Logarithmic correlations in geometrical critical phenomena

Jesper L. Jacobsen ^{1,2}

¹Laboratoire de Physique Théorique, École Normale Supérieure, Paris

²Université Pierre et Marie Curie, Paris

Mathematical Statistical Physics Yukawa Institute, Kyoto 3 August 2013

Collaborators: R. Vasseur, H. Saleur, A. Gaynutdinov

4 3 5 4 3

Logarithms in critical phenomeana

● Scale invariance ⇒ correlations are power-law or logarithmic

3 > 4 3

< 47 ▶

Logarithms in critical phenomeana

● Scale invariance ⇒ correlations are power-law or logarithmic

Two possibilities for logarithms

- Marginally irrelevant operator: Gives logs upon approach to fixed point theory.
- Dilatation operator not diagonalisable: Logs directly in the fixed point theory.

(3)

Image: A matrix and a matrix

Non-diagonalisable dilatation operator

- Happens when dimensions of two operators collide
- Resonance phenomenon produces a log from two power laws

3 1 4 3

< A b

Non-diagonalisable dilatation operator

- Happens when dimensions of two operators collide
- Resonance phenomenon produces a log from two power laws

Where do such logarithms appear?

- CFT with c = 0 [Gurarie, Gurarie-Ludwig, Cardy, ...]
 - Percolation, self-avoiding polymers (*c* → 0 catastrophe)
 - Quenched random systems (replica limit catastrophe)

A B b 4 B b

Image: Image:

Non-diagonalisable dilatation operator

- Happens when dimensions of two operators collide
- Resonance phenomenon produces a log from two power laws

Where do such logarithms appear?

- CFT with c = 0 [Gurarie, Gurarie-Ludwig, Cardy, ...]
 - Percolation, self-avoiding polymers ($c \rightarrow 0$ catastrophe)
 - Quenched random systems (replica limit catastrophe)
- Logarithmic minimal models [Pearce-Rasmussen-Zuber, Read-Saleur]
- For any $d \leq$ upper critical dimension

A B F A B F

Image: Image:

Logarithms and non-unitarity [Cardy 1999]

Standard unitary CFT

Expand local density Φ(r) on sum of scaling operators φ(r)

$$\langle \Phi(r) \Phi(0)
angle \sim \sum_{ij} rac{{\cal A}_{ij}}{r^{\Delta_i + \Delta_j}}$$

- $A_{ij} \propto \delta_{ij}$ by conformal symmetry [Polyakov 1970]
- $A_{ii} \ge 0$ by reflection positivity
- Hence only power laws appear

Logarithms and non-unitarity [Cardy 1999]

Standard unitary CFT

Expand local density Φ(r) on sum of scaling operators φ(r)

$$\langle \Phi(r) \Phi(0)
angle \sim \sum_{ij} rac{{\cal A}_{ij}}{r^{\Delta_i + \Delta_j}}$$

- $A_{ij} \propto \delta_{ij}$ by conformal symmetry [Polyakov 1970]
- $A_{ii} \ge 0$ by reflection positivity
- Hence only power laws appear

The non-unitary case

- Cancellations may occur
- Suppose $A_{ii} \sim -A_{jj} \rightarrow \infty$ with $A_{ii}(\Delta_i \Delta_j)$ finite
- Then leading term is $r^{-2\Delta_i} \log r$

Q-state Potts model

- Hamiltonian $H = J \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)$ with $\sigma_i = 1, 2, ..., Q$
- Reformulation in terms of Fortuin-Kasteleyn clusters

$$Z = \sum_{A \subseteq \langle ij \rangle} \mathsf{Q}^{k(A)} (\mathrm{e}^{K} - 1)^{|A|}$$

★ ∃ > < ∃ >

Q-state Potts model

- Hamiltonian $H = J \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)$ with $\sigma_i = 1, 2, \dots, Q$
- Reformulation in terms of Fortuin-Kasteleyn clusters (black)

$$Z = \sum_{A \subseteq \langle ij \rangle} \mathsf{Q}^{k(A)} (\mathrm{e}^{K} - 1)^{|A|}$$

