Logarithmic correlations in geometrical critical phenomena

Jesper L. Jacobsen ${ }^{1,2}$
${ }^{1}$ Laboratoire de Physique Théorique, École Normale Supérieure, Paris
${ }^{2}$ Université Pierre et Marie Curie, Paris
Mathematical Statistical Physics
Yukawa Institute, Kyoto 3 August 2013

Collaborators: R. Vasseur, H. Saleur, A. Gaynutdinov

Introduction

Logarithms in critical phenomeana

- Scale invariance \Rightarrow correlations are power-law or logarithmic

Introduction

Logarithms in critical phenomeana

- Scale invariance \Rightarrow correlations are power-law or logarithmic

Two possibilities for logarithms

(1) Marginally irrelevant operator:

Gives logs upon approach to fixed point theory.
(2) Dilatation operator not diagonalisable:

Logs directly in the fixed point theory.

Non-diagonalisable dilatation operator

- Happens when dimensions of two operators collide
- Resonance phenomenon produces a log from two power laws

Non-diagonalisable dilatation operator

- Happens when dimensions of two operators collide
- Resonance phenomenon produces a log from two power laws

Where do such logarithms appear?

- CFT with $c=0$ [Gurarie, Gurarie-Ludwig, Cardy, ...]
- Percolation, self-avoiding polymers ($c \rightarrow 0$ catastrophe)
- Quenched random systems (replica limit catastrophe)

Non-diagonalisable dilatation operator

- Happens when dimensions of two operators collide
- Resonance phenomenon produces a log from two power laws

Where do such logarithms appear?

- CFT with $c=0$ [Gurarie, Gurarie-Ludwig, Cardy, ...]
- Percolation, self-avoiding polymers ($c \rightarrow 0$ catastrophe)
- Quenched random systems (replica limit catastrophe)
- Logarithmic minimal models [Pearce-Rasmussen-Zuber, Read-Saleur]
- For any $d \leq$ upper critical dimension

Logarithms and non-unitarity [

Standard unitary CFT

- Expand local density $\Phi(r)$ on sum of scaling operators $\varphi(r)$

$$
\langle\Phi(r) \Phi(0)\rangle \sim \sum_{i j} \frac{A_{i j}}{r^{\Delta_{i}+\Delta_{j}}}
$$

- $A_{i j} \propto \delta_{i j}$ by conformal symmetry [Poyakoov 1970]
- $A_{i i} \geq 0$ by reflection positivity
- Hence only power laws appear

Logarithms and non-unitarity [

Standard unitary CFT

- Expand local density $\Phi(r)$ on sum of scaling operators $\varphi(r)$

$$
\langle\Phi(r) \Phi(0)\rangle \sim \sum_{i j} \frac{A_{i j}}{r^{\Delta_{i}+\Delta_{j}}}
$$

- $\boldsymbol{A}_{i j} \propto \delta_{i j}$ by conformal symmetry [Polyakov 1970]
- $A_{i i} \geq 0$ by reflection positivity
- Hence only power laws appear

The non-unitary case

- Cancellations may occur
- Suppose $A_{i i} \sim-A_{j j} \rightarrow \infty$ with $A_{i j}\left(\Delta_{i}-\Delta_{j}\right)$ finite
- Then leading term is $r^{-2 \Delta_{i}} \log r$

Application to geometrical models

Q-state Potts model

- Hamiltonian $H=J \sum_{\langle i j\rangle} \delta\left(\sigma_{i}, \sigma_{j}\right)$ with $\sigma_{i}=1,2, \ldots, Q$
- Reformulation in terms of Fortuin-Kasteleyn clusters

$$
Z=\sum_{A \subseteq\langle i j\rangle} Q^{K(A)}\left(\mathrm{e}^{K}-1\right)^{|A|}
$$

Application to geometrical models

Q-state Potts model

- Hamiltonian $H=J \sum_{\langle i j\rangle} \delta\left(\sigma_{i}, \sigma_{j}\right)$ with $\sigma_{i}=1,2, \ldots, Q$
- Reformulation in terms of Fortuin-Kasteleyn clusters (black)

$$
Z=\sum_{A \subseteq\langle j\rangle} Q^{k(A)}\left(\mathrm{e}^{K}-1\right)^{|A|}
$$

