!

Baxter's proof is very indirect.

In particular, he asks:

For the Ising model this property follows from Kaufman's solution in terms of spinor operators [10], i.e. a Clifford algebra.[11, p.189] Whether there is some generalization of such spinor operators to handle the $\tau_2(t_q)$ model with open boundaries remains a fascinating speculation.[12]

The purpose of this talk is to display this structure, and so give a useful generalization of a Clifford algebra.

A key tool is the use of parafermions.

Useful for what?

- Parafermions play a nice role in the study of topological order, e.g. they give a way to prove existence of an edge zero mode.
- Baxter's Hamiltonian is related to the integrable chiral Potts model.
 Parafermions give an easy direct proof of the shift mode (the reason why people started studying the model).
- Non-hermitian Hamiltonians can arise as anisotropic limits of geometrical models (e.g. percolation, self-avoiding walks).
- The Clifford algebra plays a major role in mathematics (e.g. K-theory).
- Use as building blocks for Hermitian models.

Jordan-Wigner transformation to Majorana fermions:

The Hilbert space is a chain of two-state systems $(\mathbb{C}^2)^{\otimes L}$

The fermions are written in terms of strings of spin flips:

$$\psi_{2j-1} = \sigma_j^z \prod_{k=1}^{j-1} \sigma_k^x \qquad \qquad \psi_{2j} = i\sigma_j^x \psi_{2j-1}$$
String flips all spins behind site *j*

 $\{\psi_a, \psi_b\} = 2\delta_{ab}$

The 1d Ising Hamiltonian is bilinear in fermions:

$$H = -\sum_{j=1}^{L} t_{2j-1} \sigma_{j}^{x} - \sum_{j=1}^{L-1} t_{2j} \sigma_{j}^{z} \sigma_{j+1}^{z}$$
$$= i \sum_{a=1}^{2L-1} t_{a} \psi_{a} \psi_{a+1}$$

These are open boundary conditions and arbitrary couplings t_{a} .

 \mathbb{Z}_2 symmetry operator flips all spins:

$$(-1)^{F} = \prod_{j=1}^{L} \sigma_{j}^{x} = (-1)^{L} \prod_{a=1}^{2L} \psi_{a}$$

Solving the Ising chain in one slide

Let
$$\Psi = \sum_{a=1}^{2L} \mu_a \psi_a$$
 so that $[H, \Psi] = \Psi'$ with $\begin{pmatrix} \mu_1' \\ \mu_2' \\ \vdots \\ \mu_{2L}' \end{pmatrix} = 2i \begin{pmatrix} 0 & t_1 & 0 & \dots \\ -t_1 & 0 & t_2 \\ 0 & -t_2 & 0 \\ \vdots & & & t_{2L-1} \\ & & -t_{2L-1} & 0 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_{2L} \end{pmatrix}$

because commuting bilinears in the fermions with linears gives linears.

Diagonalizing this matrix gives
$$[H,\Psi_{\pm k}]=\pm 2\epsilon_k\Psi_k$$

2L raising/lowering operators obey the Clifford algebra $\{\Psi_k,\Psi_l\}=2\delta_{k,-l}$

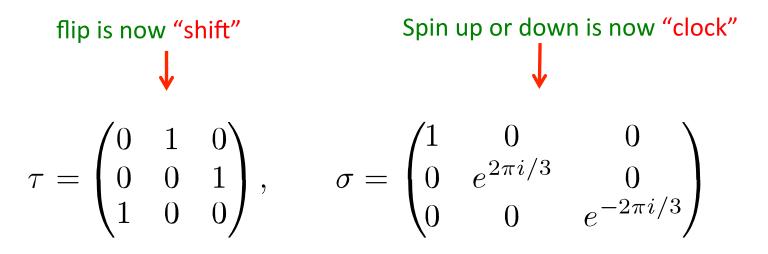
Because $(\Psi_k + \Psi_{-k})^2 = 2$ no state is annihilated by both. Consistency requires

$$E = \pm \epsilon_1 \pm \epsilon_2 \pm \ldots \pm \epsilon_L$$

$$[H, \Psi_{\pm k}] = \pm 2\epsilon_k \Psi_k$$

On to n-state models

For 3 states, i.e. a Hilbert space of $(\mathbb{C}^3)^{\otimes L}$:



$$\tau^3 = \sigma^3 = 1, \quad \tau^2 = \tau^{\dagger}, \quad \sigma^2 = \sigma^{\dagger}$$

$$\tau\sigma = e^{2\pi i/3}\sigma\tau$$

Parafermions from the Fradkin-Kadanoff transformation:

In a 2d classical theory, they're the product of order and disorder operators. In the quantum chain with $\omega=e^{2\pi i/n}$

$$\psi_{2j-1} = \sigma_j \prod_{k=1}^{j-1} \tau_k$$
 $\psi_{2j} = \omega^{(n-1)/2} \tau_j \psi_{2j-1}$ $\psi_a^n = 1, \qquad \psi_a^{n-1} = \psi_a^{\dagger}$

Instead of anticommutators:

$$\psi_a \psi_b = \omega \psi_b \psi_a$$

for
$$a < b$$

Baxter's Hamiltonian

$$H = -\sum_{j=1}^{L} t_{2j-1} \tau_j - \sum_{j=1}^{L-1} t_{2j} \sigma_j^{\dagger} \sigma_{j+1}$$

I did not forget the h.c. – the Hamiltonian is not Hermitian.

This is the Hamiltonian limit of the $\tau_2(t_q)$ model, whose transfer matrix commutes with that of the integrable chiral Potts model Bazhanov and Stroganov

Non-local commuting currents

$$[J^{(j)},J^{(k)}]=0$$

Let
$$h_a \equiv t_a \psi_a^2 \psi_{a+1}$$

so
$$J^{(1)} = H = \sum_{a=1}^{2L-1} t_a \psi_a^2 \psi_{a+1} = \sum_{a=1}^{2L-1} h_a$$

then
$$J^{(2)} = \sum_{a=1}^{2L-3} \sum_{b=a+2}^{2L-1} h_a h_b$$

$$J^{(3)} = \sum_{a=1}^{2L-5} \sum_{b=a+2}^{2L-3} \sum_{c=b+2}^{2L-1} h_a h_b h_c$$
 etc.

Note "exclusion" rule! Only one h_a for every 2 adjacent sites

"'Higher' commuting Hamiltonians

$$[H^{(j)}, H^{(k)}] = 0$$

Let
$$T = 1 - J^{(1)}u + J^{(2)}u^2 - J^{(3)}u^3 + \dots + J^{(L)}u^L$$

The generating function for the local higher Hamiltonians is

$$-u\frac{d}{du}\ln T = -u\frac{T'}{T} = Hu + H^{(2)}u^2 + H^{(3)}u^3 + \dots$$

so e.g.
$$H^{(2)} = \sum_{a=1}^{2L-1} h_a^2 + (1+\omega) \sum_{a=1}^{2L-2} h_{a+1} h_a$$

These are indeed local:

$$H^{(2)} = \sum_{a=1}^{2L-1} h_a^2 + (1+\omega) \sum_{a=1}^{2L-2} h_{a+1} h_a$$

$$H^{(3)} = \sum_{a=1}^{2L-1} h_a^3 + (1+\omega+\omega^2) \left(\sum_{a=1}^{2L-2} (h_{a+1}^2 h_a + h_{a+1} h_a^2) + \sum_{a=1}^{2L-3} h_{a+2} h_{a+1} h_a \right)$$

Another exclusion rule: at most n-1 h_a allowed on 2 adjacent sites.

For CFT aficianados: parafermion correlators obey analogous clustering properties.

To find the energies and generalized Clifford algebra, we need the raising/lowering operators.

What worked so well for the fermions doesn't seem to work here:

Not linear in the parafermions!

For example:
$$[H, \psi_1] \propto \psi_2$$

$$[H, \psi_2] \sim \psi_3 + \psi_1^{n-1} \psi_2^2$$

Ignoring constants

It starts to look nasty very quickly.

But staring at this long enough, a pattern emerges.

For 3 states, find the same exclusion rule: only terms are of the form

$$h_{b_1} h_{b_2} \dots h_{b_l} \boldsymbol{\psi}_a$$

with

$$b_i \leq a$$

$$|b_i - b_j| = 2,3,\dots$$

For n states, only n-2 adjacent h_{b_i} .

So repeatedly commuting with H doesn't generate all n^{2L} operators.

In fact...

Let
$$v_0 \equiv \psi_1$$

$$v_1 \equiv [H, v_0]$$

$$v_2 \equiv [H, v_1]$$

$$\vdots$$

$$v_{nj} \equiv [H, v_{nj-1}] - t_{2j-1}^n v_{nj-n} (\bar{\omega} - 1)^3$$

$$v_{nj+1} \equiv [H, v_{nj}] - t_{2j}^n v_{nj-2} (\bar{\omega} - 1)^3$$

$$j=1,2,3...$$

$$v_{nj+k} \equiv [H, v_{nj+k-1}]$$
 k=2,3...,n-1

Then
$$v_{nL} = 0$$

I've proved this by brute force for n=3, and it will be easy to generalize for low values of n by doing a bit of combinatorics.