< 3 > 4 3 >

Q-state Potts model

- Hamiltonian $H = J \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)$ with $\sigma_i = 1, 2, ..., Q$
- Reformulation in terms of Fortuin-Kasteleyn clusters (black)

$$Z = \sum_{A \subseteq \langle ij \rangle} \mathsf{Q}^{k(A)} (\mathrm{e}^{K} - 1)^{|A|}$$

- Here shown for Q = 3
- The limit $Q \rightarrow 1$ is percolation
- Surrounding loops (grey) satisfy the Temperley-Lieb algebra

Q-state Potts model

- Hamiltonian $H = J \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)$ with $\sigma_i = 1, 2, ..., Q$
- Reformulation in terms of Fortuin-Kasteleyn clusters (black)

$$Z = \sum_{A \subseteq \langle ij \rangle} \mathsf{Q}^{k(A)} (\mathrm{e}^{K} - 1)^{|A|}$$

- Here shown for Q = 3
- The limit $Q \rightarrow 1$ is percolation
- Surrounding loops (grey) satisfy the Temperley-Lieb algebra

Continuum limit described by (L)CFT or SLE_{κ}

Critical exponent in two dimensions exactly computable

Reminders

- 2 and 3-point functions fixed in any *d* by global conformal invariance alone [Polyakov 1970]
- Extra discrete symmetries must be taken into account as well
- Physical operators are irreducible under such symmetries [Cardy 1999]
 - O(*n*) symmetry for polymers $(n \rightarrow 0)$
 - S_n replica symmetry for systems with quenched disorder $(n \rightarrow 0)$

Reminders

- 2 and 3-point functions fixed in any *d* by global conformal invariance alone [Polyakov 1970]
- Extra discrete symmetries must be taken into account as well
- Physical operators are irreducible under such symmetries [Cardy 1999]
 - O(*n*) symmetry for polymers $(n \rightarrow 0)$
 - S_n replica symmetry for systems with quenched disorder $(n \rightarrow 0)$

Correlators in bulk percolation in any dimension

- Two and three-point functions in bulk percolation
- Limit $Q \rightarrow 1$ of Potts model with S_Q symmetry
- Structure for any d; but universal prefactors only for d = 2

Potts model

• Hamiltonian
$$H = J \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)$$
 with $\sigma_i = 1, 2, \dots, Q$

• Operators must be irreducible under S_Q symmetry [Cardy 1999]

E

Potts model

- Hamiltonian $H = J \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)$ with $\sigma_i = 1, 2, \dots, Q$
- Operators must be irreducible under S_Q symmetry [Cardy 1999]

Operators acting on one spin

• Most general one-spin operator: $\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i) = \sum_{a=1}^{Q} \mathcal{O}_a \delta_{a,\sigma_i}$

• Dimensions of representations: $(Q) = (1) \oplus (Q - 1)$

- Identity operator $1 = \sum_{a} \delta_{a,\sigma_i}$
- Order parameter φ_a(σ_i) satisfies the constraint Σ_a φ_a(σ_i) = 0

Operators acting on two spins

•
$$Q \times Q$$
 matrices $\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i, \sigma_j) = \sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{ab} \delta_{a,\sigma_i} \delta_{b,c}$

• The Q operators with $\sigma_i = \sigma_j$ decompose as before: (1) \oplus (Q – 1)

• Other
$$\frac{Q(Q-1)}{2}$$
 operators with $\sigma_i \neq \sigma_j$: (1) + (Q - 1) + $\left(\frac{Q(Q-3)}{2}\right)$

Operators acting on two spins

•
$$Q \times Q$$
 matrices $\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i, \sigma_j) = \sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{ab} \delta_{a,\sigma_i} \delta_{b,\sigma_j}$