Application to geometrical models

Q-state Potts model

- Hamiltonian $H=J \sum_{\langle i j\rangle} \delta\left(\sigma_{i}, \sigma_{j}\right)$ with $\sigma_{i}=1,2, \ldots, Q$
- Reformulation in terms of Fortuin-Kasteleyn clusters (black)

$$
Z=\sum_{A \subseteq\langle i j\rangle} Q^{K(A)}\left(\mathrm{e}^{K}-1\right)^{|A|}
$$

- Here shown for $Q=3$
- The limit $Q \rightarrow 1$ is percolation
- Surrounding loops (grey) satisfy the Temperley-Lieb algebra

Application to geometrical models

Q-state Potts model

- Hamiltonian $H=J \sum_{\langle i j\rangle} \delta\left(\sigma_{i}, \sigma_{j}\right)$ with $\sigma_{i}=1,2, \ldots, Q$
- Reformulation in terms of Fortuin-Kasteleyn clusters (black)

$$
Z=\sum_{A \subseteq\langle i j\rangle} Q^{K(A)}\left(\mathrm{e}^{K}-1\right)^{|A|}
$$

- Here shown for $Q=3$
- The limit $Q \rightarrow 1$ is percolation
- Surrounding loops (grey) satisfy the Temperley-Lieb algebra

Continuum limit described by (L)CFT or SLE $_{\kappa}$

- Critical exponent in two dimensions exactly computable

Logarithmic correlations in percolation

Reminders

- 2 and 3-point functions fixed in any d by global conformal invariance alone [Polyakov 1970]
- Extra discrete symmetries must be taken into account as well
- Physical operators are irreducible under such symmetries [Cardy 1999]
- O(n) symmetry for polymers $(n \rightarrow 0)$
- S_{n} replica symmetry for systems with quenched disorder $(n \rightarrow 0)$

Logarithmic correlations in percolation

Reminders

- 2 and 3-point functions fixed in any d by global conformal invariance alone [Polyakov 1970]
- Extra discrete symmetries must be taken into account as well
- Physical operators are irreducible under such symmetries [Cardy 1999]
- $\mathrm{O}(n)$ symmetry for polymers $(n \rightarrow 0)$
- S_{n} replica symmetry for systems with quenched disorder $(n \rightarrow 0)$

Correlators in bulk percolation in any dimension

- Two and three-point functions in bulk percolation
- Limit $Q \rightarrow 1$ of Potts model with S_{Q} symmetry
- Structure for any d; but universal prefactors only for $d=2$

Potts model

- Hamiltonian $H=J \sum_{\langle i j\rangle} \delta\left(\sigma_{i}, \sigma_{j}\right)$ with $\sigma_{i}=1,2, \ldots, Q$
- Operators must be irreducible under S_{Q} symmetry [Cardy 1999]

Potts model

- Hamiltonian $H=J \sum_{\langle i j\rangle} \delta\left(\sigma_{i}, \sigma_{j}\right)$ with $\sigma_{i}=1,2, \ldots, Q$
- Operators must be irreducible under S_{Q} symmetry [Cardy 1999]

Operators acting on one spin

- Most general one-spin operator: $\mathcal{O}\left(r_{i}\right) \equiv \mathcal{O}\left(\sigma_{i}\right)=\sum_{a=1}^{Q} \mathcal{O}_{a} \delta_{a, \sigma_{i}}$

$$
\underbrace{\delta_{\mathrm{a}, \sigma_{i}}}_{\text {reducible }}=\underbrace{\frac{1}{Q}}_{\text {invariant }}+\underbrace{\left(\delta_{\mathrm{a}, \sigma_{i}}-\frac{1}{Q}\right)}_{\varphi_{\mathrm{a}}\left(\sigma_{i}\right)}
$$

