

Gibbs-non-Gibbs dynamical transitions. A large-deviation paradigm

R. Fernández F. den Hollander J. Martínez Utrecht Leiden Leiden

Kyoto, July 2013

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Ka
0000	000	000000	000000	000000000000000000000000000000000000000	000

Gibbs measures and their transformations

The Gibbs – non-Gibbs saga

End

うして ふゆう ふほう ふほう ふしつ

Intuitively, μ Gibbs if

 $\mu \propto e^{-\beta H}$

This is, however, valid only on finite regions

To pass to the thermodynamic limit must introduce:

- Interactions
- ► Specifications

Gibbs measures designed to describe *equilibrium* No reason to expect them out of equilibrium, e.g. under evolutions

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac
•000	000	000000	000000	000000000000000000000000000000000000000	00000000

Gibbs measures and their transformations

The Gibbs – non-Gibbs saga

End

うして ふゆう ふほう ふほう ふしつ

Intuitively, μ Gibbs if

 $\mu \propto {\rm e}^{-\beta H}$

This is, however, valid only on finite regions To pass to the thermodynamic limit must introduce:

- Interactions
- ► Specifications

Gibbs measures designed to describe *equilibrium* No reason to expect them out of equilibrium, e.g. under evolutions

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field Kac
0000	000	000000	000000	000000000000000000000000000000000000000

Gibbs measures and their transformations

The Gibbs – non-Gibbs saga

End

うして ふゆう ふほう ふほう ふしつ

Intuitively, μ Gibbs if

 $\mu \propto e^{-\beta H}$

This is, however, valid only on finite regions To pass to the thermodynamic limit must introduce:

- ► Interactions
- ► Specifications

Gibbs measures designed to describe *equilibrium* No reason to expect them out of equilibrium, e.g. under evolutions

Intro	Gibbs
0000	000

Non-Gibbs

Dynamics 000000 Mean field Kac End

うして ふゆう ふほう ふほう ふしつ

Gibbs measures and their transformations

Examples of non-Gibsianness

Renormalization transformations

- \blacktriangleright Block-renormalization: blocks of spins \rightarrow effective spins
- ▶ Renormalized measure: coarser, blurred
- ▶ In many instances: renormalized measure non-Gibbsian
- ▶ Reason: hidden variables bringing info from infinite

Stochastic evolutions

Gibbs measures subjected to Glauber dynamics

- ▶ Can loose Gibsianness at some finite time
- Gibbsianness recovered in some cases

Intro	Gibbs	Non-Gibbs	Dynamics
0000	000	000000	000000

うして ふゆう ふほう ふほう ふしつ

Gibbs measures and their transformations

Examples of non-Gibsianness

Renormalization transformations

- ▶ Block-renormalization: blocks of spins \rightarrow effective spins
- ▶ Renormalized measure: coarser, blurred
- ▶ In many instances: renormalized measure non-Gibbsian
- ▶ Reason: hidden variables bringing info from infinite

Stochastic evolutions

Gibbs measures subjected to Glauber dynamics

- ▶ Can loose Gibsianness at some finite time
- Gibbsianness recovered in some cases

Intro	Gibbs	Non-Gibbs	Dynamics
0000	000	000000	000000

うして ふゆう ふほう ふほう ふしつ

Gibbs measures and their transformations

Examples of non-Gibsianness

Renormalization transformations

- ▶ Block-renormalization: blocks of spins \rightarrow effective spins
- ▶ Renormalized measure: coarser, blurred
- ▶ In many instances: renormalized measure non-Gibbsian
- ▶ Reason: hidden variables bringing info from infinite

Stochastic evolutions

Gibbs measures subjected to Glauber dynamics

- ► Can loose Gibsianness at some finite time
- Gibbsianness recovered in some cases

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Ka
0000	000	000000	000000	000000000000000000000000000000000000000	00 000
Gibbs m	ossures and t	heir transformation	ns		

Dynamic non-Gibbsianness

End

うして ふゆう ふほう ふほう ふしつ

Original explanation

- ▶ Two-slice system: past acts as hidden variables for present
- \blacktriangleright Two-slice system \sim equilibrium duplicated variables

Alternative paradigm

- ▶ Intuitively: most probable history of an improbable state
- ► Formally: large deviations in trajectory space
- ▶ Non-Gibbs = multiple optimal trajectories \rightarrow discontinuity

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac
0000	000	000000	000000	000000000000000000000000000000000000000	00000000
Gibbs measu	ires and their	transformations			

Dynamic non-Gibbsianness

End

うして ふゆう ふほう ふほう ふしつ

Original explanation

- ▶ Two-slice system: past acts as hidden variables for present
- Two-slice system \sim equilibrium duplicated variables

Alternative paradigm

- ▶ Intuitively: most probable history of an improbable state
- ▶ Formally: large deviations in trajectory space
- ▶ Non-Gibbs = multiple optimal trajectories \rightarrow discontinuity

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac
0000	000	000000	000000	000000000000000000000000000000000000000	00000000
Gibbs measu	ires and their	transformations			

Dynamic non-Gibbsianness

End

うして ふゆう ふほう ふほう ふしつ

Original explanation

- ▶ Two-slice system: past acts as hidden variables for present
- Two-slice system \sim equilibrium duplicated variables

Alternative paradigm

- ▶ Intuitively: most probable history of an improbable state
- ▶ Formally: large deviations in trajectory space
- ▶ Non-Gibbs = multiple optimal trajectories \rightarrow discontinuity

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Plan						

Plan and credits

In this talk:

- Review of Gibbsianness
- ▶ Review of original proof of dynamical non-Gibbsianness

うして ふゆう ふほう ふほう ふしつ

- ▶ New paradigm for dynamical non-Gibbsianness
- Rigorous results for
 - Mean-field spin models
 - ► Kac models

Acknowledgemens:

Aernout van Enter (Groningen) Franck Redig (Delft) Christoff Külske (Bochum) Victor Ermolaev (Nedap)

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Plan						

Plan and credits

In this talk:

- Review of Gibbsianness
- ▶ Review of original proof of dynamical non-Gibbsianness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

- ▶ New paradigm for dynamical non-Gibbsianness
- Rigorous results for
 - Mean-field spin models
 - ▶ Kac models

Acknowledgemens:

Aernout van Enter (Groningen) Franck Redig (Delft) Christoff Külske (Bochum) Victor Ermolaev (Nedap)

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Plan						

Plan and credits

In this talk:

- Review of Gibbsianness
- ▶ Review of original proof of dynamical non-Gibbsianness

うして ふゆう ふほう ふほう ふしつ

- ▶ New paradigm for dynamical non-Gibbsianness
- Rigorous results for
 - Mean-field spin models
 - ▶ Kac models

Acknowledgemens:

Aernout van Enter (Groningen) Franck Redig (Delft) Christoff Külske (Bochum) Victor Ermolaev (Nedap)

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	•oo	000000	000000	000000000000000000000000000000000000000	00000000	
Definition						

Basic ingredients:

- ▶ Lattice L: e.g. \mathbb{Z}^d
- Single-spin space S: e.g. $\{-1, 1\}$
- Configuration space $\Omega = S^{\mathbb{L}}$ Topology and σ -algebra \mathcal{F} generated by cylinders:

$$C_{\omega_{\Lambda}} = \left\{ \omega \in \Omega : \omega_{\Lambda} = \sigma_{\Lambda} \right\} \,, \; \Lambda \subset \subset \mathbb{L} \quad \left[\omega_{\Lambda} = (\omega_x)_{x \in \Lambda} \right]$$

Interaction: Family of local functions (=local contributions)

 $\Phi = \{\phi_B : \Omega \to \mathbb{R} , \mathcal{F}_B - \text{measurable} \} \quad [\phi_B(\omega) = \phi_B(\sigma) \text{ if } \omega_B = \sigma_B]$

Hamiltonian on region Λ given σ outside:

$$H_{\Lambda}(\omega \mid \sigma) = \sum_{B:B \cap \Lambda \neq \emptyset} \phi_B(\omega_{\Lambda} \sigma)$$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	•••	000000	000000	000000000000000000000000000000000000000	00000000	
Definition						

Basic ingredients:

- ▶ Lattice L: e.g. \mathbb{Z}^d
- Single-spin space S: e.g. $\{-1, 1\}$
- Configuration space $\Omega = S^{\mathbb{L}}$ Topology and σ -algebra \mathcal{F} generated by cylinders:

$$C_{\omega_{\!\Lambda}} = \left\{ \omega \in \Omega : \omega_{\!\Lambda} = \sigma_{\!\Lambda} \right\} \,, \; \Lambda \subset\!\! \subset \mathbb{L} \quad \left[\omega_{\!\Lambda} = (\omega_x)_{x \in \Lambda} \right]$$

Interaction: Family of local functions (=local contributions)

 $\Phi = \{\phi_B : \Omega \to \mathbb{R} , \mathcal{F}_B - \text{measurable} \} \quad [\phi_B(\omega) = \phi_B(\sigma) \text{ if } \omega_B = \sigma_B]$

Hamiltonian on region Λ given σ outside:

$$H_{\Lambda}(\omega \mid \sigma) = \sum_{B:B \cap \Lambda \neq \emptyset} \phi_B(\omega_{\Lambda} \sigma)$$

うして ふゆう ふほう ふほう ふしつ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	• o o	000000	000000	000000000000000000000000000000000000000	00000000	
Definition						

Basic ingredients:

- ▶ Lattice L: e.g. \mathbb{Z}^d
- Single-spin space S: e.g. $\{-1, 1\}$
- Configuration space $\Omega = S^{\mathbb{L}}$ Topology and σ -algebra \mathcal{F} generated by cylinders:

$$C_{\omega_{\!\Lambda}} = \left\{ \omega \in \Omega : \omega_{\!\Lambda} = \sigma_{\!\Lambda} \right\} \,, \; \Lambda \subset\!\! \subset \mathbb{L} \quad \left[\omega_{\!\Lambda} = (\omega_x)_{x \in \Lambda} \right]$$

Interaction: Family of local functions (=local contributions)

 $\Phi = \left\{ \phi_B : \Omega \to \mathbb{R} \ , \ \mathcal{F}_B - \text{measurable} \right\} \quad [\phi_B(\omega) = \phi_B(\sigma) \text{ if } \omega_{\!_B} = \sigma_{\!_B}]$

Hamiltonian on region Λ given σ outside:

$$H_{\Lambda}(\omega \mid \sigma) = \sum_{B:B \cap \Lambda \neq \emptyset} \phi_B(\omega_{\Lambda} \sigma)$$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	• o o	000000	000000	000000000000000000000000000000000000000	00000000	
Definition						

Basic ingredients:

- ▶ Lattice L: e.g. \mathbb{Z}^d
- Single-spin space S: e.g. $\{-1, 1\}$
- Configuration space $\Omega = S^{\mathbb{L}}$ Topology and σ -algebra \mathcal{F} generated by cylinders:

$$C_{\omega_{\!\Lambda}} = \left\{ \omega \in \Omega : \omega_{\!\Lambda} = \sigma_{\!\Lambda} \right\} \,, \; \Lambda \subset\!\! \subset \mathbb{L} \quad \left[\omega_{\!\Lambda} = (\omega_x)_{x \in \Lambda} \right]$$

