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Gibbs measures and their transformations

The Gibbs – non-Gibbs saga

Intuitively, µ Gibbs if
µ ∝ e−βH

This is, however, valid only on finite regions

To pass to the thermodynamic limit must introduce:

I Interactions

I Specifications

Gibbs measures designed to describe equilibrium
No reason to expect them out of equilibrium, e.g. under
evolutions
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Gibbs measures and their transformations

Examples of non-Gibsianness

Renormalization transformations

I Block-renormalization: blocks of spins → effective spins

I Renormalized measure: coarser, blurred

I In many instances: renormalized measure non-Gibbsian

I Reason: hidden variables bringing info from infinite

Stochastic evolutions
Gibbs measures subjected to Glauber dynamics

I Can loose Gibsianness at some finite time

I Gibbsianness recovered in some cases
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Gibbs measures and their transformations

Dynamic non-Gibbsianness

Original explanation

I Two-slice system: past acts as hidden variables for present

I Two-slice system ∼ equilibrium duplicated variables

Alternative paradigm

I Intuitively: most probable history of an improbable state

I Formally: large deviations in trajectory space

I Non-Gibbs = multiple optimal trajectories → discontinuity
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Plan and credits

In this talk:

I Review of Gibbsianness

I Review of original proof of dynamical non-Gibbsianness

I New paradigm for dynamical non-Gibbsianness

I Rigorous results for
I Mean-field spin models
I Kac models
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Definition

Lattice systems
Basic ingredients:

I Lattice L: e.g. Zd

I Single-spin space S: e.g. {−1, 1}
I Configuration space Ω = SL

Topology and σ-algebra F generated by cylinders:

Cω
Λ

=
{
ω ∈ Ω : ωΛ = σΛ

}
, Λ ⊂⊂ L

[
ωΛ = (ωx)x∈Λ

]
Interaction: Family of local functions (=local contributions)

Φ =
{
φB : Ω→ R , FB−measurable

}
[φB(ω) = φB(σ) if ωB = σB ]

Hamiltonian on region Λ given σ outside:

HΛ(ω | σ) =
∑

B:B∩Λ6=∅

φB(ωΛσ)
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Definition

(Lattice) Gibbs measures: formal definition

Gibbsian specification: Family ΠΦ = {πΦ
Λ : Λ ⊂⊂ L} with

πΦ
Λ(Cω

Λ
) =

e−βHΛ(ω|σ)

Norm.

[πΦ
Λ( · | σ) = equilibrium in Λ given σ]

Gibbs measures: µ is Gibbs for Φ if, equivalently,

I µ is left invariant by ΠΦ:∫
πΦ

Λ(Cω
Λ

)µ(dω) = µ(Cω
Λ

)

[µ = equilibrium in L = every Λ in equilibrium]

I µ = w − limΛ→L π
Φ
Λ(· | σ) + convex combinations

[thermodynamic limit]
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Gibbsianness test

How to recognize Gibbsianness

Kozlov – Sullivan: µ is Gibbs iff it is

I Non-null: µ(Cω
Λ

) > 0 for every cylinder Cω
Λ

I Quasilocal: If Λ ⊂ Γ ⊂⊂ L,

sup
σ,ω,ξ±

∣∣∣µ(Cω
Λ

∣∣ σΓ ξ
+
)
− µ

(
Cω

Λ

∣∣ σΓ ξ
−)∣∣∣ −−−→γ→L 0

Physics in Λ does not depend on state of the Andromeda galaxy
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Non-quasilocality

Essential non-quasilocality

µ is Gibbs if ∃ Λ and wsp s.t: ∃ ξ± for which

sup
σ,ω,ξ±

∣∣∣µ(Cω
Λ

∣∣ σΓ ξ
+
)
− µ

(
Cω

Λ

∣∣ σΓ ξ
−)∣∣∣ —/−→

γ→L
0

for every realisation of µ
(
Cω

Λ

∣∣ · )
I Quasilocality = continuity w.r.t. external conditions

I Non-quasilocality = essential discontinuity w.r.t. external
conditions

Interpretation: Info from ∞ despite frozen fluctuations
Possible explanation: hidden variables
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Renormalization and non-Gibbsianness

Renormalization transformations
General definition: A (stochastic) RT is a map

Prob(Ω) −→ Prob(Ω′)

µ 7−→ µ′( · ) =

∫
K( · | ω)µ(dω)

where K is a probability kernel

The transformation is deterministic if ∃ f : Ω→ Ω′ s.t.