- Dimensions of representations: $(Q)=(1) \oplus(Q-1)$
- Identity operator $1=\sum_{a} \delta_{a, \sigma_{i}}$
- Order parameter $\varphi_{a}\left(\sigma_{i}\right)$ satisfies the constraint $\sum_{a} \varphi_{a}\left(\sigma_{i}\right)=0$

Operators acting on two spins

- $Q \times Q$ matrices $\mathcal{O}\left(r_{i}\right) \equiv \mathcal{O}\left(\sigma_{i}, \sigma_{j}\right)=\sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{a b} \delta_{a, \sigma_{i}} \delta_{b, \sigma_{j}}$
- The Q operators with $\sigma_{i}=\sigma_{j}$ decompose as before: $(1) \oplus(Q-1)$
- Other $\frac{Q(Q-1)}{2}$ operators with $\sigma_{i} \neq \sigma_{j}:(1)+(Q-1)+\left(\frac{Q(Q-3)}{2}\right)$

Operators acting on two spins

- $Q \times Q$ matrices $\mathcal{O}\left(r_{i}\right) \equiv \mathcal{O}\left(\sigma_{i}, \sigma_{j}\right)=\sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{a b} \delta_{a, \sigma_{i}} \delta_{b, \sigma_{j}}$
- The Q operators with $\sigma_{i}=\sigma_{j}$ decompose as before: $(1) \oplus(Q-1)$
- Other $\frac{Q(Q-1)}{2}$ operators with $\sigma_{i} \neq \sigma_{j}:(1)+(Q-1)+\left(\frac{Q(Q-3)}{2}\right)$

Easy representation theory exercise

$$
\begin{aligned}
E & =\delta_{\sigma_{i} \neq \sigma_{j}}=1-\delta_{\sigma_{i}, \sigma_{j}} \\
\phi_{a} & =\delta_{\sigma_{i} \neq \sigma_{j}}\left(\varphi_{a}\left(\sigma_{i}\right)+\varphi_{a}\left(\sigma_{j}\right)\right) \\
\hat{\psi}_{a b} & =\delta_{\sigma_{i}, a} \delta_{\sigma_{j}, b}+\delta_{\sigma_{i}, b} \delta_{\sigma_{j}, a}-\frac{1}{Q-2}\left(\phi_{a}+\phi_{b}\right)-\frac{2}{Q(Q-1)} E
\end{aligned}
$$

Operators acting on two spins

- $Q \times Q$ matrices $\mathcal{O}\left(r_{i}\right) \equiv \mathcal{O}\left(\sigma_{i}, \sigma_{j}\right)=\sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{a b} \delta_{a, \sigma_{i}} \delta_{b, \sigma_{j}}$
- The Q operators with $\sigma_{i}=\sigma_{j}$ decompose as before: $(1) \oplus(Q-1)$
- Other $\frac{Q(Q-1)}{2}$ operators with $\sigma_{i} \neq \sigma_{j}:(1)+(Q-1)+\left(\frac{Q(Q-3)}{2}\right)$

Easy representation theory exercise

$$
\begin{aligned}
E & =\delta_{\sigma_{i} \neq \sigma_{j}}=1-\delta_{\sigma_{i}, \sigma_{j}} \\
\phi_{a} & =\delta_{\sigma_{i} \neq \sigma_{j}}\left(\varphi_{a}\left(\sigma_{i}\right)+\varphi_{a}\left(\sigma_{j}\right)\right) \\
\hat{\psi}_{a b} & =\delta_{\sigma_{i}, a} \delta_{\sigma_{j}, b}+\delta_{\sigma_{i}, b} \delta_{\sigma_{j}, a}-\frac{1}{Q-2}\left(\phi_{a}+\phi_{b}\right)-\frac{2}{Q(Q-1)} E
\end{aligned}
$$

- Scalar E (energy), vector φ_{a} (order parameter) and tensor $\hat{\psi}_{a b}$
- Highest-rank tensor obtained from symmetrised combinations of δ 's by subtracting suitable multiples of lower-rank tensors
- Constraint $\sum_{a=1}^{Q} \phi_{a}=0$ and $\sum_{a(\neq b)} \hat{\psi}_{a b}=0$