• The Q operators with $\sigma_i = \sigma_j$ decompose as before: (1) \oplus (Q – 1)

• Other
$$\frac{Q(Q-1)}{2}$$
 operators with $\sigma_i \neq \sigma_j$: (1) + (Q - 1) + $\left(\frac{Q(Q-3)}{2}\right)$

Easy representation theory exercise

$$E = \delta_{\sigma_i \neq \sigma_j} = 1 - \delta_{\sigma_i, \sigma_j}$$

$$\phi_{\mathbf{a}} = \delta_{\sigma_i \neq \sigma_j} \left(\varphi_{\mathbf{a}}(\sigma_i) + \varphi_{\mathbf{a}}(\sigma_j) \right)$$

$$\hat{\psi}_{\mathbf{a}b} = \delta_{\sigma_i, \mathbf{a}} \delta_{\sigma_j, \mathbf{b}} + \delta_{\sigma_i, \mathbf{b}} \delta_{\sigma_j, \mathbf{a}} - \frac{1}{Q - 2} \left(\phi_{\mathbf{a}} + \phi_{\mathbf{b}} \right) - \frac{2}{Q(Q - 1)} E$$

Operators acting on two spins

•
$$Q \times Q$$
 matrices $\mathcal{O}(r_i) \equiv \mathcal{O}(\sigma_i, \sigma_j) = \sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{ab} \delta_{a, \sigma_i} \delta_{b, \sigma_i}$

• The Q operators with $\sigma_i = \sigma_j$ decompose as before: (1) \oplus (Q – 1)

• Other
$$\frac{Q(Q-1)}{2}$$
 operators with $\sigma_i \neq \sigma_j$: (1) + (Q - 1) + $\left(\frac{Q(Q-3)}{2}\right)$

Easy representation theory exercise

$$E = \delta_{\sigma_i \neq \sigma_j} = 1 - \delta_{\sigma_i, \sigma_j}$$

$$\phi_{\mathbf{a}} = \delta_{\sigma_i \neq \sigma_j} \left(\varphi_{\mathbf{a}}(\sigma_i) + \varphi_{\mathbf{a}}(\sigma_j) \right)$$

$$\hat{\psi}_{\mathbf{a}b} = \delta_{\sigma_i, \mathbf{a}} \delta_{\sigma_j, b} + \delta_{\sigma_i, b} \delta_{\sigma_j, \mathbf{a}} - \frac{1}{Q - 2} \left(\phi_{\mathbf{a}} + \phi_{b} \right) - \frac{2}{Q(Q - 1)} E$$

- Scalar *E* (energy), vector φ_a (order parameter) and tensor $\hat{\psi}_{ab}$
- Highest-rank tensor obtained from symmetrised combinations of δ's by subtracting suitable multiples of lower-rank tensors

• Constraint
$$\sum_{a=1}^{Q} \phi_a = 0$$
 and $\sum_{a(\neq b)} \hat{\psi}_{ab} = 0$

Switch to simpler notation

t^(k,N) is the rank-k tensor acting on N spins σ₁,..., σ_N.
 By definition it vanishes if any two spins coincide.

$$\begin{split} t^{(1,1)} &= (1\delta) - \frac{1}{Q} \left(1t^{(0,1)} \right) \\ t^{(1,2)} &= (2\delta) - \frac{2}{Q} \left(1t^{(0,2)} \right) , \\ t^{(2,2)} &= (2\delta) - \frac{1}{Q-2} \left(2t^{(1,2)} \right) - \frac{2}{Q(Q-1)} \left(1t^{(0,2)} \right) \end{split}$$

3 1 4 3

< 17 ▶

Switch to simpler notation

t^(k,N) is the rank-k tensor acting on N spins σ₁,..., σ_N.
 By definition it vanishes if any two spins coincide.