Interaction: Family of local functions (=local contributions)

 $\Phi = \left\{ \phi_B : \Omega \to \mathbb{R} , \mathcal{F}_B - \text{measurable} \right\} \quad [\phi_B(\omega) = \phi_B(\sigma) \text{ if } \omega_{\!_B} = \sigma_{\!_B}]$

Hamiltonian on region Λ given σ outside:

$$H_{\Lambda}(\omega \mid \sigma) = \sum_{B:B \cap \Lambda \neq \emptyset} \phi_B(\omega_{\Lambda} \sigma)$$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Definition						

(Lattice) Gibbs measures: formal definition

Gibbsian specification: Family $\Pi^{\Phi} = \{\pi^{\Phi}_{\Lambda} : \Lambda \subset \mathbb{L}\}$ with

$$\pi^{\Phi}_{\Lambda}(C_{\omega_{\Lambda}}) = \frac{\mathrm{e}^{-\beta H_{\Lambda}(\omega|\sigma)}}{\mathrm{Norm.}}$$

$[\pi^{\Phi}_{\Lambda}(\,\cdot\mid\sigma)=\text{equilibrium in }\Lambda\text{ given }\sigma]$

Gibbs measures: μ is Gibbs for Φ if, equivalently,

• μ is left invariant by Π^{Φ} :

$$\int \pi^{\Phi}_{\Lambda}(C_{\omega_{\Lambda}}) \, \mu(d\omega) = \mu(C_{\omega_{\Lambda}})$$

 $[\mu = \text{equilibrium in } \mathbb{L} = \text{every } \Lambda \text{ in equilibrium}]$

 $\mu = w - \lim_{\Lambda \to \mathbb{L}} \pi_{\Lambda}^{\Phi}(\cdot \mid \sigma) + \text{convex combinations}$ [thermodynamic limit]

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Definition						

(Lattice) Gibbs measures: formal definition Gibbsian specification: Family $\Pi^{\Phi} = \{\pi^{\Phi}_{\Lambda} : \Lambda \subset \mathbb{L}\}$ with

 $\pi^{\Phi}_{\Lambda}(C_{\omega_{\Lambda}}) = \frac{\mathrm{e}^{-\beta H_{\Lambda}(\omega|\sigma)}}{\mathrm{Norm}}$

 $[\pi^{\Phi}_{\Lambda}(\,\cdot\mid\sigma)=\text{equilibrium in }\Lambda\text{ given }\sigma]$

Gibbs measures: μ is Gibbs for Φ if, equivalently,

• μ is left invariant by Π^{Φ} :

$$\int \pi^{\Phi}_{\Lambda}(C_{\omega_{\Lambda}})\,\mu(d\omega)=\mu(C_{\omega_{\Lambda}})$$

 $[\mu = \text{equilibrium in } \mathbb{L} = \text{every } \Lambda \text{ in equilibrium}]$

► $\mu = w - \lim_{\Lambda \to \mathbb{L}} \pi^{\Phi}_{\Lambda}(\cdot \mid \sigma) + \text{convex combinations}$ [thermodynamic limit]

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Definition						

(Lattice) Gibbs measures: formal definition

Gibbsian specification: Family $\Pi^{\Phi} = \{\pi^{\Phi}_{\Lambda} : \Lambda \subset \mathbb{L}\}$ with

$$\pi^{\Phi}_{\Lambda}(C_{\omega_{\Lambda}}) = \frac{\mathrm{e}^{-\beta H_{\Lambda}(\omega|\sigma)}}{\mathrm{Norm.}}$$

 $[\pi^{\Phi}_{\Lambda}(\,\cdot\mid\sigma)=\text{equilibrium in }\Lambda\text{ given }\sigma]$

Gibbs measures: μ is Gibbs for Φ if, equivalently,

• μ is left invariant by Π^{Φ} :

$$\int \pi^{\Phi}_{\Lambda}(C_{\omega_{\Lambda}})\,\mu(d\omega)=\mu(C_{\omega_{\Lambda}})$$

 $[\mu = \text{equilibrium in } \mathbb{L} = \text{every } \Lambda \text{ in equilibrium}]$

► $\mu = w - \lim_{\Lambda \to \mathbb{L}} \pi_{\Lambda}^{\Phi}(\cdot \mid \sigma) + \text{convex combinations}$ [thermodynamic limit]

Mean field Kac End

うして ふゆう ふほう ふほう ふしつ

Gibbsianness test

How to recognize Gibbsianness

Kozlov – Sullivan: μ is Gibbs iff it is

- ► Non-null: $\mu(C_{\omega_{\Lambda}}) > 0$ for every cylinder $C_{\omega_{\Lambda}}$
- Quasilocal: If $\Lambda \subset \Gamma \subset \mathbb{L}$,

$\sup_{\sigma,\omega,\xi^{\pm}} \left| \mu (C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{+}) - \mu (C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{-}) \right| \xrightarrow[\gamma \to \mathbb{L}]{} 0$

Physics in Λ does not depend on state of the Andromeda galaxy

ション ふゆ マ キャット キャット しょう

Gibbsianness test

How to recognize Gibbsianness

Kozlov – Sullivan: μ is Gibbs iff it is

- ► Non-null: $\mu(C_{\omega_{\Lambda}}) > 0$ for every cylinder $C_{\omega_{\Lambda}}$
- Quasilocal: If $\Lambda \subset \Gamma \subset \mathbb{L}$,

$$\sup_{\sigma,\omega,\xi^{\pm}} \left| \mu (C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{+}) - \mu (C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{-}) \right| \xrightarrow[\gamma \to \mathbb{L}]{} 0$$

Physics in Λ does not depend on state of the Andromeda galaxy

How to recognize Gibbsianness

End

ション ふゆ マ キャット キャット しょう

Kozlov – Sullivan: μ is Gibbs iff it is

- ► Non-null: $\mu(C_{\omega_{\Lambda}}) > 0$ for every cylinder $C_{\omega_{\Lambda}}$
- Quasilocal: If $\Lambda \subset \Gamma \subset \mathbb{L}$,

$$\sup_{\sigma,\omega,\xi^{\pm}} \left| \mu (C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{+}) - \mu (C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{-}) \right| \xrightarrow[\gamma \to \mathbb{L}]{} 0$$

Physics in Λ does not depend on state of the Andromeda galaxy

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	●00000	000000	000000000000000000000000000000000000000	00000000	
Non-quasilo	cality					

 μ is Gibbs if $\exists \Lambda$ and w^{sp} s.t: $\exists \xi^{\pm}$ for which

$$\sup_{\sigma,\omega,\xi^{\pm}} \left| \mu (C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{+}) - \mu (C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{-}) \right| \xrightarrow{\gamma \to \mathbb{L}} 0$$

for *every* realisation of $\mu(C_{\omega_{\Lambda}} \mid \cdot)$

- Quasilocality = continuity w.r.t. external conditions
- Non-quasilocality = essential discontinuity w.r.t. external conditions

うして ふゆう ふほう ふほう ふしつ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	●00000	000000	000000000000000000000000000000000000000	00000000	
Non-quasilo	cality					

 μ is Gibbs if $\exists \Lambda$ and w^{sp} s.t: $\exists \xi^{\pm}$ for which

$$\sup_{\sigma,\omega,\xi^{\pm}} \left| \mu (C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{+}) - \mu (C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{-}) \right| \xrightarrow{\gamma \to \mathbb{L}} 0$$

for *every* realisation of $\mu(C_{\omega_{\Lambda}} \mid \cdot)$

- ▶ Quasilocality = continuity w.r.t. external conditions
- Non-quasilocality = essential discontinuity w.r.t. external conditions

うして ふゆう ふほう ふほう ふしつ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	●00000	000000	000000000000000000000000000000000000000	00000000	
Non-quasilo	cality					

 μ is Gibbs if $\exists \Lambda$ and w^{sp} s.t: $\exists \xi^{\pm}$ for which

$$\sup_{\sigma,\omega,\xi^{\pm}} \left| \mu \big(C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{+} \big) - \mu \big(C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{-} \big) \right| \xrightarrow{\gamma \to \mathbb{L}} 0$$

for *every* realisation of $\mu(C_{\omega_{\Lambda}} \mid \cdot)$

- ▶ Quasilocality = continuity w.r.t. external conditions
- Non-quasilocality = essential discontinuity w.r.t. external conditions

うして ふゆう ふほう ふほう ふしつ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	●00000	000000	000000000000000000000000000000000000000	00000000	
Non-quasilo	cality					

 μ is Gibbs if $\exists \Lambda$ and w^{sp} s.t: $\exists \xi^{\pm}$ for which

$$\sup_{\sigma,\omega,\xi^{\pm}} \left| \mu \big(C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{+} \big) - \mu \big(C_{\omega_{\Lambda}} \mid \sigma_{\Gamma} \xi^{-} \big) \right| \xrightarrow{\gamma \to \mathbb{L}} 0$$

for *every* realisation of $\mu(C_{\omega_{\Lambda}} \mid \cdot)$

- ▶ Quasilocality = continuity w.r.t. external conditions
- Non-quasilocality = essential discontinuity w.r.t. external conditions

うして ふゆう ふほう ふほう ふしつ

Renormalization and non-Gibbsianness

Renormalization transformations General definition: A (stochastic) RT is a map

$$\operatorname{Prob}(\Omega) \longrightarrow \operatorname{Prob}(\Omega')$$
$$\mu \longmapsto \mu'(\cdot) = \int K(\cdot \mid \omega) \,\mu(d\omega)$$

where K is a probability kernel

The transformation is *deterministic* if $\exists f : \Omega \to \Omega'$ s.t.

$$K(\,\cdot\mid\omega)=\delta_{\!_{f(\omega)}}(\,\cdot\,)$$

A $block \operatorname{RT}$ is of the form

$$K(d\omega'\mid\omega)=\prod_{x'}K'_x(d\omega'_{x'}\mid\omega_{\!_{B_{x'}}})$$

Renormalization and non-Gibbsianness

Renormalization transformations General definition: A (stochastic) RT is a map

$$\operatorname{Prob}(\Omega) \longrightarrow \operatorname{Prob}(\Omega')$$
$$\mu \longmapsto \mu'(\cdot) = \int K(\cdot \mid \omega) \,\mu(d\omega)$$

where K is a probability kernel

The transformation is *deterministic* if $\exists f : \Omega \to \Omega'$ s.t.

$$K(\,\cdot\mid\omega)=\delta_{\!_{f(\omega)}}(\,\cdot\,)$$

A $block \operatorname{RT}$ is of the form

$$K(d\omega'\mid\omega)=\prod_{x'}K'_x(d\omega'_{x'}\mid\omega_{\!_{B_{x'}}})$$

Renormalization and non-Gibbsianness

Renormalization transformations General definition: A (stochastic) RT is a map

$$\operatorname{Prob}(\Omega) \longrightarrow \operatorname{Prob}(\Omega')$$
$$\mu \longmapsto \mu'(\cdot) = \int K(\cdot \mid \omega) \,\mu(d\omega)$$

where K is a probability kernel

The transformation is *deterministic* if $\exists f : \Omega \to \Omega'$ s.t.