Switch to simpler notation

- $t^{(k, N)}$ is the rank- k tensor acting on N spins $\sigma_{1}, \ldots, \sigma_{N}$. By definition it vanishes if any two spins coincide.

$$
\begin{aligned}
& t^{(1,1)}=(1 \delta)-\frac{1}{Q}\left(1 t^{(0,1)}\right) \\
& t^{(1,2)}=(2 \delta)-\frac{2}{Q}\left(1 t^{(0,2)}\right), \\
& t^{(2,2)}=(2 \delta)-\frac{1}{Q-2}\left(2 t^{(1,2)}\right)-\frac{2}{Q(Q-1)}\left(1 t^{(0,2)}\right)
\end{aligned}
$$

Switch to simpler notation

- $t^{(k, N)}$ is the rank- k tensor acting on N spins $\sigma_{1}, \ldots, \sigma_{N}$. By definition it vanishes if any two spins coincide.

$$
\begin{aligned}
& t^{(1,1)}=(1 \delta)-\frac{1}{Q}\left(1 t^{(0,1)}\right) \\
& t^{(1,2)}=(2 \delta)-\frac{2}{Q}\left(1 t^{(0,2)}\right) \\
& t^{(2,2)}=(2 \delta)-\frac{1}{Q-2}\left(2 t^{(1,2)}\right)-\frac{2}{Q(Q-1)}\left(1 t^{(0,2)}\right)
\end{aligned}
$$

Extension to rank- k tensors for all $k \leq N$

$$
\begin{aligned}
t^{(k, N)} & =\left(\alpha_{k} \delta\right)-\sum_{i=0}^{k-1} \gamma_{k, i}\left(\beta_{k, i} t^{(i, N)}\right) \\
\alpha_{k}=\frac{N!}{(N-k)!}, \quad \beta_{k, i} & =\frac{k!}{(k-i)!i!}, \quad \gamma_{k, i}=\frac{(N-i)!}{(N-k)!} \frac{(Q-i-k)!}{(Q-2 i)!}
\end{aligned}
$$

Geometrical interpretation of $t^{(k, N)}$

One-spin results

$$
\begin{aligned}
\left\langle t^{(0,1)} t^{(0,1)}\right\rangle & =1 \\
\left\langle t_{a}^{(1,1)} t_{b}^{(1,1)}\right\rangle & \left.=\frac{1}{Q}\left(\delta_{a, b}-\frac{1}{Q}\right) \mathbb{P}(\rceil\right) .
\end{aligned}
$$

Geometrical interpretation of $t^{(k, N)}$

One-spin results

$$
\begin{aligned}
\left\langle t^{(0,1)} t^{(0,1)}\right\rangle & =1 \\
\left\langle t_{a}^{(1,1)} t_{b}^{(1,1)}\right\rangle & \left.=\frac{1}{Q}\left(\delta_{a, b}-\frac{1}{Q}\right) \mathbb{P}(\rceil\right) .
\end{aligned}
$$

- In general we do not know the probability $\mathbb{P}(\llbracket)$ that the two spins belong to the same Fortuin-Kasteleyn cluster.
- But its large-distance asymptotics is predicted from CFT.

Two-spin results

$$
\begin{aligned}
\left\langle t^{(0,2)} t^{(0,2)}\right\rangle & \left.=\left(\frac{Q-1}{Q}\right)^{2}\left(\mathbb{P}\binom{\bullet}{. .}+\mathbb{P}(\rceil_{\bullet}^{\bullet}\right)\right)+\frac{Q-1}{Q} \mathbb{P}(!!), \\
\left\langle t_{a}^{(1,2)} t_{b}^{(1,2)}\right\rangle & \left.\left.=\frac{Q-2}{Q^{2}}\left(\delta_{a, b}-\frac{1}{Q}\right)\left(\frac{Q-2}{Q} \mathbb{P}(\rceil_{0}\right)+2 \mathbb{P}(\rceil!\right)\right), \\
\left\langle t_{a b}^{(2,2)} t_{c d}^{(2,2)}\right\rangle & =\frac{2}{Q^{2}}\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}-\frac{1}{Q-2}\left(\delta_{a c}+\delta_{b d}+\delta_{a d}+\delta_{b c}\right)\right. \\
& \left.+\frac{2}{(Q-2)(Q-1)}\right) \mathbb{P}(!!) .
\end{aligned}
$$

