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Fourier law J=krVT

ENERGY FLOW

coLD — HOT

@ Pure-carbon materials have extremely high thermal conductivity.
@ 1D Hamiltonian models:
e Oscillators chains (Lebowitz, Lieb, Rieder, 1967): x ~ N.

e Non-linear oscillators chains (Lepri, Livi, Politi, Phys. Rep. 2003):
k~NY O<a<Ai

e Non-linear fluctuating hydrodynamics (van Beijeren 2012, Spohn
2013)
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Stochastic energy exchange models

Kipnis, Marchioro, Presutti (1982):

Observables: Energies at every site zZ=(21,...,2N) € RQ’

Dynamics: Select a bond at random and uniformly redistribute the
energy under the constraint of conserving the total energy.

LKMPf(Z) —

N 1
Z/O do [f(z1,...,p(2i + Zip1), (1 = P)(Zi + Zip1), - .., 2ZN) — F(2)]
i=1
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Outline

@ From Hamiltonian to stochastics: a simple model.
© Duality Theory:

e Brownian Momentum Process (BMP).
e Symmetric Inclusion Process (SIP).

© Seli-duality (SIP).
© Boundary driven systems.

@ A larger picture & “redistribution” models.
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From Hamiltonian to stochastics
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A simple Hamiltonian model (G., Kurchan, 05)

N 1 2
H(a.p) =Y 5 (pi—A)

i=1

A= (A1(q),-..,An(q)) “vector potential” in RV.

ag;
at

dV,' N
5 = 2B
j=1

where
0Ai(q)  9Ai(q)

oq; aq;
antisymmetric matrix containing the “magnetic fields”

Cristian Giardina (UniMoRe)

Bj(q) =



Conservation laws

@ Conservation of Energy:
Even if the forces depend on velocities and positions, the model
conserves the total (kinetic) energy

d 1
dt( 2v,-2) => Bjvy;=0
i i

@ Conservation of Momentum:
If we choose the A;(x) such that they are left invariant by the
simultaneous translations x; — x; + ¢, then the quantity > ; p; is
conserved.
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Example: discrete time dynamics with “magnetic kicks”

q(t+1) q(t) + v(1)
v(t+1) = R(t+1)-v(t)

with R(t) a rotation matrix

( cos(B(q(t+1))  sin(B(q(t + 1))
Rt+1)= ( sin(B(q(t +1))) cos(B(q(t + 1)) )
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Chaoticity properties of the map on T?

n

—

g = g +veos(s)

Figure: Poincare section with plane g® = 0 of the map ¢ g =  g® + vsin(8;)

Bty1 = ﬁt+B(qg1),Q§2))
with v =/v2 +v2, B =arctan(va/vi), B(g",q?®)=qgM +q@ —2r.




Numerical result
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Thermal conductivity
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Duality theory
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Duality

Definition
(nt)t>0 Markov process on Q with generator L,

(&t)1>0 Markov process on Q4,4 With generator L,z

& is dual to n; with duality function D : Q X Qquar — RifVE>0

E,(D(nt, €)) = Ee(D(n, &) V(1,€) € 2 X Qqual

nt is self-dual if Ly = L.
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Duality

Condition

LD(-,§)(n) = LawarD(n,-)(§)

Indeed

E, (D ) = 64D, €)(1)
= e (. )(¢)
~ Ee(D(1.£1)
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How to find a dual process?

@ Write the generator in abstract form , i.e. as an element of a Lie
algebra, using creation and annihilation operators.

© Duality is related to a change of representation, i.e. new
operators that satisfy the same algebra.

© Self-duality is associated to symmetries, i.e. conserved
quantities.
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The method at work

Brownian momentum process

i

SU(1,1) algebra

1

Inclusion process
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Brownian momentum process (BMP) on two sites

Given (x;, x;) = velocities of the couple (/, /)

LPMPf P 9\
i F(Xi ) = Xiaij—xjafxi (X, X))
@ polar coordinates LBMP 92
802

@ Brownian motion for angle 6; ; = arctan(x;/x;)

@ total kinetic energy conserved: r, = x + x

J
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Brownian momentum process (BMP)

Foragraph G= (V,E) let Q = ®;cyQ; = RIYI.
Configuration x = (xy,..., Xy|) € Q

Generator BMP

B 2 \2
BMP BMP R VN
- 2, L= 2 (X’8X/ Xfax,->

(i)eE (i.))eE

Stationary measures: Gaussian product measures

ax;
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Symmetric Inclusion Process (SIP)
Qqual = Qie VQ,dual ={0,1,2,.. .}|V|
Configuration &= (51 R ,f|\/‘) € Qaual

Generator SIP
LSPHE) = > LA
(ij)eE

= 3 &g+ ) e - 100+ (6+ 3) § 1) - 7

(i,))eE

Stationary (rever.) measures: product of Negative Binomial(r, p) with
r=2
V|

ni(1 —p)'T i
Pr(&1 =m,..., &y Z”l‘/l):Hp (n~' 7 (’r(t)”)
i—1 "
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Duality between BMP and SIP