$$\begin{split} t^{(1,1)} &= (1\delta) - \frac{1}{Q} \left(1t^{(0,1)} \right) \\ t^{(1,2)} &= (2\delta) - \frac{2}{Q} \left(1t^{(0,2)} \right) , \\ t^{(2,2)} &= (2\delta) - \frac{1}{Q-2} \left(2t^{(1,2)} \right) - \frac{2}{Q(Q-1)} \left(1t^{(0,2)} \right) \end{split}$$

Extension to rank-k tensors for all $k \leq N$

$$t^{(k,N)} = (\alpha_k \delta) - \sum_{i=0}^{k-1} \gamma_{k,i} \left(\beta_{k,i} t^{(i,N)} \right)$$
$$\alpha_k = \frac{N!}{(N-k)!}, \quad \beta_{k,i} = \frac{k!}{(k-i)! \, i!}, \quad \gamma_{k,i} = \frac{(N-i)!}{(N-k)!} \frac{(Q-i-k)!}{(Q-2i)!}.$$

3

・ロン ・四 ・ ・ ヨン

One-spin results

$$\left\langle t^{(0,1)} t^{(0,1)} \right\rangle = 1 ,$$

$$\left\langle t^{(1,1)}_{a} t^{(1,1)}_{b} \right\rangle = \frac{1}{Q} \left(\delta_{a,b} - \frac{1}{Q} \right) \mathbb{P} \left(\bigcup \right)$$

Jesper L. Jacobsen (LPTENS)

æ

.

イロト イヨト イヨト イヨト

One-spin results

$$\left\langle t^{(0,1)} t^{(0,1)} \right\rangle = 1,$$

$$\left\langle t^{(1,1)}_{a} t^{(1,1)}_{b} \right\rangle = \frac{1}{Q} \left(\delta_{a,b} - \frac{1}{Q} \right) \mathbb{P} \left(\left[\right] \right)$$

- In general we do not know the probability ℙ (↓) that the two spins belong to the same Fortuin-Kasteleyn cluster.
- But its large-distance asymptotics is predicted from CFT.

→ ∃ →

Two-spin results

$$\left\langle t^{(0,2)} t^{(0,2)} \right\rangle = \left(\frac{Q-1}{Q} \right)^2 \left(\mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) + \mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) \right) + \frac{Q-1}{Q} \mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) ,$$

$$\left\langle t^{(1,2)}_{a} t^{(1,2)}_{b} \right\rangle = \frac{Q-2}{Q^2} \left(\delta_{a,b} - \frac{1}{Q} \right) \left(\frac{Q-2}{Q} \mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) + 2 \mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) \right) ,$$

$$\left\langle t^{(2,2)}_{ab} t^{(2,2)}_{cd} \right\rangle = \frac{2}{Q^2} \left(\delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc} - \frac{1}{Q-2} (\delta_{ac} + \delta_{bd} + \delta_{ad} + \delta_{bc}) \right)$$

$$+ \frac{2}{(Q-2)(Q-1)} \mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) .$$

Jesper L. Jacobsen (LPTENS)

MSP, Kyoto, 03/08/2013 11 / 21

2

Two-spin results

$$\left\langle t^{(0,2)} t^{(0,2)} \right\rangle = \left(\frac{Q-1}{Q} \right)^2 \left(\mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) + \mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) \right) + \frac{Q-1}{Q} \mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) ,$$

$$\left\langle t^{(1,2)}_{a} t^{(1,2)}_{b} \right\rangle = \frac{Q-2}{Q^2} \left(\delta_{a,b} - \frac{1}{Q} \right) \left(\frac{Q-2}{Q} \mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) + 2 \mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) \right) ,$$

$$\left\langle t^{(2,2)}_{ab} t^{(2,2)}_{cd} \right\rangle = \frac{2}{Q^2} \left(\delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc} - \frac{1}{Q-2} (\delta_{ac} + \delta_{bd} + \delta_{ad} + \delta_{bc}) \right)$$

$$+ \frac{2}{(Q-2)(Q-1)} \mathbb{P} \left(\overset{\bullet\bullet}{\bullet} \right) .$$