Two-spin results

$$
\begin{aligned}
\left\langle t^{(0,2)} t^{(0,2)}\right\rangle & \left.=\left(\frac{Q-1}{Q}\right)^{2}\left(\mathbb{P}\binom{\bullet}{. .}+\mathbb{P}(\rceil^{\bullet}\right)\right)+\frac{Q-1}{Q} \mathbb{P}(!!), \\
\left\langle t_{a}^{(1,2)} t_{b}^{(1,2)}\right\rangle & \left.=\frac{Q-2}{Q^{2}}\left(\delta_{a, b}-\frac{1}{Q}\right)\left(\frac{Q-2}{Q} \mathbb{P}(\rceil_{0}\right)+2 \mathbb{P}(!!)\right), \\
\left\langle t_{a b}^{(2,2)} t_{c d}^{(2,2)}\right\rangle & =\frac{2}{Q^{2}}\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}-\frac{1}{Q-2}\left(\delta_{a c}+\delta_{b d}+\delta_{a d}+\delta_{b c}\right)\right. \\
& \left.+\frac{2}{(Q-2)(Q-1)}\right) \mathbb{P}(!!!) .
\end{aligned}
$$

Physical interpretation

- For $k=N$, the operator $t^{(k, N)}$ makes k clusters propagate
- In 2D equivalent to $2 k$-leg watermelon operator

Continuum limit

Energy operator $\varepsilon_{i}=E-\langle E\rangle$, with $E=\delta_{\sigma_{i} \neq \sigma_{i+1}}$ invariant

$$
\langle\varepsilon(r) \varepsilon(0)\rangle=(Q-1) \tilde{A}(Q) r^{-2 \Delta_{\varepsilon}(Q)},
$$

- All correlators of ε_{i} vanish at $Q=1$ (true already on the lattice)
- In 2D: exponent $\Delta_{\varepsilon}(Q)=d-\nu^{-1}$ known exactly

Continuum limit

Energy operator $\varepsilon_{i}=E-\langle E\rangle$, with $E=\delta_{\sigma_{i} \neq \sigma_{i+1}}$ invariant

$$
\langle\varepsilon(r) \varepsilon(0)\rangle=(Q-1) \tilde{A}(Q) r^{-2 \Delta_{\varepsilon}(Q)},
$$

- All correlators of ε_{i} vanish at $Q=1$ (true already on the lattice)
- In 2D: exponent $\Delta_{\varepsilon}(Q)=d-\nu^{-1}$ known exactly

Two-cluster operator $\hat{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)$

$$
\begin{aligned}
\left\langle\hat{\psi}_{a b}(r) \hat{\psi}_{c d}(0)\right\rangle= & \frac{2 A(Q)}{Q^{2}}\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}-\frac{1}{Q-2}\left(\delta_{a c}+\delta_{a d}\right.\right. \\
& \left.\left.+\delta_{b c}+\delta_{b d}\right)+\frac{2}{(Q-1)(Q-2)}\right) \times \underbrace{r^{-2 \Delta_{2}(Q)}}_{\text {CFT part }},
\end{aligned}
$$