$$K(\,\cdot\mid\omega)=\delta_{\!_{f(\omega)}}(\,\cdot\,)$$

A $block \operatorname{RT}$ is of the form

$$K(d\omega'\mid\omega)=\prod_{x'}K'_x(d\omega'_{x'}\mid\omega_{\!_{B_{x'}}})$$

each $B_{x'} \subset \mathbb{L}$ is the block associated to x'_{a}

Intro	Gibbs	Non-Gibbs
0000	000	00000

Mean field Kac End

Renormalization and non-Gibbsianness

Examples of block transformations

Deterministic transformations:

- Decimation
- Majority (odd block)

Stochastic transformations:

- Majority (even block)
- ▶ Kadanoff:

$$K'_x(d\omega'_{x'} \mid \omega_{\scriptscriptstyle B_{x'}}) = \frac{\exp\Big\{p\,\omega'_{x'}\sum_{x\in B_{x'}}\omega_x\Big\}}{\operatorname{Norm}}\,d\omega'_{x'}$$

[weighted majority; \rightarrow majority as $p \rightarrow \infty$]

Intro	Gibbs	Non-Gibbs
0000	000	000000

うして ふゆう ふほう ふほう ふしつ

Renormalization and non-Gibbsianness

Hidden variables and non-quasilocality

Hidden-variables mechanism:

- ► Each fixed ω'_{Λ^c} determines a constrained Ω system
- ▶ $\omega'^{\rm sp}$ is s.t. the constrained system has a phase transition

• ξ' far away decides the phase \rightarrow info form ∞

Two-slice point of view:

- Ω = original slice = hidden variables
- Ω' = present slice = observed variables

Intro	Gibbs	Non-Gibbs
0000	000	000000

うして ふゆう ふほう ふほう ふしつ

Renormalization and non-Gibbsianness

Hidden variables and non-quasilocality

Hidden-variables mechanism:

- ► Each fixed ω'_{Λ^c} determines a constrained Ω system
- $\blacktriangleright \ \omega'^{\rm sp}$ is s.t. the constrained system has a phase transition
- ▶ ξ' far away decides the phase → info form ∞

Two-slice point of view:

- Ω = original slice = hidden variables
- Ω' = present slice = observed variables

Intro	Gibbs	Non-Gibbs
0000	000	000000

(日) (日) (日) (日) (日) (日) (日) (日)

Renormalization and non-Gibbsianness

Hidden variables and non-quasilocality

Hidden-variables mechanism:

- ► Each fixed ω'_{Λ^c} determines a constrained Ω system
- $\blacktriangleright \ \omega'^{\rm sp}$ is s.t. the constrained system has a phase transition
- ▶ ξ' far away decides the phase → info form ∞

Two-slice point of view:

- Ω = original slice = hidden variables
- Ω' = present slice = observed variables

Intro	Gibbs	Non-Gibbs
0000	000	000000

うして ふゆう ふほう ふほう ふしつ

Renormalization and non-Gibbsianness

Hidden variables and non-quasilocality

Hidden-variables mechanism:

- ► Each fixed $\omega'_{\Lambda c}$ determines a constrained Ω system
- ▶ $\omega'^{\rm sp}$ is s.t. the constrained system has a phase transition
- ▶ ξ' far away decides the phase → info form ∞

Two-slice point of view:

- Ω = original slice = hidden variables
- Ω' = present slice = observed variables

Single-site Kadanoff transformations $(B_{x'} = \{x'\})$

On finite volumes, the two-slice measures are of the form

$$K_{\Lambda}(d\omega' \mid \omega) \,\mu_{\Lambda}(d\omega) \propto \exp \left\{ eta \left[H_{\Lambda}^{\mathrm{Kad}}(\omega, \omega') + H_{\Lambda}(\omega)
ight]
ight\} d\omega'_{\Lambda} \, d\omega_{\Lambda}$$

where

$$H_{\Lambda}^{\mathrm{Kad}}(\omega,\omega') = \sum_{x'} \left\{ \frac{p}{\beta} \, \omega'_x \omega_x - \frac{1}{\beta} \log \left[2 \cosh(p \, \omega_x) \right] \right\}$$

acts on the original spins as an extra magnetic field Constrained internal spins have phase transition if

$$\frac{p}{\beta}\omega'_x$$
 compensates h in the average (*)

ション ふゆ マ キャット キャット しょう

and β is large enough
Single-site Kadanoff transformations $(B_{x'} = \{x'\})$

On finite volumes, the two-slice measures are of the form

$$K_{\Lambda}(d\omega' \mid \omega) \,\mu_{\Lambda}(d\omega) \propto \exp \left\{ eta \left[H_{\Lambda}^{\mathrm{Kad}}(\omega, \omega') + H_{\Lambda}(\omega)
ight]
ight\} d\omega'_{\Lambda} \, d\omega_{\Lambda}$$

where

$$H_{\Lambda}^{\mathrm{Kad}}(\omega,\omega') = \sum_{x'} \left\{ \frac{p}{\beta} \, \omega'_x \omega_x - \frac{1}{\beta} \log \left[2 \cosh(p \, \omega_x) \right] \right\}$$

acts on the original spins as an extra magnetic field

Constrained internal spins have phase transition if

$$\frac{p}{\beta}\omega'_x$$
 compensates h in the average (*)

ション ふゆ マ キャット キャット しょう

and β is large enough

Single-site Kadanoff transformations $(B_{x'} = \{x'\})$

On finite volumes, the two-slice measures are of the form

$$K_{\Lambda}(d\omega' \mid \omega) \,\mu_{\Lambda}(d\omega) \propto \exp \left\{ eta \left[H_{\Lambda}^{\mathrm{Kad}}(\omega, \omega') + H_{\Lambda}(\omega)
ight]
ight\} d\omega'_{\Lambda} \, d\omega_{\Lambda}$$

where

$$H_{\Lambda}^{\mathrm{Kad}}(\omega,\omega') = \sum_{x'} \left\{ \frac{p}{\beta} \, \omega'_x \omega_x - \frac{1}{\beta} \log \left[2 \cosh(p \, \omega_x) \right] \right\}$$

acts on the original spins as an extra magnetic field Constrained internal spins have phase transition if

$$\frac{p}{\beta}\omega'_x$$
 compensates h in the average (*)

ション ふゆ マ キャット キャット しょう

and β is large enough

Renormalization and non-Gibbsianness

Single-site Kadanoff transformations (cont.)

End

うして ふゆう ふほう ふほう ふしつ

Let h be the original Ising field and fix β large enough s.t.

- ▶ Original model with h = 0 has phase transition
- Pirogov-Sinai theory holds

If h = 0, alternated $\omega' \Longrightarrow (*)$ for p/β small enough Hence, $\exists p_1 > p_2$ s.t.

- μ' is Gibbs for $p > p_1$
- μ' is not Gibbs for $_2 > p$

If $h \neq 0, \exists \omega' \text{ s.t. } (*) \text{ only for a range of } p/\beta$ Hence, $\exists p_1 \geq p_2 > p_3 \geq p_4$ s.t.

- μ' is Gibbs for $p > p_1$
- μ' is not Gibbs for $p_2 > p > p_3$
- μ' is not Gibbs for $p_4 > p$

Renormalization and non-Gibbsianness

Single-site Kadanoff transformations (cont.)

Let h be the original Ising field and fix β large enough s.t.

- Original model with h = 0 has phase transition
- Pirogov-Sinai theory holds

If h = 0, alternated $\omega' \Longrightarrow (*)$ for p/β small enough Hence, $\exists p_1 > p_2$ s.t.

- μ' is Gibbs for $p > p_1$
- μ' is not Gibbs for $_2 > p$

If $h \neq 0$, $\exists \omega' \text{ s.t. } (*)$ only for a range of p/β Hence, $\exists p_1 \ge p_2 > p_3 \ge p_4$ s.t.

- μ' is Gibbs for $p > p_1$
- μ' is not Gibbs for $p_2 > p > p_3$
- μ' is not Gibbs for $p_4 > p$

 Intro
 Gibbs
 Non-Gibbs
 Dynamics
 Mean field
 Kac
 End

 0000
 00000●
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000

Renormalization and non-Gibbsianness

Single-site Kadanoff transformations (cont.)

ション ふゆ マ キャット キャット しょう

Let h be the original Ising field and fix β large enough s.t.

- Original model with h = 0 has phase transition
- Pirogov-Sinai theory holds

If h = 0, alternated $\omega' \Longrightarrow (*)$ for p/β small enough Hence, $\exists p_1 > p_2$ s.t.

- μ' is Gibbs for $p > p_1$
- μ' is not Gibbs for $_2 > p$

If $h \neq 0, \exists \omega' \text{ s.t. } (*) \text{ only for a range of } p/\beta$ Hence, $\exists p_1 \geq p_2 > p_3 \geq p_4 \text{ s.t.}$

- μ' is Gibbs for $p > p_1$
- μ' is not Gibbs for $p_2 > p > p_3$
- μ' is not Gibbs for $p_4 > p$

 Intro
 Gibbs
 Non-Gibbs
 Dynamics
 Mean field
 Kac
 End

 0000
 00000●
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000

Renormalization and non-Gibbsianness

Single-site Kadanoff transformations (cont.)

ション ふゆ マ キャット キャット しょう

Let *h* be the original Ising field and fix β large enough s.t.

- Original model with h = 0 has phase transition
- Pirogov-Sinai theory holds

If h = 0, alternated $\omega' \Longrightarrow (*)$ for p/β small enough Hence, $\exists p_1 > p_2$ s.t.

- μ' is Gibbs for $p > p_1$
- μ' is not Gibbs for $_2 > p$

If $h \neq 0, \exists \omega' \text{ s.t. } (*) \text{ only for a range of } p/\beta$ Hence $\exists n_1 \geq n_2 \geq n_2 \geq n_4$ s.t.

- μ' is Gibbs for $p > p_1$
- μ' is not Gibbs for $p_2 > p > p_3$
- μ' is not Gibbs for $p_4 > p$

Renormalization and non-Gibbsianness

Single-site Kadanoff transformations (cont.)

ション ふゆ マ キャット マックタン

Let *h* be the original Ising field and fix β large enough s.t.

- Original model with h = 0 has phase transition
- Pirogov-Sinai theory holds

If h = 0, alternated $\omega' \Longrightarrow (*)$ for p/β small enough Hence, $\exists p_1 > p_2$ s.t.

- μ' is Gibbs for $p > p_1$
- μ' is not Gibbs for $_2 > p$

If $h \neq 0$, $\exists \omega'$ s.t. (*) only for a range of p/β Hence, $\exists p_1 \ge p_2 > p_3 \ge p_4$ s.t.