K( · | ω) = δ
f(ω)

( · )

A block RT is of the form

K(dω′ | ω) =
∏
x′

K ′x(dω′x′ | ωBx′
)

each Bx′ ⊂⊂ L is the block associated to x′
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Renormalization and non-Gibbsianness

Examples of block transformations

Deterministic transformations:

I Decimation

I Majority (odd block)

Stochastic transformations:

I Majority (even block)

I Kadanoff:

K ′x(dω′x′ | ωBx′
) =

exp
{
pω′x′

∑
x∈Bx′

ωx

}
Norm

dω′x′

[weighted majority; → majority as p→∞]
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Renormalization and non-Gibbsianness

Hidden variables and non-quasilocality

Hidden-variables mechanism:

I Each fixed ω′
Λc determines a constrained Ω system

I ω′sp is s.t. the constrained system has a phase transition

I ξ′ far away decides the phase → info form ∞

Two-slice point of view:

I Ω = original slice = hidden variables

I Ω′ = present slice = observed variables

Non-quasilocality: Hidden variables constrained by observed
variables exhibit a phase transition
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Renormalization and non-Gibbsianness

Single-site Kadanoff transformations (Bx′ = {x′})
On finite volumes, the two-slice measures are of the form

KΛ(dω′ | ω)µΛ(dω) ∝ exp
{
β
[
HKad

Λ (ω, ω′) +HΛ(ω)
]}
dω′

Λ
dωΛ

where

HKad
Λ (ω, ω′) =

∑
x′

{ p
β
ω′xωx −

1

β
log
[
2 cosh(pωx)

]}
acts on the original spins as an extra magnetic field

Constrained internal spins have phase transition if

p

β
ω′x compensates h in the average (∗)

and β is large enough
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Renormalization and non-Gibbsianness

Single-site Kadanoff transformations (cont.)

Let h be the original Ising field and fix β large enough s.t.

I Original model with h = 0 has phase transition

I Pirogov-Sinai theory holds

If h = 0, alternated ω′ =⇒ (∗) for p/β small enough
Hence, ∃ p1 > p2 s.t.

I µ′ is Gibbs for p > p1

I µ′ is not Gibbs for 2 > p

If h 6= 0, ∃ ω′ s.t. (∗) only for a range of p/β
Hence, ∃ p1 ≥ p2 > p3 ≥ p4 s.t.

I µ′ is Gibbs for p > p1

I µ′ is not Gibbs for p2 > p > p3

I µ′ is not Gibbs for p4 > p
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Definition and example

Dynamic Gibbs – non-Gibbs transitions
Simulations, particle systems, PCA:

µt = Stµ

with St= semigroup of operators.
Dynamic G–non-G: µ Gibbs but µt non-Gibbs at some t

Example:

I µ=low-T Ising model

I St = Sn infinite-T discrete-time Glauber

S =
∏
x

S{x} with
Sx(ωx | ωx) = 1− ε
Sx(−ωx | ωx) = ε

[invariant measure = product measure = infinite-T Gibbs]

Unquenching: heating up a low-T Ising model
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Definition and example

Un-quenching G–non-G transitions

In matrix form
(
Sx
)
ω ω′
≡ Sx(ω′x | ωx)

Sx =

(
1− ε ε
ε 1− ε

)
, Snx =

1

2

(
1 + an 1− an
1− an 1 + an

)
with an = (1− 2ε)n. Hence

Snx (ω′x | ωx) = An epnω
′
xωx , pn = log

(
1 + an
1− an

)
Kadanoff with pn−−−→n→0

∞ and pn−−−→n→∞ 0
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Definition and example

Un-quenching G–non-G transitions (cont.)

Using previous results on Kadanoff-renormalized measures:

(h = 0)
0

Gibbs

n1

. . . . . . -Non-Gibbs

n2

(h > 0)
0

Gibbs

n1

. . .
n2

Non-Gibbs
n3

. . . -Gibbs
n4

Mathematical mechanism: hidden variables (two-slice view)
Physical mechanism?
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Mechanism

Alternative paradigm: Heuristic version

A. van Enter: most probable history of an improbable state

Given a large improbable droplet. How did it get there?