- In 2D: exponent $\Delta_{2}=\frac{(4+g)(3 g-4)}{8 g}$ known from Coulomb gas

Percolation limit $Q \rightarrow 1$

Avoiding the $Q \rightarrow 1$ catastrophe

- The "scalar" part of $\left\langle\hat{\psi}_{a b}(r) \hat{\psi}_{c d}(0)\right\rangle$ diverges
- But $\Delta_{2}=\Delta_{\varepsilon}=\frac{5}{4}$ at $Q=1$ in 2D
- And actually $\Leftrightarrow d_{\text {red bonds }}^{F}=\nu^{-1}$ for all $2 \leq d \leq d_{\text {u.c. [Coniglio 1982] }}$
- So we can cure the divergence by mixing the two operators:

$$
\tilde{\psi}_{a b}(r)=\hat{\psi}_{a b}(r)+\frac{2}{Q(Q-1)} \varepsilon(r)
$$

Percolation limit $Q \rightarrow 1$

Avoiding the $Q \rightarrow 1$ catastrophe

- The "scalar" part of $\left\langle\hat{\psi}_{a b}(r) \hat{\psi}_{c d}(0)\right\rangle$ diverges
- But $\Delta_{2}=\Delta_{\varepsilon}=\frac{5}{4}$ at $Q=1$ in 2D
- And actually $\Leftrightarrow d_{\text {red bonds }}^{F}=\nu^{-1}$ for all $2 \leq d \leq d_{\text {u.c. }}$ [Conigio 1982]
- So we can cure the divergence by mixing the two operators:

$$
\tilde{\psi}_{a b}(r)=\hat{\psi}_{a b}(r)+\frac{2}{Q(Q-1)} \varepsilon(r)
$$

Using $\left\langle\hat{\psi}_{a b} \varepsilon\right\rangle=0$, we find a finite limit at $Q=1$

$$
\begin{aligned}
\left\langle\tilde{\psi}_{a b}(r) \tilde{\psi}_{c d}(0)\right\rangle=2 A(1) r^{-5 / 2}\left(\delta_{a c}+\delta_{a d}\right. & \left.+\delta_{b c}+\delta_{b d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right) \\
& +4 A(1) \frac{2 \sqrt{3}}{\pi} r^{-5 / 2} \times \log r
\end{aligned}
$$

where we assumed that $A(1)=\tilde{A}(1)$.

Where does the log come from?

$$
\left.\frac{1}{Q-1}\left(r^{-2 \Delta_{\varepsilon}(Q)}-r^{-2 \Delta_{2}(Q)}\right) \sim 2 \frac{\mathrm{~d}\left(\Delta_{2}-\Delta_{\varepsilon}\right)}{\mathrm{d} Q}\right|_{Q=1} r^{-5 / 2} \log r
$$

- We need 2D only to compute this derivative (universal prefactor)

Where does the log come from?

$$
\left.\frac{1}{Q-1}\left(r^{-2 \Delta_{\varepsilon}(Q)}-r^{-2 \Delta_{2}(Q)}\right) \sim 2 \frac{\mathrm{~d}\left(\Delta_{2}-\Delta_{\varepsilon}\right)}{\mathrm{d} Q}\right|_{Q=1} r^{-5 / 2} \log r
$$

- We need 2D only to compute this derivative (universal prefactor)

Geometrical interpretation of this logarithmic correlator?

- Idea: Translate the spin expressions into FK cluster formulation
- In addition to the above results, it follows from the representation theory that
$\left\langle\varepsilon \hat{\psi}_{a b}\right\rangle=\left\langle\varepsilon \phi_{a}\right\rangle=\left\langle\hat{\psi}_{a b} \phi_{c}\right\rangle=0$, and also $\left\langle\hat{\psi}_{a b}\right\rangle=\left\langle\phi_{a}\right\rangle=\langle\varepsilon\rangle=0$.
- All correlators take a simple form in terms of FK clusters

For example we find:

$$
\left\langle\hat{\psi}_{a b}\left(\sigma_{i_{1}}, \sigma_{i_{1}+1}\right) \hat{\psi}_{c d}\left(\sigma_{i_{2}}, \sigma_{i_{2}+1}\right)\right\rangle \propto \mathbb{P}_{2}\left(r=r_{1}-r_{2}\right)
$$

This probability should thus behave as $r^{-2 \Delta_{2}}$
$\mathrm{i}_{2} \quad \mathrm{i}_{2}+1$

- Just like in the CFT limit, we introduce

$$
\tilde{\psi}_{a b}\left(r_{i}\right) \equiv \tilde{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)=\hat{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)+\frac{2}{Q(Q-1)} \varepsilon\left(\sigma_{i}, \sigma_{i+1}\right)
$$