- μ' is Gibbs for $p > p_1$
- μ' is not Gibbs for $p_2 > p > p_3$
- μ' is not Gibbs for $p_4 > p$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Definition a	nd example					

 $\mu_t = S_t \mu$

with S_t = semigroup of operators. Dynamic G-non-G: μ Gibbs but μ_t non-Gibbs at some

Example:

- ▶ μ =low-T Ising model
- $S_t = S^n$ infinite-T discrete-time Glauber

$$S = \prod_{x} S_{\{x\}} \quad \text{with} \quad \begin{array}{l} S_x(\omega_x \mid \omega_x) = 1 - \epsilon \\ S_x(-\omega_x \mid \omega_x) = \epsilon \end{array}$$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	00000	000000000000000000000000000000000000000	00000000	
Definition a	nd example					

 $\mu_t = S_t \mu$

with S_t = semigroup of operators. **Dynamic G**-non-G: μ Gibbs but μ_t non-Gibbs at some t

Example:

• $\mu = \text{low-}T$ Ising model

• $S_t = S^n$ infinite-T discrete-time Glauber

$$S = \prod_{x} S_{\{x\}} \quad \text{with} \quad \begin{array}{l} S_x(\omega_x \mid \omega_x) = 1 - \epsilon \\ S_x(-\omega_x \mid \omega_x) = \epsilon \end{array}$$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	00000	000000000000000000000000000000000000000	00000000	
Definition a	nd example					

$$\mu_t = S_t \mu$$

with S_t = semigroup of operators. **Dynamic G-non-G**: μ Gibbs but μ_t non-Gibbs at some t

Example:

- ▶ μ =low-*T* Ising model
- $S_t = S^n$ infinite-T discrete-time Glauber

$$S = \prod_{x} S_{\{x\}} \quad \text{with} \quad \begin{array}{l} S_{x}(\omega_{x} \mid \omega_{x}) = 1 - \epsilon \\ S_{x}(-\omega_{x} \mid \omega_{x}) = \epsilon \end{array}$$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	00000	000000000000000000000000000000000000000	00000000	
Definition a	nd example					

$$\mu_t = S_t \mu$$

with S_t = semigroup of operators. **Dynamic G-non-G**: μ Gibbs but μ_t non-Gibbs at some t

Example:

- ▶ μ =low-*T* Ising model
- $S_t = S^n$ infinite-T discrete-time Glauber

$$S = \prod_{x} S_{\{x\}} \quad \text{with} \quad \begin{array}{l} S_{x}(\omega_{x} \mid \omega_{x}) = 1 - \epsilon \\ S_{x}(-\omega_{x} \mid \omega_{x}) = \epsilon \end{array}$$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac
0000	000	000000	00000	000000000000000000000000000000000000000	000000

Definition and example

Un-quenching G-non-G transitions

End

ション ふゆ マ キャット キャット しょう

In matrix form
$$(S_x)_{\omega\omega'} \equiv S_x(\omega'_x \mid \omega_x)$$

 $S_x = \begin{pmatrix} 1-\epsilon & \epsilon \\ \epsilon & 1-\epsilon \end{pmatrix}$, $S_x^n = \frac{1}{2} \begin{pmatrix} 1+a_n & 1-a_n \\ 1-a_n & 1+a_n \end{pmatrix}$
with $a_n = (1-2\epsilon)^n$. Hence
 $S_x^n(\omega' \mid \omega_x) = A_n e^{p_n \omega'_x \omega_x}$, $p_n = \log\left(\frac{1+a_n}{2}\right)$

Kadanoff with $p_n \xrightarrow{n \to 0} \infty$ and $p_n \xrightarrow{n \to \infty} 0$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac
0000	000	000000	00000	000000000000000000000000000000000000000	00000000

Definition and example

Un-quenching G–non-G transitions

In matrix form
$$(S_x)_{\omega \omega'} \equiv S_x(\omega'_x \mid \omega_x)$$

 $S_x = \begin{pmatrix} 1-\epsilon & \epsilon \\ \epsilon & 1-\epsilon \end{pmatrix}$, $S_x^n = \frac{1}{2} \begin{pmatrix} 1+a_n & 1-a_n \\ 1-a_n & 1+a_n \end{pmatrix}$
with $a_n = (1-2\epsilon)^n$. Hence

$$S_x^n(\omega_x' \mid \omega_x) = A_n e^{p_n \omega_x' \omega_x} \quad , \quad p_n = \log\left(\frac{1+a_n}{1-a_n}\right)$$

Kadanoff with $p_n \xrightarrow[n \to 0]{} \infty$ and $p_n \xrightarrow[n \to \infty]{} 0$

・ロト ・個ト ・ヨト ・ヨト ヨ ・ のへで

End

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	00000	000000000000000000000000000000000000000	00000000	
Definition a	nd example					

Un-quenching G-non-G transitions (cont.)

Using previous results on Kadanoff-renormalized measures:

$$(h = 0) \qquad \underbrace{ \begin{array}{c} \text{Gibbs} \\ 0 \end{array}}_{n_1} \\ (h > 0) \qquad \underbrace{ \begin{array}{c} \text{Gibbs} \\ 0 \end{array}}_{n_1} \\ n_2 \end{array} \\ \underbrace{ \begin{array}{c} \text{Non-Gibbs} \\ n_3 \end{array}}_{n_3} \\ n_4 \end{array} \\ \underbrace{ \begin{array}{c} \text{Gibbs} \\ n_4 \end{array}}_{n_4} \\ \end{array} \\ \begin{array}{c} \text{Kon-Gibbs} \\ \text{Kon-Gibbs} \\ n_3 \\ n_4 \end{array} \\ \begin{array}{c} \text{Kon-Gibbs} \\ \ \text{Kon-Gibbs} \\ \text{Kon-Gibbs}$$

Mathematical mechanism: hidden variables (two-slice view) Physical mechanism?

ション ふゆ マ キャット マックシン

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	00000	000000000000000000000000000000000000000	00000000	
Definition a	nd example					

Un-quenching G-non-G transitions (cont.)

Using previous results on Kadanoff-renormalized measures:

$$(h = 0) \qquad \underbrace{ \begin{array}{c} \text{Gibbs} \\ 0 \end{array}}_{n_1 \dots n_2} & \underbrace{ \text{Non-Gibbs} \\ (h > 0) \end{array} \underbrace{ \begin{array}{c} \text{Gibbs} \\ 0 \end{array}}_{n_1 \dots n_2} & \underbrace{ \begin{array}{c} \text{Non-Gibbs} \\ n_3 \end{array}}_{n_3 \dots n_4} & \underbrace{ \begin{array}{c} \text{Gibbs} \\ \text{Gibbs} \end{array}}_{n_4} & \bullet \end{array}$$

Mathematical mechanism: hidden variables (two-slice view) Physical mechanism?

ション ふゆ マ キャット マックシン

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	00000	000000000000000000000000000000000000000	00000000	
Definition and example						

Un-quenching G-non-G transitions (cont.)

Using previous results on Kadanoff-renormalized measures:

$$(h = 0) \qquad \underbrace{ \begin{array}{c} \text{Gibbs} \\ 0 \end{array}}_{n_1 \dots n_2} & \underbrace{ \text{Non-Gibbs} \\ (h > 0) \end{array} \underbrace{ \begin{array}{c} \text{Gibbs} \\ 0 \end{array}}_{n_1 \dots n_2} & \underbrace{ \begin{array}{c} \text{Non-Gibbs} \\ n_3 \end{array}}_{n_3 \dots n_4} & \underbrace{ \begin{array}{c} \text{Gibbs} \\ \text{Gibbs} \end{array}}_{n_4} & \bullet \end{array}$$

Mathematical mechanism: hidden variables (two-slice view) Physical mechanism?

ション ふゆ マ キャット マックシン

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Machaniam						

A. van Enter: most probable history of an improbable state Given a large improbable droplet. How did it get there?

▶ Nurture: Created by the dynamics (cost exp-volume)

 Nature: Present at t = 0 and survived To compete: typical of the other phase (cost exp-perimeter)
 Heuristic version:

- Short t: Only nature, no time to change much
- Mid t:
 - ▶ ω^{sp} nurtured, but ξ^{\pm} nature
 - ▶ Hence ξ^{\pm} determines original phase → discontinuity

▶ Long t: If $h \neq 0$ only one phase \rightarrow no tilting mechanism

うして ふゆう ふほう ふほう ふしつ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Mechanism						

A. van Enter: most probable history of an improbable state Given a large improbable droplet. How did it get there?

▶ Nurture: Created by the dynamics (cost exp-volume)

 Nature: Present at t = 0 and survived To compete: typical of the other phase (cost exp-perimeter)
 Heuristic version:

- Short t: Only nature, no time to change much
- Mid t:
 - ▶ ω^{sp} nurtured, but ξ^{\pm} nature
 - Hence ξ^{\pm} determines original phase \rightarrow discontinuity

▶ Long t: If $h \neq 0$ only one phase \rightarrow no tilting mechanism

うつう 山田 エル・エー・ 山田 うらう

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Mechanism						

A. van Enter: most probable history of an improbable state Given a large improbable droplet. How did it get there?

- ▶ Nurture: Created by the dynamics (cost exp-volume)
- Nature: Present at t = 0 and survived To compete: typical of the other phase (cost exp-perimeter)

▶ Short *t*: Only nature, no time to change mu

- Mid t:
 - ω^{sp} nurtured, but ξ^{\pm} nature
 - ▶ Hence ξ^{\pm} determines original phase → discontinuity

▶ Long t: If $h \neq 0$ only one phase \rightarrow no tilting mechanism

うして ふゆう ふほう ふほう ふしつ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Mechanism						

A. van Enter: most probable history of an improbable state Given a large improbable droplet. How did it get there?

- ▶ Nurture: Created by the dynamics (cost exp-volume)
- ▶ Nature: Present at t = 0 and survived To compete: typical of the other phase (cost exp-perimeter)

Heuristic version:

- ▶ Short *t*: Only nature, no time to change much
- Mid t:
 - ω^{sp} nurtured, but ξ^{\pm} nature
 - ▶ Hence ξ^{\pm} determines original phase → discontinuity

▶ Long t: If $h \neq 0$ only one phase \rightarrow no tilting mechanism

うして ふゆう ふほう ふほう ふしつ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Mechanism						

A. van Enter: most probable history of an improbable state Given a large improbable droplet. How did it get there?

- ▶ Nurture: Created by the dynamics (cost exp-volume)
- ▶ Nature: Present at t = 0 and survived To compete: typical of the other phase (cost exp-perimeter)

Heuristic version:

- ▶ Short *t*: Only nature, no time to change much
- ► Mid *t*:
 - ▶ ω^{sp} nurtured, but ξ^{\pm} nature
 - ▶ Hence ξ^{\pm} determines original phase → discontinuity

▶ Long t: If $h \neq 0$ only one phase \rightarrow no tilting mechanism

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Mechanism						

A. van Enter: most probable history of an improbable state Given a large improbable droplet. How did it get there?

- ▶ Nurture: Created by the dynamics (cost exp-volume)
- ▶ Nature: Present at t = 0 and survived To compete: typical of the other phase (cost exp-perimeter)

Heuristic version:

- ▶ Short *t*: Only nature, no time to change much
- ► Mid *t*:
 - ▶ ω^{sp} nurtured, but ξ^{\pm} nature
 - ▶ Hence ξ^{\pm} determines original phase → discontinuity

▶ Long t: If $h \neq 0$ only one phase \rightarrow no tilting mechanism

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Mechanism						

most probable history = most probable trajectory most probable = minimizer of the large-deviation rate