To come up with a more elegant general proof, two key conjectures:

$$[H^{(m)}, v_0] = \frac{1 - \omega^m}{(1 - \omega)^m} [H, [H, [H, [H, ..., [H, v_0]...]]]$$

Because $h^n \propto 1$, a truncation: $H^{(n)} \propto 1$

Linear combinations of the \mathcal{V}_a are analogous to linear linear combinations of the fermions: commuting with H gives a closed set of operators:

$$\Psi = \sum_{a=0}^{3L-1} \mu_a v_a \qquad [H, \Psi] = \Psi' \qquad \text{with}$$

for 3 states

Diagonalize this to give ``rotating'' operators

$$\Psi_{1,k}, \Psi_{\omega,k}, \ldots, \Psi_{\bar{\omega},k}$$

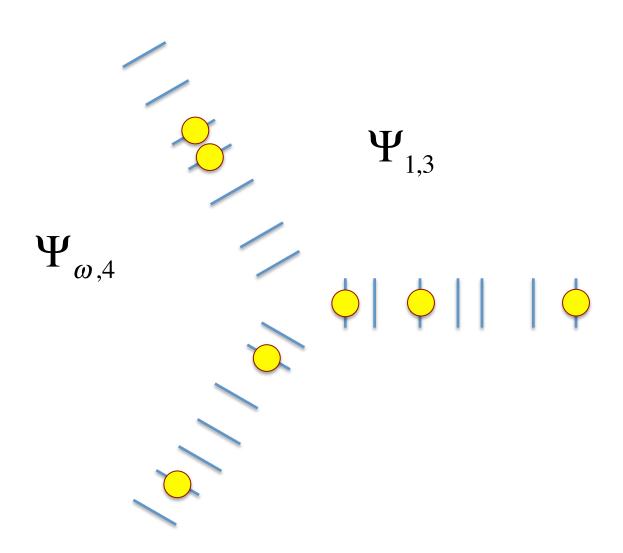
obeying
$$[H, \Psi_{\omega^s, k}] = (\omega^{s+1} - \omega^s) \epsilon_k \Psi_{\omega^s, k}$$

The ϵ_k are positive and real: they are the positive eigenvalues of

$$\begin{pmatrix} 0 & t_1^{n/2} & 0 & \dots \\ t_1^{n/2} & 0 & t_2^{n/2} & & \\ 0 & t_2^{n/2} & 0 & & \\ \vdots & & & & t_{2L-1}^{n/2} \\ & & & & t_{2L-1}^{n/2} & 0 \end{pmatrix}$$

which is Baxter's result.

$$[H, \Psi_{\omega^s,k}] = (\omega^{s+1} - \omega^s) \epsilon_k \Psi_{\omega^s,k}$$



These rotating operators satisfy the generalized Clifford algebra

$$\Psi_{\omega^{s},k}^{2} = 0 \qquad \Psi_{\omega^{s-1},k} \Psi_{\omega^{s},k} = 0$$

$$\Psi_{\omega^{s},k} \Psi_{\omega^{s'},k'} \propto \Psi_{\omega^{s'},k'} \Psi_{\omega^{s},k} \qquad k \neq k'$$

$$(\Psi_{1,k} + \Psi_{\omega,k} + \Psi_{\overline{\omega},k})^{3} \propto 1 \qquad \text{for 3 states}$$

Conjecture that first three can be subsumed in

$$(\epsilon_{k'}\boldsymbol{\omega}^{s'} - \epsilon_{k}\boldsymbol{\omega}^{s})\boldsymbol{\Psi}_{\boldsymbol{\omega}^{s},k}\boldsymbol{\Psi}_{\boldsymbol{\omega}^{s'},k'} = (\epsilon_{k}\boldsymbol{\omega}^{s} - \epsilon_{k'}\boldsymbol{\omega}^{s'+1})\boldsymbol{\Psi}_{\boldsymbol{\omega}^{s'},k'}\boldsymbol{\Psi}_{\boldsymbol{\omega}^{s},k}$$

This algebra is independent of the Hamiltonian we used – these operators can be defined for any \mathbb{Z}_n -invariant spin system.

Future directions

- Take copies and fill pairs of levels to make a parafermion sea with real energy?
- Is this the chiral part of a CFT?
- Zero modes! Topological order!
 Mong, Clarke, Lindner, Alicea, Fendley, Nayak, Oreg, Stern, Berg, Shtengel, Fisher
- Solvable models of interacting parafermions?
- Redo for 2d classical models, any interesting geometric problems?
 Does the Pfaffian generalize to a Read-Rezayian?
- Use to build a (presumably gapless) 2d wavefunction?
- Closed boundary conditions? Full Bazhanov-Strogaonov model?
- The Clifford algebra plays a major role in mathematics and e.g. in the classification of topological systems. Is there a \mathbb{Z}_n version?