Physical interpretation

- For k = N, the operator $t^{(k,N)}$ makes k clusters propagate
- In 2D equivalent to 2k-leg watermelon operator

Jesper L. Jacobsen (LPTENS)

Logarithmic correlations

MSP, Kyoto, 03/08/2013

11/21

ヘロン 人間 とくほ くほど

Energy operator $\varepsilon_i = E - \langle E \rangle$, with $E = \delta_{\sigma_i \neq \sigma_{i+1}}$ invariant

$$\langle \varepsilon(r)\varepsilon(0)
angle = (Q-1) \tilde{A}(Q) r^{-2\Delta_{\varepsilon}(Q)},$$

- All correlators of ε_i vanish at Q = 1 (true already on the lattice)
- In 2D: exponent $\Delta_{\varepsilon}(Q) = d \nu^{-1}$ known exactly

(日)

Energy operator $\varepsilon_i = E - \langle E \rangle$, with $E = \delta_{\sigma_i \neq \sigma_{i+1}}$ invariant

$$\langle \varepsilon(r)\varepsilon(0) \rangle = (Q-1)\tilde{A}(Q)r^{-2\Delta_{\varepsilon}(Q)},$$

- All correlators of ε_i vanish at Q = 1 (true already on the lattice)
- In 2D: exponent $\Delta_{\varepsilon}(Q) = d \nu^{-1}$ known exactly

Two-cluster operator $\hat{\psi}_{ab}(\sigma_i, \sigma_{i+1})$

$$\begin{split} \langle \hat{\psi}_{ab}(r) \hat{\psi}_{cd}(0) \rangle &= \frac{2A(Q)}{Q^2} \left(\delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc} - \frac{1}{Q-2} \left(\delta_{ac} + \delta_{ad} \right. \right. \\ &+ \left. \delta_{bc} + \delta_{bd} \right) + \frac{2}{(Q-1)(Q-2)} \right) \times \underbrace{r^{-2\Delta_2(Q)}}_{\text{CFT part}}, \end{split}$$

• In 2D: exponent $\Delta_2 = \frac{(4+g)(3g-4)}{8g}$ known from Coulomb gas

ヘロン 人間 とくほ とくほう

Percolation limit $Q \rightarrow 1$

Avoiding the $Q \rightarrow 1$ catastrophe

• The "scalar" part of $\langle \hat{\psi}_{ab}(r) \hat{\psi}_{cd}(0)
angle$ diverges

• But
$$\Delta_2 = \Delta_{arepsilon} = rac{5}{4}$$
 at $\mathsf{Q} = \mathsf{1}$ in 2D

• And actually $\Leftrightarrow \ \textit{d}_{\rm red\ bonds}^{\textit{F}} = \nu^{-1} \ {
m for\ all} \ 2 \leq \textit{d} \leq \textit{d}_{\rm u.c.} \ {}_{\rm [Coniglio\ 1982]}$

• So we can cure the divergence by mixing the two operators: $\tilde{\psi}_{ab}(r) = \hat{\psi}_{ab}(r) + \frac{2}{Q(Q-1)}\varepsilon(r).$

Percolation limit $Q \rightarrow 1$

Avoiding the $Q \rightarrow 1$ catastrophe

• The "scalar" part of $\langle \hat{\psi}_{ab}(r) \hat{\psi}_{cd}(0)
angle$ diverges

• But
$$\Delta_2 = \Delta_arepsilon = rac{5}{4}$$
 at $\mathsf{Q} = \mathsf{1}$ in 2D

• And actually $\Leftrightarrow~d^{F}_{
m red~bonds}=
u^{-1}$ for all 2 $\leq d\leq d_{
m u.c.}$ [Coniglio 1982]

• So we can cure the divergence by mixing the two operators: $\tilde{\psi}_{ab}(r) = \hat{\psi}_{ab}(r) + \frac{2}{Q(Q-1)}\varepsilon(r).$