Paradigm: Establish a large-deviation principle for trajectories of *measures conditioned* to a given final *empirical measure*

うして ふゆう ふほう ふほう ふしつ

- Single minimizer = Gibbsianness
- Multiple minimizers = non-Gibbsianness
 Perturbation of conditioning

 → discontinuous choice of trajectory

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Mechanism						

most probable history = most probable trajectory most probable = minimizer of the large-deviation rate

Paradigm: Establish a large-deviation principle for trajectories of *measures conditioned* to a given final *empirical measure*

うして ふゆう ふほう ふほう ふしつ

- Single minimizer = Gibbsianness
- Multiple minimizers = non-Gibbsianness
 Perturbation of conditioning

 → discontinuous choice of trajectory

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Mechanism						

most probable history = most probable trajectory most probable = minimizer of the large-deviation rate

Paradigm: Establish a large-deviation principle for trajectories of *measures conditioned* to a given final *empirical measure*

(日) (日) (日) (日) (日) (日) (日) (日)

- ► Single minimizer = Gibbsianness
- ▶ Multiple minimizers = non-Gibbsianness

 $\begin{array}{l} \mbox{Perturbation of conditioning} \\ \rightarrow \mbox{discontinuous choice of trajectory} \end{array}$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00000000	
Mechanism						

most probable history = most probable trajectory most probable = minimizer of the large-deviation rate

Paradigm: Establish a large-deviation principle for trajectories of *measures conditioned* to a given final *empirical measure*

ション ふゆ マ キャット マックシン

- ► Single minimizer = Gibbsianness
- ▶ Multiple minimizers = non-Gibbsianness

Perturbation of conditioning

 \rightarrow discontinuous choice of trajectory

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	00000	000000000000000000000000000000000000000	00000000	
Mechanism						

Alternative paradigm: graphical summary

[h = 0]

One trajectory = Gibbs

Many trajectories = non-Gibbs

▲ロト ▲園ト ▲ヨト ▲ヨト 三日 - のへで

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	•0000000000000000000000000000000000000	00000000	
Mean-field	models: Defin	nition				

The program

Prove rigorously the previous paradigm.

Steps:

- (i) Mean-field models
- (ii) Kac models
- (iii) Finite-range models
- At present: (i) and (ii) for Ising under independent dynamics

ション ふゆ マ キャット マックシン

(i) Mean-field:

- ▶ No geometry no notion of neighbourhood
- Everything in terms of empirical magnetization

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	0000 00000000000000000000000000000000	00000000	
Mean-field	models: Defir	nition				

The program

Prove rigorously the previous paradigm.

Steps:

- (i) Mean-field models
- (ii) Kac models
- (iii) Finite-range models
- At present: (i) and (ii) for Ising under independent dynamics

ション ふゆ マ キャット マックシン

(i) Mean-field:

- ▶ No geometry no notion of neighbourhood
- ▶ Everything in terms of empirical magnetization

Intro	Gibbs
0000	000

Non-Gibbs

Dynamics

Mean-field models: Definition

Mean-field Ising model

N Ising spins $(\omega_i \in \{-1, 1\})$

$$H^{N}(\sigma) = -\frac{J}{2N} \sum_{i,j=1}^{N} \sigma_{i}\sigma_{j} - h \sum_{i=1}^{N} \sigma_{i}$$
$$= N\overline{H}(m_{N}(\sigma))$$

where m_N is the *empirical magnetization*

$$m_N(\sigma) = \frac{1}{N} \sum_{i=1}^{N} N\sigma_i$$

and, if $m \in \mathcal{M}_N := \{-1, -1 + 2N^{-1}, \dots, +1 - 2N^{-1}, +1\},\$

$$\overline{H}(m) := -\frac{1}{2}Jm^2 - hm$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ のへで

Intro	Gibbs	1
0000	000	(

Non-Gibbs 000000 Dynamics 000000 Mean-field models: Definition

Mean-field Ising model

N Ising spins $(\omega_i \in \{-1, 1\})$

$$H^{N}(\sigma) = -\frac{J}{2N} \sum_{i,j=1}^{N} \sigma_{i}\sigma_{j} - h \sum_{i=1}^{N} \sigma_{i}$$
$$= N\overline{H}(m_{N}(\sigma))$$

where m_N is the empirical magnetization

$$m_N(\sigma) = \frac{1}{N} \sum_{i=1} N \sigma_i$$

and, if $m \in \mathcal{M}_N := \{-1, -1 + 2N^{-1}, \dots, +1 - 2N^{-1}, +1\},\$

$$\overline{H}(m) := -\frac{1}{2}Jm^2 - hm$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Intro	Gibbs	Non-Gibbs
0000	000	000000

ション ふゆ マ キャット キャット しょう

Mean-field models: Definition

Mean-field measures and evolution

The H^N -Gibbs measure [β absorbed]

$$\mu^N(d\sigma) = \frac{\mathrm{e}^{-H^N(\sigma)}}{Z^N} \, d\sigma$$

induces a measure on \mathcal{M}_N

$$\overline{\mu}^{N}(dm) := \binom{N}{\frac{1+m}{2}N} \frac{e^{-N\overline{H}(m)}}{\overline{Z}^{N}} dm$$

 $[\mu^N \longleftrightarrow \overline{\mu}^N + \text{permutation invariance}]$

Intro	Gibbs	Non-Gibbs
0000	000	000000

ション ふゆ マ キャット キャット しょう

Mean-field models: Definition

Mean-field measures and evolution

The H^N -Gibbs measure [β absorbed]

$$\mu^N(d\sigma) = \frac{\mathrm{e}^{-H^N(\sigma)}}{Z^N} \, d\sigma$$

induces a measure on \mathcal{M}_N

$$\overline{\mu}^{N}(dm) := \binom{N}{\frac{1+m}{2}N} \frac{e^{-N\overline{H}(m)}}{\overline{Z}^{N}} dm$$

 $[\mu^N \longleftrightarrow \overline{\mu}^N + \text{permutation invariance}]$

Intro	Gibbs	Non-Gibbs
0000	000	000000

Mean field Kac End

ション ふゆ マ キャット キャット しょう

Mean-field models: Definition

Mean-field evolution

Independent $(T = \infty)$ dynamics on Ω_N induces on \mathcal{M}_N a continuous-time Markov chain $(m_t^N)_{t\geq 0}$ with generator

$$(\overline{L}_N f)(m) = \frac{1+m}{2} N [f(m-2N^{-1}) - f(m)]$$

$$+ \frac{1-m}{2} N [f(m+2N^{-1}) - f(m)]$$

This induces a dynamics on measures on \mathcal{M}_N

$$\overline{\mu}_t^N(f) = \overline{\mu}^N \left(\mathrm{e}^{t\overline{L}_N} f \right)$$

Intro	Gibbs	Non-Gibbs
0000	000	000000

Mean field Kac End

ション ふゆ マ キャット キャット しょう

Mean-field models: Definition

Mean-field evolution

Independent $(T = \infty)$ dynamics on Ω_N induces on \mathcal{M}_N a continuous-time Markov chain $(m_t^N)_{t\geq 0}$ with generator

$$(\overline{L}_N f)(m) = \frac{1+m}{2} N [f(m-2N^{-1}) - f(m)]$$

$$+ \frac{1-m}{2} N [f(m+2N^{-1}) - f(m)]$$

This induces a dynamics on measures on \mathcal{M}_N

$$\overline{\mu}_t^N(f) = \overline{\mu}^N \left(\mathrm{e}^{t\overline{L}_N} f \right)$$

Intro	Gibbs
0000	000

Non-Gibbs

Dynamics 000000 Mean field Kac End

Mean-field models: Non-Gibbsianness

Mean-field single-site specification (Külske and Le Ny)

Consider the single-spin conditional probabilities

$$\gamma_t^N(\sigma_1 \mid \alpha_{N-1}) := \mu_t^N(\sigma_1 \mid \sigma_{N-1}) ,$$

with

- $\sigma_1 \in \{-1, +1\},$
- $\bullet \ \alpha_{N-1} \in \mathcal{M}_{N-1},$

• $\sigma_{N-1} \in \Omega_{N-1}$ any configuration s.t. $m_{N-1}(\sigma_{N-1}) = \alpha_{N-1}$ [By permutation invariance RHS independ of choice of σ_{N-1}]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで
Intro	Gibbs	Non-Gibbs
0000	000	000000

Mean field Kac End

うして ふゆう ふほう ふほう ふしつ

Mean-field models: Non-Gibbsianness

Gibbs and Non-Gibbs mean-field models (Külske and Le Ny)

For fixed $t \ge 0$: (a) A magnetization $\alpha \in [-1, 1]$ is good for μ_t if

$$\gamma_t(\cdot \mid \widetilde{\alpha}) := \lim_{\substack{N \to \infty \\ \alpha_N \to \widetilde{\alpha}}} \gamma_t^N(\cdot \mid \alpha_{N-1}),$$

- exists and is independent of the sequence $\alpha_N \to \widetilde{\alpha}$
- it is continuous in $\tilde{\alpha}$

for $\widetilde{\alpha}$ in a neighbourhood of α

(b) A magnetization α ∈ [-1, +1] is bad if it is not good
(c) μt is Gibbs if it has no bad magnetizations

Intro	Gibbs	Non-Gibbs
0000	000	000000

Mean field Kac End

うして ふゆう ふほう ふほう ふしつ

Mean-field models: Non-Gibbsianness

Gibbs and Non-Gibbs mean-field models (Külske and Le Ny)

For fixed $t \ge 0$:

(a) A magnetization $\alpha \in [-1, 1]$ is good for μ_t if

$$\gamma_t(\cdot \mid \widetilde{\alpha}) := \lim_{\substack{N \to \infty \\ \alpha_N \to \widetilde{\alpha}}} \gamma_t^N(\cdot \mid \alpha_{N-1}),$$

- exists and is independent of the sequence $\alpha_N \to \widetilde{\alpha}$
- it is continuous in $\widetilde{\alpha}$

for $\widetilde{\alpha}$ in a neighbourhood of α

(b) A magnetization α ∈ [-1, +1] is bad if it is not good
(c) μt is Gibbs if it has no bad magnetizations

Intro	Gibbs	Non-Gibbs
0000	000	000000

Mean-field models: Large deviations

Large-deviations: General definition Informally:

A family of measures (ν^N) satisfies a large-deviation principle if

$$\nu^N(A) \sim \mathrm{e}^{-N\,I(A)}$$

- \blacktriangleright N is the LDP speed, I the rate function
- As a consequence, $\operatorname{supp}(\nu^N) \to \operatorname{argmin}(I)$

Formally:

 (ν^N) on a Borel space satisf. LDP with rate fcn I and speed N if

$$\liminf_{N \to \infty} \frac{1}{N} \log \nu^{N}(A) \geq -\inf_{x \in A} I(x) \quad \text{for } A \text{ open}$$
$$\limsup_{N \to \infty} \frac{1}{N} \log \nu^{N}(A) \leq -\sup_{x \in A} I(x) \quad \text{for } A \text{ closed}$$

Intro	Gibbs	Non-Gibbs
0000	000	000000

Mean-field models: Large deviations

Large-deviations: General definition Informally:

A family of measures (ν^N) satisfies a *large-deviation principle* if

$$\nu^N(A) \sim \mathrm{e}^{-N\,I(A)}$$

- \blacktriangleright N is the LDP speed, I the rate function
- As a consequence, $\operatorname{supp}(\nu^N) \to \operatorname{argmin}(I)$

Formally:

 (ν^N) on a Borel space satisf. LDP with rate fcn I and speed N if

$$\liminf_{N \to \infty} \frac{1}{N} \log \nu^{N}(A) \geq -\inf_{x \in A} I(x) \quad \text{for } A \text{ open}$$
$$\limsup_{N \to \infty} \frac{1}{N} \log \nu^{N}(A) \leq -\sup_{x \in A} I(x) \quad \text{for } A \text{ closed}$$

Intro	Gibbs	Non-Gibbs
0000	000	000000

Mean-field models: Large deviations

Large-deviations: General definition Informally:

A family of measures (ν^N) satisfies a *large-deviation principle* if

$$\nu^N(A) \sim \mathrm{e}^{-N\,I(A)}$$

- \blacktriangleright N is the LDP speed, I the rate function
- As a consequence, $\operatorname{supp}(\nu^N) \to \operatorname{argmin}(I)$

Formally:

 (ν^N) on a Borel space satisf. LDP with rate fcn I and speed N if

$$\liminf_{N \to \infty} \frac{1}{N} \log \nu^{N}(A) \geq -\inf_{x \in A} I(x) \quad \text{for } A \text{ open}$$
$$\limsup_{N \to \infty} \frac{1}{N} \log \nu^{N}(A) \leq -\sup_{x \in A} I(x) \quad \text{for } A \text{ closed}$$

Intro	Gibbs	Non-Gibbs
0000	000	000000

ション ふゆ マ キャット キャット しょう

Mean-field models: Large deviations

LDP for mean-field Ising:

"Static" part:

The family $(\overline{\mu}^N)$ satisfies a LDP with speed N and rate $I_S - \inf(I_S)$ with

$$I_S(m) := \overline{H}(m) + \frac{1+m}{2} \log(1+m) + \frac{1-m}{2} \log(1-m).$$

Independent evolutions:

Let $P^N = \text{law of } (m_t^N)_{t \ge 0}$ Defined on the space of càdlàg trajectories: Skorohod

Intro	Gibbs	Non-Gibbs
0000	000	000000

ション ふゆ マ キャット マックタン

Mean-field models: Large deviations

LDP for mean-field Ising:

"Static" part:

The family $(\overline{\mu}^N)$ satisfies a LDP with speed N and rate $I_S - \inf(I_S)$ with

$$I_S(m) := \overline{H}(m) + \frac{1+m}{2} \log(1+m) + \frac{1-m}{2} \log(1-m).$$

Independent evolutions:

Let $P^N = \text{law of } (m_t^N)_{t \ge 0}$

Defined on the space of càdlàg trajectories; Skorohod topology

Intro	Gibbs	Non-Gibbs
0000	000	000000

Mean field Kac End

Mean-field models: Large deviations

LDP for mean-field evolutions

(Ermolaev and Külske)

 (P^N) restricted to [0,T] satisfies LDP with speed N and rate $I^T - \inf(I^T)$ given by

$$I^{T}(\phi) := I_{S}(\phi(0)) + I_{D}^{T}(\phi),$$

where

$$I_D^T(\phi) := \begin{cases} \int_0^T L(\phi(s), \dot{\phi}(s)) \, ds & \text{if } \dot{\phi} \text{ exists} \\ \infty & \text{otherwise} \end{cases}$$

is the action integral with Lagrangian

$$L(m, \dot{m}) = -\frac{1}{2}\sqrt{4(1-m^2) + \dot{m}^2} + \frac{1}{2}\dot{m}\log\left(\frac{\sqrt{4(1-m^2) + \dot{m}^2} + \dot{m}}{2(1-m)}\right) + 1$$

Intro	Gibbs	Non-Gibbs
0000	000	000000

Mean field Kac End

Mean-field models: Large deviations

LDP for mean-field evolutions

(Ermolaev and Külske)

 (P^N) restricted to [0,T] satisfies LDP with speed N and rate $I^T - \inf(I^T)$ given by

$$I^{T}(\phi) := I_{S}(\phi(0)) + I_{D}^{T}(\phi),$$

where

$$I_D^T(\phi) := \begin{cases} \int_0^T L(\phi(s), \dot{\phi}(s)) \, ds & \text{if } \dot{\phi} \text{ exists} \\ \infty & \text{otherwise} \end{cases}$$

is the action integral with Lagrangian

$$\begin{split} L(m,\dot{m}) &= -\frac{1}{2}\sqrt{4\left(1-m^2\right)+\dot{m}^2} \\ &+ \frac{1}{2}\dot{m}\log\left(\frac{\sqrt{4\left(1-m^2\right)+\dot{m}^2}+\dot{m}}{2(1-m)}\right) + 1 \end{split}$$

 Intro
 Gibbs
 Non-Gibbs
 Dynamics
 Mean field
 Kac

 0000
 000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000

LDP for conditioned mean-field evolutions

End

ション ふゆ マ キャット キャット しょう

The family of measures on trajectory space

$$Q_{t,\alpha}^N(\,\cdot\,) := P^N\big((m_N(s))_{0 \le s \le t} = \,\cdot\, \big|\, m_N(t) = \alpha\big)$$

satisfies LDP with speed N and rate $I^{t,\alpha} - \inf(I^{t,\alpha})$, with

$$I^{t,\alpha}(m\phi) = \begin{cases} I^t(\phi) & \text{if } \phi_t = \alpha \\ \infty & \text{otherwise} \end{cases}$$

Hence, conditioned optimal trajectories correspond to

 $\underset{\phi: \phi(t)=\alpha}{\operatorname{argmin}} I^t(\phi)$

Gibbs Non-Gibbs Dynamics Mean field Intro

Mean-field models: Large deviations

LDP for conditioned mean-field evolutions

End

Kac

ション ふゆ マ キャット キャット しょう

The family of measures on trajectory space

$$Q_{t,\alpha}^N(\,\cdot\,) := P^N\big((m_N(s))_{0 \le s \le t} = \,\cdot\, \big|\, m_N(t) = \alpha\big)$$

satisfies LDP with speed N and rate $I^{t,\alpha} - \inf(I^{t,\alpha})$, with

$$I^{t,\alpha}(m\phi) = \begin{cases} I^t(\phi) & \text{if } \phi_t = \alpha \\ \infty & \text{otherwise} \end{cases}$$

Hence, conditioned optimal trajectories correspond to

$$\operatorname{argmin}_{\phi: \phi(t)=\alpha} I^t(\phi)$$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac
0000	000	000000	000000	000000000000000000000000000000000000000	000

Mean-field models: Results

The mean-field computational advantage

End

ション ふゆ マ キャット キャット しょう

Simplifying feature:

▶ There is an explicit expression for

$$C_{t,\alpha}(m) := \inf_{\substack{\phi: \phi(0)=m, \\ \phi(t)=\alpha}} I^t(\phi)$$

▶ We have the identity

$$\inf_{m \in [-1,+1]} C_{t,\alpha}(m) = \inf_{\phi: \phi(t) = \alpha} I^t(\phi)$$

Hence,

multiple conditioned trajectories \iff multiple global minima of $C_{t,\alpha}(m)$

In	tro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac
00	000	000	000000	000000	000000000000000000000000000000000000000	00000

Mean-field models: Results

The mean-field computational advantage

End

ション ふゆ マ キャット キャット しょう

Simplifying feature:

▶ There is an explicit expression for

$$C_{t,\alpha}(m) := \inf_{\substack{\phi: \phi(0)=m, \\ \phi(t)=\alpha}} I^t(\phi)$$

▶ We have the identity

$$\inf_{m \in [-1,+1]} C_{t,\alpha}(m) = \inf_{\phi: \phi(t) = \alpha} I^t(\phi)$$

Hence,

multiple conditioned trajectories \iff multiple global minima of $C_{t,\alpha}(m)$

Intro	Gibbs	Non-Gibbs
0000	000	000000

Mean-field models: Results

I. Single optimal trajectory = Gibbsianness

- $\alpha \mapsto \gamma_t(\sigma \mid \alpha)$ is continuous at α_0 if and only if
 - ► $I^t(\phi)$ has a unique minimizing path $\widehat{\phi}$
 - ▶ or, equivalently, $C_{t,\alpha_0}(m)$ has a unique minimizing m.

Furthermore, in this case, the specification kernel equals

$$\gamma_t(z \mid \alpha) = \frac{\sum_{x \in \{-1,+1\}} e^{x[J\widehat{\phi}(0)+h]} p_t(x,z)}{\sum_{x,y \in \{-1,+1\}} e^{x[J\widehat{\phi}(0)+h]} p_t(x,y)}$$

 $p_t(\cdot, \cdot) =$ kernel of Markov jump process on $\{-1, +1\}$ with \blacktriangleright jumping rate 1

- ▶ jump probabilities $p_t(i, \pm i) = e^{-t} \begin{cases} \cosh(t) \\ \sinh(t) \end{cases}$
- "If" part and for of γ_t proven by Ermolaev and Külske

Intro	Gibbs	Non-Gibbs	D
0000	000	000000	00

Mean-field models: Results

I. Single optimal trajectory = Gibbsianness

 $\alpha \mapsto \gamma_t(\sigma \mid \alpha)$ is continuous at α_0 if and only if

► $I^t(\phi)$ has a unique minimizing path $\widehat{\phi}$

• or, equivalently, $C_{t,\alpha_0}(m)$ has a unique minimizing m. Furthermore, in this case, the specification kernel equals

$$\gamma_t(z \mid \alpha) = \frac{\sum_{x \in \{-1,+1\}} e^{x[J\widehat{\phi}(0)+h]} p_t(x,z)}{\sum_{x,y \in \{-1,+1\}} e^{x[J\widehat{\phi}(0)+h]} p_t(x,y)}$$

 $p_t(\cdot, \cdot) = \text{kernel of Markov jump process on } \{-1, +1\}$ with

- ▶ jumping rate 1
- ▶ jump probabilities $p_t(i, \pm i) = e^{-t} \begin{cases} \cosh(t) \\ \sinh(t) \end{cases}$

"If" part and for of γ_t proven by Ermolaev and Külske

Intro	Gibbs	Non-Gibbs	Dyna
0000	000	000000	00000

mics

Mean-field models: Results

I. Single optimal trajectory = Gibbsianness

 $\alpha \mapsto \gamma_t(\sigma \mid \alpha)$ is continuous at α_0 if and only if

• $I^t(\phi)$ has a unique minimizing path $\widehat{\phi}$

• or, equivalently, $C_{t,\alpha_0}(m)$ has a unique minimizing m. Furthermore, in this case, the specification kernel equals

$$\gamma_t(z \mid \alpha) = \frac{\sum_{x \in \{-1,+1\}} e^{x[J\widehat{\phi}(0)+h]} p_t(x,z)}{\sum_{x,y \in \{-1,+1\}} e^{x[J\widehat{\phi}(0)+h]} p_t(x,y)}$$