- Just like in the CFT limit, we introduce

$$
\tilde{\psi}_{a b}\left(r_{i}\right) \equiv \tilde{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)=\hat{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)+\frac{2}{Q(Q-1)} \varepsilon\left(\sigma_{i}, \sigma_{i+1}\right)
$$

- Exact discrete expression for $\left\langle\tilde{\psi}_{a b}\left(r_{1}\right) \tilde{\psi}_{c d}\left(r_{2}\right)\right\rangle$ at $Q=1$
- Expression in terms of simple percolation probabilities

$$
\left.\left.\mathbb{P}_{2}=\mathbb{P}(\rceil!\right), \mathbb{P}_{1}=\mathbb{P}(\rceil^{\bullet}\right), \mathbb{P}_{0}=\mathbb{P}\left({ }^{\bullet}\right) \text {, and } \mathbb{P}_{\neq}
$$

- Just like in the CFT limit, we introduce

$$
\tilde{\psi}_{a b}\left(r_{i}\right) \equiv \tilde{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)=\hat{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)+\frac{2}{Q(Q-1)} \varepsilon\left(\sigma_{i}, \sigma_{i+1}\right)
$$

- Exact discrete expression for $\left\langle\tilde{\psi}_{a b}\left(r_{1}\right) \tilde{\psi}_{c d}\left(r_{2}\right)\right\rangle$ at $Q=1$
- Expression in terms of simple percolation probabilities

$$
\left.\mathbb{P}_{2}=\mathbb{P}(\lceil \rceil), \mathbb{P}_{1}=\mathbb{P}(\rceil_{\bullet}^{\bullet}\right), \mathbb{P}_{0}=\mathbb{P}\binom{\bullet}{\bullet} \text {, and } \mathbb{P}_{\neq}
$$

Exact two-point function of $\tilde{\psi}_{a b}$ at $Q=1$

$$
\begin{aligned}
\left\langle\tilde{\psi}_{a b}\left(r_{1}\right) \tilde{\psi}_{c d}\left(r_{2}\right)\right\rangle=2\left(\delta_{a c}+\delta_{a d}\right. & \left.+\delta_{b c}+\delta_{b d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right) \times \mathbb{P}_{2}(r) \\
& +4\left[\mathbb{P}_{0}(r)+\mathbb{P}_{1}(r)-2 \mathbb{P}_{2}(r)-\mathbb{P}_{\neq}^{2}\right]
\end{aligned}
$$

Putting it all together

Exact Two-point function of $\tilde{\psi}_{a b}$ at $Q=1$

$$
\begin{aligned}
\left\langle\tilde{\psi}_{a b}\left(r_{1}\right) \tilde{\psi}_{c d}\left(r_{2}\right)\right\rangle=2\left(\delta_{a c}+\delta_{a d}\right. & \left.+\delta_{b c}+\delta_{b d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right) \times \mathbb{P}_{2}(r) \\
& +4\left[\mathbb{P}_{0}(r)+\mathbb{P}_{1}(r)-2 \mathbb{P}_{2}(r)-\mathbb{P}_{\neq}^{2}\right] .
\end{aligned}
$$

Putting it all together

Exact Two-point function of $\tilde{\psi}_{a b}$ at $Q=1$

$$
\begin{aligned}
\left\langle\tilde{\psi}_{a b}\left(r_{1}\right) \tilde{\psi}_{c d}\left(r_{2}\right)\right\rangle=2\left(\delta_{a c}+\delta_{a d}\right. & \left.+\delta_{b c}+\delta_{b d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right) \times \mathbb{P}_{2}(r) \\
& +4\left[\mathbb{P}_{0}(r)+\mathbb{P}_{1}(r)-2 \mathbb{P}_{2}(r)-\mathbb{P}_{\neq}^{2}\right] .
\end{aligned}
$$