Using $\langle \hat{\psi}_{ab} \varepsilon \rangle = 0$, we find a finite limit at Q = 1

$$egin{aligned} &\langle ilde{\psi}_{ab}(r) ilde{\psi}_{cd}(0)
angle &= 2A(1)r^{-5/2}\left(\delta_{ac}+\delta_{ad}+\delta_{bc}+\delta_{bc}+\delta_{ac}\delta_{bd}+\delta_{ad}\delta_{bc}
ight) \ &+ 4A(1)rac{2\sqrt{3}}{\pi}r^{-5/2} imes\log r, \end{aligned}$$

where we assumed that $A(1) = \tilde{A}(1)$.

Where does the log come from?

$$\frac{1}{\mathsf{Q}-\mathsf{1}}\left(r^{-2\Delta_{\varepsilon}(\mathsf{Q})}-r^{-2\Delta_{2}(\mathsf{Q})}\right)\sim 2\left.\frac{\mathrm{d}(\Delta_{2}-\Delta_{\varepsilon})}{\mathrm{d}\mathsf{Q}}\right|_{\mathsf{Q}=1}r^{-5/2}\log r$$

We need 2D only to compute this derivative (universal prefactor)

Where does the log come from?

$$\frac{1}{Q-1} \left(r^{-2\Delta_{\varepsilon}(Q)} - r^{-2\Delta_{2}(Q)} \right) \sim 2 \left. \frac{\mathrm{d}(\Delta_{2} - \Delta_{\varepsilon})}{\mathrm{d}Q} \right|_{Q=1} r^{-5/2} \log r$$

We need 2D only to compute this derivative (universal prefactor)

Geometrical interpretation of this logarithmic correlator?

- Idea: Translate the spin expressions into FK cluster formulation
- In addition to the above results, it follows from the representation theory that $(\hat{j}_{1}) = (\hat{j}_{2}) = (\hat{j}_{2}) = 0$
 - $\langle \varepsilon \hat{\psi}_{ab} \rangle = \langle \varepsilon \phi_a \rangle = \langle \hat{\psi}_{ab} \phi_c \rangle = 0$, and also $\langle \hat{\psi}_{ab} \rangle = \langle \phi_a \rangle = \langle \varepsilon \rangle = 0$.
- All correlators take a simple form in terms of FK clusters

A B F A B F

For example we find:

$$\langle \hat{\psi}_{ab}(\sigma_{i_1},\sigma_{i_1+1})\hat{\psi}_{cd}(\sigma_{i_2},\sigma_{i_2+1})
angle \propto \mathbb{P}_2(\textit{r}=\textit{r}_1-\textit{r}_2).$$

$$\mathbb{P}_{2}(r_{1} - r_{2}) = \begin{bmatrix} (i_{1}, i_{1} + 1) \notin \text{ same cluster} \\ (i_{2}, i_{2} + 1) \notin \text{ same cluster} \\ \text{two clusters } 1 \rightarrow 2 \end{bmatrix}$$

This probability should thus behave as $r^{-2\Delta_2}$

Just like in the CFT limit, we introduce

$$\tilde{\psi}_{ab}(r_i) \equiv \tilde{\psi}_{ab}(\sigma_i, \sigma_{i+1}) = \hat{\psi}_{ab}(\sigma_i, \sigma_{i+1}) + \frac{2}{Q(Q-1)}\varepsilon(\sigma_i, \sigma_{i+1})$$

æ

Just like in the CFT limit, we introduce

$$\tilde{\psi}_{ab}(r_i) \equiv \tilde{\psi}_{ab}(\sigma_i, \sigma_{i+1}) = \hat{\psi}_{ab}(\sigma_i, \sigma_{i+1}) + \frac{2}{\mathsf{Q}(\mathsf{Q}-1)}\varepsilon(\sigma_i, \sigma_{i+1})$$