 $p_t(\cdot, \cdot) = \text{kernel of Markov jump process on } \{-1, +1\}$ with

- jumping rate 1
- ▶ jump probabilities $p_t(i, \pm i) = e^{-t} \begin{cases} \cosh(t) \\ \sinh(t) \end{cases}$

"If" part and for of γ_t proven by Ermolaev and Külske

Intro	Gibl
0000	000

ション ふゆ マ キャット マックシン

Mean-field models: Results

II. Short-term Gibbsianness

Theorem If $J \leq 1$ the evolved measures μ_t are Gibbs for all $t \geq 0$

- ▶ Proven by Külske and Le Ny and Külske and Ermolaev
- Note that $1 = \beta_{cr}^{MI}$

Intro	Gibbs
0000	000

ション ふゆ マ キャット マックシン

Mean-field models: Results

II. Short-term Gibbsianness

Theorem

If $J \leq 1$ the evolved measures μ_t are Gibbs for all $t \geq 0$

- ▶ Proven by Külske and Le Ny and Külske and Ermolaev
- Note that $1 = \beta_{cr}^{MF}$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End	
0000	000	000000	000000	000000000000000000000000000000000000000	00000000		
Man-field models, Results							

Consider the critical time

$$\Psi_c(J) := \begin{cases} \frac{1}{2}\operatorname{acoth}(2J-1) & \text{if } 1 < J \leq \frac{3}{2}, \\ t_*(J) \text{ implicitly calculable} & \text{if } J > \frac{3}{2}, \end{cases}$$

Then:

- $t < \Psi_c$: Evolved measure μ_t is Gibbs
- $t > \Psi_c$: Discontinuity at $\alpha = 0$; two optimal trajectories $\pm \phi$
- If $\Lambda_{t,0}(J) = \text{cone between the trajectories } \pm \phi$
 - ▶ No trajectory can penetrate $\Lambda_{t,0}(J)$
 - For $J \leq 3/2$ the map $t \mapsto \Lambda_{t,0}(J)$ is continuous
 - For J > 3/2 the map $t \mapsto \Lambda_{t,0}(J)$ is continuous except at $t = \Psi_c$ where it exhibits a right-continuous jump

▲ロト ▲園ト ▲ヨト ▲ヨト 三百一のへで

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End		
0000	000	000000	000000	000000000000000000000000000000000000000	00000000			
Moon-field models: Results								

Consider the critical time

$$\Psi_c(J) := \begin{cases} \frac{1}{2}\operatorname{acoth}(2J-1) & \text{if } 1 < J \leq \frac{3}{2}, \\ t_*(J) \text{ implicitly calculable } & \text{if } J > \frac{3}{2}, \end{cases}$$

Then:

- $t < \Psi_c$: Evolved measure μ_t is Gibbs
- $t > \Psi_c$: Discontinuity at $\alpha = 0$; two optimal trajectories $\pm \phi$

• If $\Lambda_{t,0}(J) = \text{cone between the trajectories } \pm \phi$

- ▶ No trajectory can penetrate $\Lambda_{t,0}(J)$
- For $J \leq 3/2$ the map $t \mapsto \Lambda_{t,0}(J)$ is continuous
- For J > 3/2 the map $t \mapsto \Lambda_{t,0}(J)$ is continuous except at $t = \Psi_c$ where it exhibits a right-continuous jump

▲ロト ▲園ト ▲ヨト ▲ヨト 三百一のへで

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End		
0000	000	000000	000000	000000000000000000000000000000000000000	00000000			
Moon-field models: Results								

Consider the critical time

$$\Psi_c(J) := \begin{cases} \frac{1}{2}\operatorname{acoth}(2J-1) & \text{if } 1 < J \leq \frac{3}{2}, \\ t_*(J) \text{ implicitly calculable } & \text{if } J > \frac{3}{2}, \end{cases}$$

Then:

- $t < \Psi_c$: Evolved measure μ_t is Gibbs
- ► $t > \Psi_c$: Discontinuity at $\alpha = 0$; two optimal trajectories $\pm \phi$
- If $\Lambda_{t,0}(J)$ = cone between the trajectories $\pm \hat{\phi}$
 - No trajectory can penetrate $\Lambda_{t,0}(J)$
 - For $J \leq 3/2$ the map $t \mapsto \Lambda_{t,0}(J)$ is continuous
 - For J > 3/2 the map $t \mapsto \Lambda_{t,0}(J)$ is continuous except at $t = \Psi_c$ where it exhibits a right-continuous jump

うして ふゆう ふほう ふほう ふしつ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End		
0000	000	000000	000000	000000000000000000000000000000000000000	00000000			
Moon-field models: Results								

Consider the critical time

$$\Psi_c(J) := \begin{cases} \frac{1}{2}\operatorname{acoth}(2J-1) & \text{if } 1 < J \leq \frac{3}{2}, \\ t_*(J) \text{ implicitly calculable } & \text{if } J > \frac{3}{2}, \end{cases}$$

Then:

- $t < \Psi_c$: Evolved measure μ_t is Gibbs
- $t > \Psi_c$: Discontinuity at $\alpha = 0$; two optimal trajectories $\pm \phi$
- If $\Lambda_{t,0}(J)$ = cone between the trajectories $\pm \hat{\phi}$
 - No trajectory can penetrate $\Lambda_{t,0}(J)$
 - For $J \leq 3/2$ the map $t \mapsto \Lambda_{t,0}(J)$ is continuous
 - For J > 3/2 the map $t \mapsto \Lambda_{t,0}(J)$ is continuous except at $t = \Psi_c$ where it exhibits a right-continuous jump

うして ふゆう ふほう ふほう ふしつ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End	
0000	000	000000	000000	000000000000000000000000000000000000000	00000000		
Moon-field models: Results							

Consider the critical time

$$\Psi_c(J) := \begin{cases} \frac{1}{2}\operatorname{acoth}(2J-1) & \text{if } 1 < J \leq \frac{3}{2}, \\ t_*(J) \text{ implicitly calculable } & \text{if } J > \frac{3}{2}, \end{cases}$$

Then:

- $t < \Psi_c$: Evolved measure μ_t is Gibbs
- ► $t > \Psi_c$: Discontinuity at $\alpha = 0$; two optimal trajectories $\pm \phi$
- If $\Lambda_{t,0}(J)$ = cone between the trajectories $\pm \hat{\phi}$
 - No trajectory can penetrate $\Lambda_{t,0}(J)$
 - For $J \leq 3/2$ the map $t \mapsto \Lambda_{t,0}(J)$ is continuous
 - For J > 3/2 the map $t \mapsto \Lambda_{t,0}(J)$ is continuous except at $t = \Psi_c$ where it exhibits a right-continuous jump

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac
0000	000	000000	000000	000000000000000000000000000000000000000	00000000

Mean-field models: Results

Graphic summary: $h = 0, \alpha = 0$

End

 $t < \Psi_c$ $t = \Psi_c$ $t > \Psi_c$ First row: Minimizing trajectories for (J,h) = (1.6,0)Second row: Corresponding plots of $m \mapsto C_{t,0}(m)$

・ロト ・雪ト ・ヨト

3

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End	
0000	000	000000	000000	000000000000000000000000000000000000000	••• ••••••		
Many California dalla Descrita							

Mean-field models: Results

IV. Bad magnetizations as function of time

≣ ୬९୯

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac
0000	000	000000	000000	000000000000000000000000000000000000000	000 •000000

Kac models: Definition

Kac models: Basic definitions

- $\Delta_n^d := \mathbb{Z}^d / n \mathbb{Z}^d$ = the discrete torus of size n
- $\Omega_n := \{-1, +1\}^{\Delta_n^d} =$ Ising-spin configurations on Δ_n^d

► Kac-type Hamiltonian:

$$H^{n}(\sigma) := -\frac{1}{2n^{d}} \sum_{x, y \in \Delta_{n}^{d}} J\left(\frac{x-y}{n}\right) \, \sigma(x) \sigma(y) - \sum_{x \in \Delta_{n}^{d}} h(\frac{x}{n}) \, \sigma(x)$$

 $[J \ge 0 \text{ symmetric}]$

• Gibbs measure associated with H^n :

$$\mu^n(d\sigma) := \frac{e^{-\beta H^n(\sigma)}}{Z^n} \, d\sigma$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

End

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac
0000	000	000000	000000	000000000000	000 00000000000000000000000000000000000
Kac mod	lels. Definitio	n			

Kac models: Basic definitions

- $\Delta_n^d := \mathbb{Z}^d / n \mathbb{Z}^d$ = the discrete torus of size n
- $\Omega_n := \{-1, +1\}^{\Delta_n^d} =$ Ising-spin configurations on Δ_n^d
- ► Kac-type Hamiltonian:

$$H^{n}(\sigma) := -\frac{1}{2n^{d}} \sum_{x,y \in \Delta_{n}^{d}} J\left(\frac{x-y}{n}\right) \, \sigma(x)\sigma(y) - \sum_{x \in \Delta_{n}^{d}} h(\frac{x}{n}) \, \sigma(x)$$

 $[J \ge 0 \text{ symmetric}]$

• Gibbs measure associated with H^n :

$$\mu^n(d\sigma) := \frac{e^{-\beta H^n(\sigma)}}{Z^n} \, d\sigma$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

End

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	0000000	
Kac models: Definition						

Continuum limit

• $\mathbb{T}^d := \mathbb{R}^d / \mathbb{Z}^d$, the *d*-dimensional unit torus

• $\mathbb{T}_n^d := \frac{1}{n} \Delta_n^d = (1/n)$ -discretization of \mathbb{T}^d

• $\mathcal{M}(\mathbb{T}_n^d)$ $[\mathcal{M}(\mathbb{T}^d)]$ = signed measures on \mathbb{T}_n^d $[\mathbb{T}^d]$ (TV ≤ 1)

The empirical density of $\sigma \in \Omega_n$ inside $\Lambda \subseteq \Delta_n^d$ is

 $\pi^n_\Lambda \colon \, \Omega_n o \mathcal{M}(\mathbb{T}^d_n) \subseteq \mathcal{M}(\mathbb{T}^d)$

$$\pi^n_{\Lambda}(\sigma) := \frac{1}{|\Lambda|} \sum_{x \in \Lambda} \sigma(x) \delta_{x/n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	0000000	
Kag models: Definition						

Continuum limit

• $\mathbb{T}^d := \mathbb{R}^d / \mathbb{Z}^d$, the *d*-dimensional unit torus

- $\mathbb{T}_n^d := \frac{1}{n} \Delta_n^d = (1/n)$ -discretization of \mathbb{T}^d
- $\mathcal{M}(\mathbb{T}_n^d)$ $[\mathcal{M}(\mathbb{T}^d)]$ = signed measures on \mathbb{T}_n^d $[\mathbb{T}^d]$ (TV ≤ 1)

The empirical density of $\sigma \in \Omega_n$ inside $\Lambda \subseteq \Delta_n^d$ is

$$\pi_{\Lambda}^{n} \colon \Omega_{n} \to \mathcal{M}(\mathbb{T}_{n}^{d}) \subseteq \mathcal{M}(\mathbb{T}_{n}^{d})$$
$$\pi_{\Lambda}^{n}(\sigma) := \frac{1}{|\Lambda|} \sum_{x \in \Lambda} \sigma(x) \delta_{x/n}$$