Theorem 1

The process {x(t)}>0 with generator L = LBMP and the process
{€(t)}>0 with generator Ly, = LS are dual on

X2€i

P00 = g =y

Proof: An explicit computation gives

LBMPD(., €)(x) = LSPD(x,-)(€)
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Duality explained

SU(1, 1) ferromagnetic quantum spin chain

Abstract operator
1
— + — — -+
2= 3 (K + KK —2KeKP+ )
(h)eE

with {K,.*, K, K?}icv satisfying SU(1, 1) commutation relations:

[KP, Ki] = £01,K* b iGI=2a s

Duality between LBMP ¢ [ SIP corresponds to two different
representations of the operator .Z.
Duality fct is the intertwiner.
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SU(1,1) structure
Continuous representation

15 K 1 02

" = 2" =200

1/ 0 o
O _ = Ty
Ki=3 (X’ ox; 8x,-x’>

satisfy commutation relations of the SU(1, 1) Lie algebra

[KP, K] = £K  [K7, K"l = 2K?

In this representation
0 0 \?
_ | BvP _ 9 .
Zz Z <XI oX; X’ax,-)
(if)eE /
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-
SU(1,1) structure
Discete representation
K&y = (5/ + ;) &+ 1)
Kiléi) = &l — 1)
K716 = <€i + l) 1&5)

In this representation
Z1(€) = LSP£(©)
= 3 (g 5) e -1+ (64 5) 11 - He)

(i,))eE
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-
SU(1,1) structure

Intertwiner

K+D( &) (xi) = K" Di(xi, -)(&:)
Di(-; &) (%) = K Dix, -)(&1)
(,&)(X/)—/Co i(Xi,-)(&i)

From the creation operators

x2 1
5 Dixi, &) = (& + 5 ) D(x.& +1)
Therefore 2,

o
(2& — 1!

Di(xi, &) = Di(x;,0)



Self-duality
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Markov chain with finite state space

1. Matrix formulation of self-duality (Lqua = L)

LD =DL’

Indeed

> L(n,n")D(, &) = LD(-,€)(n) = LD(n,-)(&) = > _L(£,€)D(n, &)
Z

,'7/
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Self-Duality

2. trivial self-duality < reversible measure v

d(n,§) = M%@
Indeed
L(n,§) _ T _ L(&n)
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Self-Duality

3. S: symmetry of the generator, i.e. [L,S] =0,
d: trivial self-duality function,

— D = Sd self-duality function.

Indeed
LD = LSd = SLd = SdL” = DL’

Self-duality is related to the action of a symmetry.
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Self-duality of the SIP process

Theorem 2
The process with generator LS/ is self-dual on functions

Do) = [~ T2
7 ey (i = &I (3 + &)

Proof:

[LSIP’ Z l{io] — [LSIPaZ K’+] _ [LSIP’Z Kli] -0
i i i

Self-duality fct related to the simmetry S = eXi K"
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Boundary driven systems.
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Brownian Momentum Process with reservoirs
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Inclusion Process with absorbing reservoirs




Duality between BMP with reservoirs and
SIP with absorbing boundaries

Configurations & = (£0,&1, - .., &Ny 1) € Qyar = NNT2

Theorem 3

The process {x(t)}=o with generator LBMP:res js dual to the process
{f(t)}tzo with generator LSIP.abs gn

_ il x.25"
D(x,¢) = TEO <H (2¢; I_ 1)”> T.'E?N“

i=1
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CONSEQUENCES OF DUALITY

@ From continuous to discrete:
Interacting diffusions (BMP) studied via particle systems (SIP).

@ From many to few:
n-points correlation functions of N particles using n dual walkers
Remark: n< N

@ From reservoirs to absorbing boundaries:
Stationary state of dual process described by absorption
probabilities at the boundaries
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Proposition
Let Pz(a, b) = P(éo(c0) = a,&n41(00) = b | £(0) = £). Then

E(D(x,§)) =)  TiTg Pg(a,b)

a,b

Proof:
E(D(x.£)) = lim Ex(D(x,£))
= tILnC')]O EE(D(Xo,f_t )

N E/
using D(x 5) T§0 (H @ - 1)”> €N+1
i=1 !