- Exact discrete expression for $\langle \tilde{\psi}_{ab}(r_1)\tilde{\psi}_{cd}(r_2) \rangle$ at Q = 1
- Expression in terms of simple percolation probabilities $\mathbb{P}_2 = \mathbb{P}\left(\left[\begin{array}{c} I \\ I \end{array}\right], \mathbb{P}_1 = \mathbb{P}\left(\left[\begin{array}{c} I \\ I \end{array}\right], \mathbb{P}_0 = \mathbb{P}\left(\left[\begin{array}{c} I \\ I \end{array}\right], \text{ and } \mathbb{P}_{\neq}$

Just like in the CFT limit, we introduce

$$\tilde{\psi}_{ab}(r_i) \equiv \tilde{\psi}_{ab}(\sigma_i, \sigma_{i+1}) = \hat{\psi}_{ab}(\sigma_i, \sigma_{i+1}) + \frac{2}{Q(Q-1)}\varepsilon(\sigma_i, \sigma_{i+1})$$

- Exact discrete expression for $\langle \tilde{\psi}_{ab}(r_1) \tilde{\psi}_{cd}(r_2)
 angle$ at Q = 1
- Expression in terms of simple percolation probabilities $\mathbb{P}_2 = \mathbb{P}\left(\left[\begin{array}{c} I \\ I \end{array}\right], \mathbb{P}_1 = \mathbb{P}\left(\left[\begin{array}{c} I \\ I \end{array}\right], \mathbb{P}_0 = \mathbb{P}\left(\begin{array}{c} I \\ I \end{array}\right), \text{ and } \mathbb{P}_{\neq}$

Exact two-point function of $\tilde{\psi}_{ab}$ at Q = 1

$$\begin{split} \langle \tilde{\psi}_{ab}(r_1)\tilde{\psi}_{cd}(r_2)\rangle &= 2\left(\delta_{ac}+\delta_{ad}+\delta_{bc}+\delta_{bd}+\delta_{ac}\delta_{bd}+\delta_{ad}\delta_{bc}\right)\times \mathbb{P}_2(r) \\ &+ 4\left[\mathbb{P}_0(r)+\mathbb{P}_1(r)-2\mathbb{P}_2(r)-\mathbb{P}_{\neq}^2\right]. \end{split}$$

Putting it all together

Exact Two-point function of $\tilde{\psi}_{ab}$ at Q = 1

$$\begin{split} \langle \tilde{\psi}_{ab}(r_1)\tilde{\psi}_{cd}(r_2)\rangle &= 2\left(\delta_{ac}+\delta_{ad}+\delta_{bc}+\delta_{bd}+\delta_{ac}\delta_{bd}+\delta_{ad}\delta_{bc}\right)\times \mathbb{P}_2(r) \\ &+ 4\left[\mathbb{P}_0(r)+\mathbb{P}_1(r)-2\mathbb{P}_2(r)-\mathbb{P}_{\neq}^2\right]. \end{split}$$

(4) (3) (4) (4) (4)

Exact Two-point function of $\tilde{\psi}_{ab}$ at Q = 1

$$\begin{split} \langle \tilde{\psi}_{ab}(r_1) \tilde{\psi}_{cd}(r_2) \rangle &= 2 \left(\delta_{ac} + \delta_{ad} + \delta_{bc} + \delta_{bd} + \delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc} \right) \times \mathbb{P}_2(r) \\ &+ 4 \left[\mathbb{P}_0(r) + \mathbb{P}_1(r) - 2\mathbb{P}_2(r) - \mathbb{P}_{\neq}^2 \right]. \end{split}$$

Reminder: CFT Expression

$$\begin{split} \langle \tilde{\psi}_{ab}(r) \tilde{\psi}_{cd}(0) \rangle &= 2A(1)r^{-5/2} \left(\delta_{ac} + \delta_{ad} + \delta_{bc} + \delta_{bd} + \delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc} \right) \\ &+ 4A(1) \frac{2\sqrt{3}}{\pi} r^{-5/2} \times \log r, \end{split}$$

Jesper L. Jacobsen (LPTENS)