うして ふゆう ふほう ふほう ふしつ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	0000000	
Kac models	Definition					

Induced objects. Profiles

Via π^n we define induced Gibbs measures on $\mathcal{M}(\mathbb{T}_n^d)$:

$$\check{\mu}^n = \mu^n \circ (\pi^n)^{-1}$$

and rewrite

$$H^n(\sigma) = n^d H(\pi^n(\sigma))$$

with

$$H(\nu) = -\left\langle \frac{1}{2}J * \nu + h, \nu \right\rangle$$

うして ふゆう ふほう ふほう ふしつ

A measure on $\mathcal{M}(\mathbb{T}^d)$ of the form $\alpha \lambda$ with

• λ Lebesgue measure

• $\alpha \in B$ density function, with B=unit ball in $L^{\infty}(\mathbb{T}^d)$ will be referred as a **profile** $\alpha \in B$

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	0000000	
Kac models	Definition					

Induced objects. Profiles

Via π^n we define induced Gibbs measures on $\mathcal{M}(\mathbb{T}_n^d)$:

$$\check{\mu}^n = \mu^n \circ (\pi^n)^{-1}$$

and rewrite

$$H^n(\sigma) = n^d H(\pi^n(\sigma))$$

with

$$H(\nu) = -\left\langle \frac{1}{2}J * \nu + h, \nu \right\rangle$$

A measure on $\mathcal{M}(\mathbb{T}^d)$ of the form $\alpha \lambda$ with

• λ Lebesgue measure

• $\alpha \in B$ density function, with B=unit ball in $L^{\infty}(\mathbb{T}^d)$ will be referred as a **profile** $\alpha \in B$

0000	000	000000	000000	000000000000000000000000000000000000000	00000000	Ena
Kac models:	Definition					

Single-site Kac specifications

Given

- A (continuum) site $u \in \mathbb{T}^d$
- A probability measure ρ^n on Ω_n
- A measure $\alpha_{n-1}^u \in \mathcal{M}(\mathbb{T}_n^d \setminus \lfloor nu \rfloor)$

The single-site conditional probability at site $\lfloor nu \rfloor \in \mathbb{T}_n^d$ is

$$\gamma^{u,n}\big(\cdot \mid \alpha_{n-1}^u\big) := \rho^n\Big(\sigma(\lfloor nu \rfloor) = \cdot \mid \pi^{u,n}(\sigma) = \alpha_{n-1}^u\Big)$$

うつう 山田 エル・エー・ 山田 うらう

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
Kac models:	Definition	000000	000000	000000000000000000000000000000000000000	00000000	

Single-site Kac specifications

Given

- A (continuum) site $u \in \mathbb{T}^d$
- A probability measure ρ^n on Ω_n
- A measure $\alpha_{n-1}^u \in \mathcal{M}(\mathbb{T}_n^d \setminus \lfloor nu \rfloor)$

The single-site conditional probability at site $\lfloor nu \rfloor \in \mathbb{T}_n^d$ is

$$\gamma^{u,n} \big(\cdot \mid \alpha_{n-1}^u \big) := \rho^n \Big(\sigma(\lfloor nu \rfloor) = \cdot \mid \pi^{u,n}(\sigma) = \alpha_{n-1}^u \Big)$$

うして ふゆう ふほう ふほう ふしつ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00 00000000	
Kas models, Definition						

Gibbs and no-Gibbs Kac measures

(a) A profile
$$\alpha \in B$$
 is good for (ρ^n)

$$\gamma^{u}(\cdot \mid \widetilde{\alpha}) := \lim_{n \to \infty} \gamma^{u,n}(\cdot \mid \alpha_{n-1}^{u})$$

うして ふゆう ふほう ふほう ふしつ

- ▶ exists and is independent of the sequence $\alpha_{n-1}^u \to \tilde{\alpha}\lambda$
- it is continuous in α

for $\widetilde{\alpha}$ in a neighbourhood of α

(b) A profile α ∈ B is bad if it is not good
(c) (ρⁿ) is Gibbs if it has no bad profiles

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	00 00000000	
Kas models. Definition						

Gibbs and no-Gibbs Kac measures

(a) A profile
$$\alpha \in B$$
 is good for (ρ^n)

$$\gamma^{u}(\cdot \mid \widetilde{\alpha}) := \lim_{n \to \infty} \gamma^{u,n}(\cdot \mid \alpha_{n-1}^{u})$$

うして ふゆう ふほう ふほう ふしつ

- exists and is independent of the sequence $\alpha_{n-1}^u \to \widetilde{\alpha}\lambda$
- it is continuous in $\widetilde{\alpha}$

for $\widetilde{\alpha}$ in a neighbourhood of α

- (b) A profile $\alpha \in B$ is bad if it is not good
- (c) (ρ^n) is **Gibbs** if it has no bad profiles

Intro	Gibbs
0000	000

Non-Gibbs 000000 Dynamics 000000 ション ふゆ マ キャット マックシン

Kac models: Definition

LDP for ("static") Kac measures (Comets)

- $(\check{\mu}^n)$ satisfies an LDP with
 - ▶ speed n^d
 - rate function $I_S \inf_{\mathcal{M}(\mathbb{T}^d)} I_S$ with

$$I_{S}(\nu) := \begin{cases} -\beta \left\langle \frac{1}{2}J \ast \alpha + h, \alpha \lambda \right\rangle + \left\langle \Phi \circ \alpha, \lambda \right\rangle & \text{if } \nu = \alpha \lambda, \, \alpha \in B \\ \infty & \text{otherwise} \end{cases}$$

where Φ is the relative entropy

$$\Phi(m) := \frac{1+m}{2} \log(1+m) + \frac{1-m}{2} \log(1-m), \qquad m \in [-1,+1].$$
Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	0000000	
Kaa madala	Definition					

LDP for conditioned Kac evolutions

Let

$$P^n := \text{ law of } (\pi^n_s)_{s \ge 0} \text{ conditional on } \pi^n_0 \sim \check{\mu}^n,$$

and

$$Q_{t,\alpha}^n(\cdot) := P^n\big((\pi_s^n)_{s \in [0,t]} \in \cdot \mid \pi_t^n = \alpha_n\big),$$

with $\alpha_n \in \mathcal{M}^n$ the element closest to $\alpha \lambda$. Then

For $t \ge 0$ and $\alpha \in B$, $(Q_{t,\alpha'}^n)_{n \in \mathbb{N}}$ satisfies an LDP with \blacktriangleright speed n^d

• rate function
$$I^{t,\alpha} - \inf_{D_{[0,t](\mathcal{M}(\mathbb{T}^d))}} I^{t,\alpha}$$
 with
$$I^{t,\alpha}(\phi) := \begin{cases} I_S(\phi_0) + I_D^t(\phi) & \text{if } \phi_t \equiv \alpha\\ \infty, & \text{otherwise.} \end{cases}$$

with $I_D^t(\phi)$ given by the integral of an explicit Lagrangian

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Intro	Gibbs	Non-Gibbs	Dynamics	Mean field	Kac	End
0000	000	000000	000000	000000000000000000000000000000000000000	0000000	
Kaa madala	Definition					

LDP for conditioned Kac evolutions

Let

$$P^n := \text{ law of } (\pi^n_s)_{s \ge 0} \text{ conditional on } \pi^n_0 \sim \check{\mu}^n,$$

and

$$Q_{t,\alpha}^n(\cdot) := P^n\big((\pi_s^n)_{s \in [0,t]} \in \cdot \mid \pi_t^n = \alpha_n\big),$$

with $\alpha_n \in \mathcal{M}^n$ the element closest to $\alpha\lambda$. Then For $t \ge 0$ and $\alpha \in B$, $(Q_{t,\alpha'}^n)_{n \in \mathbb{N}}$ satisfies an LDP with \blacktriangleright speed n^d

► rate function $I^{t,\alpha} - \inf_{D_{[0,t](\mathcal{M}(\mathbb{T}^d))}} I^{t,\alpha}$ with $I^{t,\alpha}(\phi) := \begin{cases} I_S(\phi_0) + I_D^t(\phi) & \text{if } \phi_t \equiv \alpha \\ \infty, & \text{otherwise.} \end{cases}$

with $I_D^t(\phi)$ given by the integral of an explicit Lagrangian

(日) (日) (日) (日) (日) (日) (日) (日)

Intro	Gibbs
0000	000

Dynamics 000000

Sac

Kac models: Results

Results for Kac models

(A) For general Glauber dynamics:

Gibbsianness \iff unique minimizing path

(B) For independent spin flips:
Let J := ∫_{T^d} J(u)du, then
(i) Short-time Gibbs: ∃t₀ = t₀(J, h) s.t. no bifurcation in [0, t₀]
(ii) Mean-Field behaviour: If

$$h \equiv c \in [0, \infty)$$
 and $\alpha' \equiv c' \in [-1, +1]$

then

bifurcation ~ MF with $(J^{\rm MF}, h^{\rm MF}) = (\beta J, \beta c); \ \alpha = c'$

Intro	Gibbs	No
0000	000	00

Non-Gibbs

Dynamics 000000 Mean field Kac End

うして ふゆう ふほう ふほう ふしつ

Kac models: Results

Results for Kac models

(A) For general Glauber dynamics:

Gibbsianness \iff unique minimizing path

(B) For independent spin flips:
Let J := ∫_{T^d} J(u)du, then
(i) Short-time Gibbs: ∃t₀ = t₀(J, h) s.t. no bifurcation in [0, t₀]
(ii) Mean-Field behaviour: If

$$h \equiv c \in [0, \infty)$$
 and $\alpha' \equiv c' \in [-1, +1]$

then

bifurcation ~ MF with $(J^{\text{MF}}, h^{\text{MF}}) = (\beta J, \beta c); \ \alpha = c'$

Intro	Gibbs	Non-Gibbs
0000	000	000000

Dynamics 000000

Kac models: Results

Results for Kac models

(A) For general Glauber dynamics:

Gibbsianness \iff unique minimizing path

(B) For independent spin flips:
Let J := ∫_{T^d} J(u)du, then
(i) Short-time Gibbs: ∃t₀ = t₀(J, h) s.t. no bifurcation in [0, t₀]
(ii) Mean-Field behaviour: If

$$h \equiv c \in [0, \infty)$$
 and $\alpha' \equiv c' \in [-1, +1]$

then

bifurcation ~ MF with $(J^{\rm MF}, h^{\rm MF}) = (\beta J, \beta c); \ \alpha = c'$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Intro 0000	Gibbs 000	$\mathbf{Non-Gibbs}$	$\begin{array}{c} \mathbf{Dynamics} \\ \texttt{000000} \end{array}$	$\begin{array}{c} \mathbf{Mean \ field} \\ 00000000000000000000000000000000000$	Kac 000 00000000	End
Conclusions				5		

- ▶ New paradigm seems to work
- ▶ However: needs LDP in spaces of trajectories of measure

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

▶ Practical consequences (numerics, other phenomena)?