I Nurture: Created by the dynamics (cost exp-volume)

I Nature: Present at t = 0 and survived
To compete: typical of the other phase (cost exp-perimeter)

Heuristic version:

I Short t: Only nature, no time to change much

I Mid t:
I ωsp nurtured, but ξ± nature
I Hence ξ± determines original phase → discontinuity

I Long t: If h 6= 0 only one phase → no tilting mechanism
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Mechanism

Alternative paradigm: rigorous version

most probable history = most probable trajectory

most probable = minimizer of the large-deviation rate

Paradigm: Establish a large-deviation principle for trajectories
of measures conditioned to a given final empirical measure

I Single minimizer = Gibbsianness

I Multiple minimizers = non-Gibbsianness

Perturbation of conditioning
→ discontinuous choice of trajectory
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Mechanism

Alternative paradigm: graphical summary

[h = 0]

t1 �c

m(t,�)^

t

m(t,�)^

t
�c

m*

-m*

Forbidden Region

One trajectory = Gibbs Many trajectories = non-Gibbs
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Mean-field models: Definition

The program

Prove rigorously the previous paradigm.

Steps:

(i) Mean-field models

(ii) Kac models

(iii) Finite-range models

At present: (i) and (ii) for Ising under independent dynamics

(i) Mean-field:

I No geometry – no notion of neighbourhood

I Everything in terms of empirical magnetization
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Mean-field models: Definition

Mean-field Ising model
N Ising spins (ωi ∈ {−1, 1})

HN (σ) = − J
2N

N∑
i,j=1

σiσj − h
N∑
i=1

σi

= NH(mN (σ))

where mN is the empirical magnetization

mN (σ) =
1

N

∑
i=1

Nσi

and, if m ∈MN := {−1,−1 + 2N−1, . . . ,+1− 2N−1,+1},

H(m) := −1
2Jm

2 − hm
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Mean-field models: Definition

Mean-field measures and evolution

The HN -Gibbs measure [β absorbed]

µN (dσ) =
e−H

N (σ)

ZN
dσ

induces a measure on MN

µN (dm) :=

(
N

1+m
2 N

)
e−NH(m)

Z
N

dm

[µN ←→ µN + permutation invariance]
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Mean-field models: Definition

Mean-field evolution

Independent (T =∞) dynamics on ΩN induces on MN a
continuous-time Markov chain (mN

t )t≥0 with generator

(
LNf

)
(m) =

1 +m

2
N
[
f(m− 2N−1)− f(m)

]
+

1−m
2

N
[
f(m+ 2N−1)− f(m)

]
This induces a dynamics on measures on MN

µNt (f) = µN
(
etLN f

)
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Mean-field models: Non-Gibbsianness

Mean-field single-site specification
(Külske and Le Ny)

Consider the single-spin conditional probabilities

γNt (σ1 | αN−1) := µNt (σ1 | σN−1) ,

with

I σ1 ∈ {−1,+1},
I αN−1 ∈MN−1,

I σN−1 ∈ ΩN−1 any configuration s.t. mN−1(σN−1) = αN−1

[By permutation invariance RHS independ of choice of σN−1]
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Mean-field models: Non-Gibbsianness

Gibbs and Non-Gibbs mean-field models
(Külske and Le Ny)

For fixed t ≥ 0:

(a) A magnetization α ∈ [−1, 1] is good for µt if

γt(· | α̃) := lim
N→∞
αN→α̃

γNt (· | αN−1),

I exists and is independent of the sequence αN → α̃
I it is continuous in α̃

for α̃ in a neighbourhood of α

(b) A magnetization α ∈ [−1,+1] is bad if it is not good

(c) µt is Gibbs if it has no bad magnetizations
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Mean-field models: Large deviations

Large-deviations: General definition

Informally:

A family of measures (νN ) satisfies a large-deviation principle if

νN (A) ∼ e−N I(A)

I N is the LDP speed, I the rate function

I As a consequence, supp(νN ) → argmin(I)

Formally:

(νN ) on a Borel space satisf. LDP with rate fcn I and speed N if

lim inf
N→∞

1

N
log νN (A) ≥ − inf

x∈A
I(x) for A open

lim sup
N→∞

1

N
log νN (A) ≤ − sup

x∈A
I(x) for A closed

[Informally:
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Mean-field models: Large deviations

LDP for mean-field Ising:

“Static” part:

The family (µN ) satisfies a LDP with speed N and rate
IS − inf(IS) with

IS(m) := H(m) +
1 +m

2
log(1 +m) +

1−m
2

log(1−m).