= Eg(T) 75+ ))

Cristian Giardina (UniMoRe)



Temperature profile

£€=(0,...,0,1,0,...,0) = D(x,£) = x?
site i = 1 SIP walker (X;)>o With Xp = i

E (x,?) = T, Pi(Xoo = 0) + TR Pj(Xoo = N+ 1)

E(x2) = T, + <TH_ TL) i

N+1

(J) = E(x? ) —E(x?) = Tll\ql:r 1TL Fourier's law
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Energy covariance

If¢=(0,...,0,1,0,...,0,1,0,...,0) = D(x,{) = x?x?
sitei ~ sitej 7

In the dual process we initialize two
SIP walkers (Xt, Yi)i=0 With (Xo, Yo) = (/,)
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Inclusion Process with absorbing reservoirs







Energy covariance

= (+£7) ~B ()= () = (s s e~ T =0

Remark: up to a sign, covariance is the same in the boundary driven
Exclusion Process.
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A larger picture & redistribution models

(). Brownian Energy Process BEP(m)
(i). Instantaneous thermalization

(iii). Symmetric exclusion (SEP(n))
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(i) Brownian Energy Process: BEP

The energies of the Brownian Momentum Process

zi(t) = x?(t)
evolve with
Generator
o  9\? 1 o 0
BEP _ oY Y S
L= D, Z’Zf(az, az,) 5 f)<az,- az,->
(i))eE
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Generalized Brownian Energy Process: BEP(m)

2
LBMP 2 : 2 : (Xla Xjﬂaj )
i

(i,f)€E a,p=1
The energies zi(ty=>", x2 (1) evolve with
Generator
o 9\° m o 0
| BEP(m) _ I e D S N
Z %i% 0z 0z 2 (21— 2) 0z 0z
(i,j)eE / /

Stationary measures: product Gamma(%, )
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Adding-up SU(1,1) spins

2

(m) — g ol o m

Lm>_(§) (IC,ICj +lc,icj+2/<;;’/cf+8)
ij)eE

{KF, K7, KP} satisfy SU(1,1)

ieVv

K=z KHgh) = &G+ 2)1&6+1)
K; =z 0% + 20, Ko1&) = &l&i— 1)
KO =z, + 7 KPl&i) = (& +m) &)
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Generalized Symmetric Inclusion Process: SIP(m)

Generator

LSIP(m) f(§) —
S &g+ 3 ) M) — KO+ (& + 5 ) IE) - HE)

(i))eE
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Duality between BEP(m) and SIP(m)

Theorem 4

The process {z(t)};>o with generator LBEP(™ and the process
{&(t)} >0 with generator LS'P(M) are dual on

D(z,¢) = Hz

eV

N\S
—|— N\E
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(i) Redistribution models

Generator

/ AlH(Z1, . Pz + Zit1)s (1 = P)(Zi + Zis)s - - 20) — F(2)]

KMP model is an instantaneous thermalization limit of BEP(2).
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Instantaneous thermalization limit

BEP(m)
Li%f(z;, zj) == lim (ethJ - 1> f(zi, z)

t—o0

~ [ deidz; ™z 2] | 2+ 2 = 2+ 2. 2) - 120.2)]

1
N /o do '™ (p) [f(p(zi + 2), (1 = P)(Zi + ) — (i, 2))]

X, Y ~ Gamma (gﬁ) iid = P=

Bt(m
~ peta | —
2

N3

)

I

X
X+Y
For m = 2: uniform redistribution
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(iii) Generalized Symmetric Exclusion Process, SEP(n) [Schitz]

Configuration & = (&1,...,&yv)) € {0,1,2,...,n}!Vl

LSEPIIf(e) = 3 &(n— &)If(EY) — F()] + (n— &)gLAE) — 1(€)]

(i,))eE

Stationary measures: product with marginals Binomial(n,p)
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Generalized Symmetric Exclusion Process: SEP(n)

o n?
rn — Z <JI+JI +J; Jj+ + 2JI.0J].0 — 2>
(i.))€E

{J",J7,J?} satisfy SU(2) commutation relations

U9, J] = 607 [, JT = —20;F7

&) = (n—&) &+ 1)
J1&) =&l — 1)
JOIEY = (& — 5) 1)



Self-duality of the SEP(n) process

Theorem 5
The process with generator LSEP(7) is self-dual on functions

' T(n+1-=¢)

b =116 ey e

ieV

Proof:

[LSEP(n), ZJ[Q] _ [LSEP(n)’ ZJIJF] _ [LSEP(n), Z J]=0
i i i

Self-duality corresponds to the action of the symmetry S = e It
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Summary of Self-duality

Theorem 6
The INCLUSION process is self-dual on

_ ni! r(z)
)= H (i —&'T (Z iéi)

The INDEPENDENT WALKERS process is self-dual on

|
Dl &) = H (ni 71 &)!

The EXCLUSION process is self-dual on

n! T(n+1-¢&)
P08 =1l =gy e

i
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Perspectives

Boundary-driven models, instantaneous thermalization limit
[arxiv: 1212.3154]

- SU(1,1) algebra: duality BEP(m)/SIP(m), self-duality SIP(m)
- SU(2) algebra: self-duality SEP(n)
- Heisenberg algebra: self-duality IRW

Bulk-driven models, Asymmetric processes and g-deformed
algebras [work in progress]

Mathematical population genetics, Wright Fisher diffusion, Moran
model [ arXiv:1212.3154]
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