イロト イヨト イヨト イヨト

Numerical check

Comparison with the CFT expression yields geometrical interpretation

$${\sf F}(r)\equiv rac{\mathbb{P}_0(r)+\mathbb{P}_1(r)-\mathbb{P}_{
eq}^2}{\mathbb{P}_2(r)}\sim \underbrace{rac{2\sqrt{3}}{\pi}}_{
m universal}\log r,$$

4 A N

Numerical check

Comparison with the CFT expression yields geometrical interpretation

$$F(r) \equiv rac{\mathbb{P}_0(r) + \mathbb{P}_1(r) - \mathbb{P}_{
eq}^2}{\mathbb{P}_2(r)} \sim rac{2\sqrt{3}}{\prod\limits_{ ext{universal}}} \log r,$$

Jesper L. Jacobsen (LPTENS)

MSP, Kyoto, 03/08/2013 18 / 21

Generalisation

- Log is in the *disconnected* part $\mathbb{P}_0(r)$
- Also true for polymers and disordered systems [Cardy 1999]
- Should hold for 2 ≤ d ≤ d_{u.c.}, but prefactor depends on d
- Compute universal prefactor in $\epsilon = 6 d$ expansion?

Generalisation

- Log is in the *disconnected* part $\mathbb{P}_0(r)$
- Also true for polymers and disordered systems [Cardy 1999]
- Should hold for 2 ≤ d ≤ d_{u.c.}, but prefactor depends on d
- Compute universal prefactor in
 - $\epsilon = 6 d$ expansion?

Other interesting logarithmic limits

- $\bullet~Q \rightarrow 0$ (spanning trees, dense polymers, resistor networks \dots)
- $Q \rightarrow 2$ (Ising model)
- Logarithms for any integer Q.

Three-point functions on two spins (for Q = 1)

Just example, but we have complete results...
$$\left(\delta = \lim_{Q \to 1} \frac{\Delta_{\hat{\psi}} - \Delta_{\varepsilon}}{Q_{-1}}\right)$$

 $\mathbb{P}\left(\bigwedge^{\bullet}\right) \sim \frac{F_{1}(1)}{(r_{12}r_{23}r_{31})^{\Delta_{\hat{\psi}}(1)}} \qquad \mathbb{P}\left(\bigwedge^{\bullet}\right) \sim \frac{F_{2}(1)}{(r_{12}r_{23}r_{31})^{\Delta_{\hat{\psi}}(1)}}$

æ

Three-point functions on two spins (for Q = 1)

Conclusion

 Logarithmic observables specific to percolation (Q = 1) ⇒ LCFT as limits of ordinary CFT

- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent.
 In d > 2: S_Q repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra).

- Logarithmic observables specific to percolation (Q = 1) ⇒ LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent.
 In d > 2: S_Q repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra).

- Logarithmic observables specific to percolation (Q = 1) ⇒ LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent.
 In d > 2: S_Q repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra).

- Logarithmic observables specific to percolation (Q = 1) ⇒ LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent.
 In d > 2: S_Q repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra).

- Logarithmic observables specific to percolation (Q = 1) ⇒ LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent.
 In d > 2: S_Q repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra).

- Logarithmic observables specific to percolation (Q = 1) ⇒ LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent.
 In d > 2: S_Q repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra).

- Logarithmic observables specific to percolation (Q = 1)
 LCFT as limits of ordinary CFT
- Completion of [Polyakov 1970]'s program, here only for percolation
- Logarithms tend to appear in disconnected observables
- Logarithmic dependence can be checked numerically
- Universal prefactor in front of the log closely related to β in LCFT
- In 2D: operator mixing between a primary and a descendent.
 In d > 2: S_Q repr. theory predicts mixing between two primaries.
- In 2D: Extremely fertile link to representation theory of non-semisimple algebras, both on the lattice (Temperley-Lieb algebra) and in the continuum limit (Virasoro algebra).

(日)