Reminder: CFT Expression

$$
\begin{aligned}
\left\langle\tilde{\psi}_{a b}(r) \tilde{\psi}_{c d}(0)\right\rangle=2 A(1) r^{-5 / 2}\left(\delta_{a c}+\delta_{a d}\right. & \left.+\delta_{b c}+\delta_{b d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right) \\
& +4 A(1) \frac{2 \sqrt{3}}{\pi} r^{-5 / 2} \times \log r,
\end{aligned}
$$

Numerical check

Comparison with the CFT expression yields geometrical interpretation

$$
F(r) \equiv \frac{\mathbb{P}_{0}(r)+\mathbb{P}_{1}(r)-\mathbb{P}_{\neq}^{2}}{\mathbb{P}_{2}(r)} \sim \underbrace{\frac{2 \sqrt{3}}{\pi}}_{\text {universal }} \log r
$$

Numerical check

Comparison with the CFT expression yields geometrical interpretation

$$
F(r) \equiv \frac{\mathbb{P}_{0}(r)+\mathbb{P}_{1}(r)-\mathbb{P}_{\neq}^{2}}{\mathbb{P}_{2}(r)} \sim \underbrace{\frac{2 \sqrt{3}}{\pi}}_{\text {universal }} \log r,
$$

Generalisation

- Log is in the disconnected part $\mathbb{P}_{0}(r)$
- Also true for polymers and disordered systems [Cardy 1999]
- Should hold for $2 \leq d \leq d_{\text {u.c. }}$, but prefactor depends on d
- Compute universal prefactor in $\epsilon=6-d$ expansion?

Generalisation

- Log is in the disconnected part $\mathbb{P}_{0}(r)$
- Also true for polymers and disordered systems [Cardy 1999]
- Should hold for $2 \leq d \leq d_{\text {u.c. }}$, but prefactor depends on d
- Compute universal prefactor in $\epsilon=6-d$ expansion?

Other interesting logarithmic limits

- $Q \rightarrow 0$ (spanning trees, dense polymers, resistor networks ...)
- $Q \rightarrow 2$ (Ising model)
- Logarithms for any integer Q.

Three-point functions on two spins (for $Q=1$)

Just example, but we have complete results..$\left(\delta=\lim _{Q \rightarrow 1} \frac{\Delta_{\hat{\psi}}-\Delta_{\varepsilon}}{Q-1}\right)$

Three-point functions on two spins (for $Q=1$)

Just example, but we have complete results..$\left(\delta=\lim _{Q \rightarrow 1} \frac{\Delta_{\hat{\psi}}-\Delta_{\varepsilon}}{Q-1}\right)$

$$
\sim \frac{F_{1}(1)-F_{2}(1)}{\left(r_{12} r_{23} r_{31}\right)^{\Delta_{\tilde{\psi}}(1)}}\left[\operatorname{cst}-\delta^{2} \log \left(\frac{r_{12} r_{23} r_{31}}{a^{3}}\right)^{2}\right]
$$

Conclusion

- Logarithmic observables specific to percolation $(Q=1)$ \Rightarrow LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent. In $d>2$: S_{Q} repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra).

Conclusion

- Logarithmic observables specific to percolation $(Q=1)$ \Rightarrow LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent. In $d>2$: S_{Q} repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra).

Conclusion

- Logarithmic observables specific to percolation $(Q=1)$ \Rightarrow LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent. In $d>2$: S_{Q} repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra).

Conclusion

- Logarithmic observables specific to percolation $(Q=1)$ \Rightarrow LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent. In $d>2$: S_{Q} repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra)

Conclusion

- Logarithmic observables specific to percolation $(Q=1)$ \Rightarrow LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent. In $d>2$: S_{Q} repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of
non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra)

Conclusion

- Logarithmic observables specific to percolation $(Q=1)$ \Rightarrow LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent. In $d>2$: S_{Q} repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of
non-semisimple algebras, both on the lattice (Temperley-Lieb
algebra) and in the continuum limit (Virasoro algebra)

Conclusion

- Logarithmic observables specific to percolation $(Q=1)$ \Rightarrow LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent. In $d>2$: S_{Q} repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra).