Independent evolutions:

Let PN = law of (mN
t )t≥0

Defined on the space of càdlàg trajectories; Skorohod topology
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Mean-field models: Large deviations

LDP for mean-field evolutions
(Ermolaev and Külske)

(PN ) restricted to [0, T ] satisfies LDP with speed N and rate
IT − inf(IT ) given by

IT (φ) := IS(φ(0)) + ITD(φ),

where

ITD(φ) :=

{ ∫ T
0 L(φ(s), φ̇(s)) ds if φ̇ exists
∞ otherwise

is the action integral with Lagrangian

L(m, ṁ) = −1

2

√
4 (1−m2) + ṁ2

+
1

2
ṁ log

(√
4 (1−m2) + ṁ2 + ṁ

2(1−m)

)
+ 1
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Mean-field models: Large deviations

LDP for conditioned mean-field evolutions

The family of measures on trajectory space

QNt,α( · ) := PN
(
(mN (s))0≤s≤t = ·

∣∣ mN (t) = α
)

satisfies LDP with speed N and rate It,α − inf(It,α), with

It,α(mφ) =

{
It(φ) if φt = α
∞ otherwise

Hence, conditioned optimal trajectories correspond to

argmin
φ : φ(t)=α

It(φ)
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Mean-field models: Results

The mean-field computational advantage
Simplifying feature:

I There is an explicit expression for

Ct,α(m) := inf
φ : φ(0)=m,
φ(t)=α

It(φ)

I We have the identity

inf
m∈[−1,+1]

Ct,α(m) = inf
φ : φ(t)=α

It(φ)

Hence,

multiple conditioned trajectories

⇐⇒ multiple global minima of Ct,α(m)
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Mean-field models: Results

I. Single optimal trajectory = Gibbsianness

α 7→ γt(σ | α) is continuous at α0 if and only if

I It(φ) has a unique minimizing path φ̂

I or, equivalently, Ct,α0(m) has a unique minimizing m.

Furthermore, in this case, the specification kernel equals

γt(z | α) =

∑
x∈{−1,+1} e

x[Jφ̂(0)+h] pt(x, z)∑
x,y∈{−1,+1} e

x[Jφ̂(0)+h] pt(x, y)

pt(·, ·) = kernel of Markov jump process on {−1,+1} with

I jumping rate 1

I jump probabilities pt(i,±i) = e−t
{

cosh(t)
sinh(t)

“If” part and for of γt proven by Ermolaev and Külske
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Mean-field models: Results

II. Short-term Gibbsianness

Theorem
If J ≤ 1 the evolved measures µt are Gibbs for all t ≥ 0

I Proven by Külske and Le Ny and Külske and Ermolaev

I Note that 1 = βMF
cr
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Mean-field models: Results

III. Case J > 1, h = 0

Consider the critical time

Ψc(J) :=

{
1
2 acoth(2J − 1) if 1 < J ≤ 3

2 ,

t∗(J) implicitly calculable if J > 3
2 ,

Then:

I t < Ψc: Evolved measure µt is Gibbs

I t > Ψc: Discontinuity at α = 0; two optimal trajectories ±φ̃
I If Λt,0(J) = cone between the trajectories ±φ̂

I No trajectory can penetrate Λt,0(J)
I For J ≤ 3/2 the map t 7→ Λt,0(J) is continuous
I For J > 3/2 the map t 7→ Λt,0(J) is continuous except at
t = Ψc where it exhibits a right-continuous jump
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Mean-field models: Results

Graphic summary: h = 0, α = 0
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First row: Minimizing trajectories for (J, h) = (1.6, 0)
Second row: Corresponding plots of m 7→ Ct,0(m)
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Mean-field models: Results

IV. Bad magnetizations as function of time
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Kac models: Definition

Kac models: Basic definitions

I ∆d
n := Zd/nZd = the discrete torus of size n

I Ωn := {−1,+1}∆d
n = Ising-spin configurations on ∆d

n

I Kac-type Hamiltonian:

Hn(σ) := − 1
2nd

∑
x,y∈∆d

n

J
(x−y

n

)
σ(x)σ(y)−

∑
x∈∆d

n

h(xn)σ(x)

[J ≥ 0 symmetric]

I Gibbs measure associated with Hn:

µn(dσ) :=
e−βH

n(σ)

Zn
dσ
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Kac models: Definition

Continuum limit

I Td := Rd/Zd, the d-dimensional unit torus

I Tdn := 1
n∆d

n = (1/n)-discretization of Td

I M(Tdn) [M(Td)] = signed measures on Tdn [Td] (TV ≤ 1)

The empirical density of σ ∈ Ωn inside Λ ⊆ ∆d
n is

πnΛ : Ωn →M(Tdn) ⊆M(Td)

πnΛ(σ) :=
1

|Λ|
∑
x∈Λ

σ(x)δx/n
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Kac models: Definition

Induced objects. Profiles

Via πn we define induced Gibbs measures on M(Tdn):

µ̌n = µn ◦ (πn)−1

and rewrite
Hn(σ) = ndH(πn(σ))

with
H(ν) = −

〈
1
2J ∗ ν + h, ν

〉
A measure on M(Td) of the form αλ with

I λ Lebesgue measure

I α ∈ B density function, with B=unit ball in L∞(Td)
will be referred as a profile α ∈ B
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Kac models: Definition

Single-site Kac specifications

Given

I A (continuum) site u ∈ Td

I A probability measure ρn on Ωn

I A measure αun−1 ∈M(Tdn \ bnuc)
The single-site conditional probability at site bnuc ∈ Tdn is

γu,n
(
·
∣∣ αun−1

)
:= ρn

(
σ(bnuc) = ·

∣∣∣ πu,n(σ) = αun−1

)
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Kac models: Definition

Gibbs and no-Gibbs Kac measures

(a) A profile α ∈ B is good for (ρn)

γu
(
·
∣∣ α̃) := lim

n→∞
γu,n

(
·
∣∣ αun−1

)
I exists and is independent of the sequence αu

n−1 → α̃λ
I it is continuous in α̃

for α̃ in a neighbourhood of α

(b) A profile α ∈ B is bad if it is not good

(c) (ρn) is Gibbs if it has no bad profiles
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Kac models: Definition

LDP for (“static”) Kac measures
(Comets)

(µ̌n) satisfies an LDP with

I speed nd

I rate function IS − infM(Td) IS with

IS(ν) :=

{
−β
〈

1
2J ∗ α+ h, αλ

〉
+ 〈Φ ◦ α, λ〉 if ν = αλ, α ∈ B

∞ otherwise

where Φ is the relative entropy

Φ(m) := 1+m
2 log(1 +m) + 1−m

2 log(1−m), m ∈ [−1,+1].
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Kac models: Definition

LDP for conditioned Kac evolutions

Let
Pn := law of (πns )s≥0 conditional on πn0 ∼ µ̌n,

and
Qnt,α(·) := Pn

(
(πns )s∈[0,t] ∈ · | πnt = αn

)
,

with αn ∈Mn the element closest to αλ. Then

For t ≥ 0 and α ∈ B, (Qnt,α′)n∈N satisfies an LDP with

I speed nd

I rate function It,α − infD
[0,t](M(Td))

It,α with

It,α(φ) :=

{
IS(φ0) + ItD(φ) if φt ≡ α
∞, otherwise.

with ItD(φ) given by the integral of an explicit Lagrangian
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Kac models: Results

Results for Kac models

(A) For general Glauber dynamics:

Gibbsianness ⇐⇒ unique minimizing path

(B) For independent spin flips:

Let J :=
∫
Td J(u)du, then

(i) Short-time Gibbs: ∃ t0 = t0(J, h) s.t. no bifurcation in [0, t0]

(ii) Mean-Field behaviour: If

h ≡ c ∈ [0,∞) and α′ ≡ c′ ∈ [−1,+1]

then

bifurcation ∼ MF with (JMF, hMF) = (βJ, βc); α = c′
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Conclusions

I New paradigm seems to work

I However: needs LDP in spaces of trajectories of measure

I Practical consequences (numerics, other phenomena)?
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