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Introduction

Logarithms in critical phenomeana
@ Scale invariance = correlations are power-law or logarithmic
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Introduction

Logarithms in critical phenomeana
@ Scale invariance = correlations are power-law or logarithmic

Two possibilities for logarithms

© Marginally irrelevant operator:
Gives logs upon approach to fixed point theory.

@ Dilatation operator not diagonalisable:
Logs directly in the fixed point theory.
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Non-diagonalisable dilatation operator
@ Happens when dimensions of two operators collide
@ Resonance phenomenon produces a log from two power laws
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Non-diagonalisable dilatation operator
@ Happens when dimensions of two operators collide
@ Resonance phenomenon produces a log from two power laws

Where do such logarithms appear?

@ CFTwithc=0 [Gurarie, Gurarie-Ludwig, Cardy, ...]

@ Percolation, self-avoiding polymers (¢ — 0 catastrophe)
@ Quenched random systems (replica limit catastrophe)
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Non-diagonalisable dilatation operator
@ Happens when dimensions of two operators collide
@ Resonance phenomenon produces a log from two power laws

Where do such logarithms appear?

@ CFTwithc=0 [Gurarie, Gurarie-Ludwig, Cardy, ...]

@ Percolation, self-avoiding polymers (¢ — 0 catastrophe)
@ Quenched random systems (replica limit catastrophe)

o Logarithmic minimal models [Pearce-Rasmussen-Zuber, Read-Saleur]
@ For any d < upper critical dimension
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Logarithms and non-unitarity | 1999]

Standard unitary CFT

@ Expand local density ®(r) on sum of scaling operators ¢(r)

@)0(0) ~ 3 50

ij

@ Aj x ¢ by conformal symmetry rolyakov 1970]
@ A; > 0 by reflection positivity
@ Hence only power laws appear
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Logarithms and non-unitarity | 1999]

Standard unitary CFT
@ Expand local density ®(r) on sum of scaling operators ¢(r)

@)0(0) ~ 3 50

ij

@ Aj x ¢ by conformal symmetry rolyakov 1970]
@ A; > 0 by reflection positivity

@ Hence only power laws appear

| \

The non-unitary case
@ Cancellations may occur
@ Suppose A ~ —Aj; — oo with A;i(Aj — A) finite
@ Then leading term is r —24i logr

4
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Application to geometrical models

Q-state Potts model
@ HamiltonianH =J Z(U‘) d(oi, o) witho; =1,2,...,Q
@ Reformulation in terms of Fortuin-Kasteleyn clusters

7 — Z QKA (el — 1)IA

ACif)
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@ Reformulation in terms of Fortuin-Kasteleyn clusters (black)
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Application to geometrical models

Q-state Potts model
@ HamiltonianH =J Z(U‘) d(oi, o) witho; =1,2,...,Q
@ Reformulation in terms of Fortuin-Kasteleyn clusters (black)

7 — Z QKA (e — 1A

ACif)

@ Here shown for Q = 3
@ The limit Q — 1 is percolation

@ Surrounding loops (grey) satisfy
the Temperley-Lieb algebra
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Application to geometrical models

Q-state Potts model
@ Hamiltonian H = J Z(ij) d(oi, o) witho; =1,2,...,Q
@ Reformulation in terms of Fortuin-Kasteleyn clusters (black)

7 — Z QKA (e — 1A

ACif)

@ Here shown for Q = 3
@ The limit Q — 1 is percolation

@ Surrounding loops (grey) satisfy
the Temperley-Lieb algebra

Continuum limit described by (L)CFT or SLE,

@ Critical exponent in two dimensions exactly computable
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Logarithmic correlations in percolation

Reminders

@ 2 and 3-point functions fixed in any d by global conformal
invariance alone polyakov 1970]
@ Extra discrete symmetries must be taken into account as well
@ Physical operators are irreducible under such symmetries (cardy 1999]
@ O(n) symmetry for polymers (n — 0)
@ S, replica symmetry for systems with quenched disorder (n — 0)
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Logarithmic correlations in percolation

Reminders

@ 2 and 3-point functions fixed in any d by global conformal
invariance alone (poiyakov 1970]

@ Extra discrete symmetries must be taken into account as well

@ Physical operators are irreducible under such symmetries (cardy 1999]
@ O(n) symmetry for polymers (n — 0)
@ S, replica symmetry for systems with quenched disorder (n — 0)

Correlators in bulk percolation in

@ Two and three-point functions in bulk percolation
@ Limit Q — 1 of Potts model with S symmetry
@ Structure for any d; but universal prefactors only ford = 2
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Potts model

@ HamiltonianH = J Z(U‘) d(oi, o) witho; =1,2,...,Q
@ Operators must be irreducible under S symmetry [Cardy 1999]
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Potts model

@ HamiltonianH = J Z<ij) d(oi, o) witho; =1,2,...,Q
@ Operators must be irreducible under S symmetry [Cardy 1999]

Operators acting on one spin

@ Most general one-spin operator: O(r;) = O(o;) = Zanl Oada,g;

1 1
dao, = & +<5Ui__>
a, Q a, Q
ar

reducible . 7 S~——~——
Invariant wa(oi)
@ Dimensions of representations: (Q) = (1) ¢ (Q — 1)
o |dentity operator 1 = > 6a.0,
@ Order parameter g, (o) satisfies the constraint ), ¢a(oi) =0

N
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Operators acting on two spins

@ Q x Q matrices O(r) = O(0i,0j) = 3.3 1 S5 1 Oablac,0b 0,
@ The Q operators with o; = o; decompose as before: (1) © (Q — 1)

@ Other M operators with o; # oy (1) +(Q — 1) + (M)
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Operators acting on two spins

@ Q x Q matrices O(r) = O(0i,0j) = 3.3 1 S5 1 Oablac,0b 0,
@ The Q operators with o; = o; decompose as before: (1) © (Q — 1)

@ Other (Q L operators with o; # o:(1)+(Q—-1)+ (M)

Easy representation theory exercise
E =doize; =1 =009
Pa = 5ai7éaj (SOa(Ui) + SDa(Uj))

Yab = 05, ,a opb T 5ai,b50jva - ﬁ (¢a+ dp) — mE

v
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Operators acting on two spins

@ Q x Q matrices O(r) = O(0i,0j) = 3.3 1 S5 1 Oablac,0b 0,
@ The Q operators with o; = o; decompose as before: (1) © (Q — 1)

@ Other (Q L operators with o; # o:(1)+(Q—-1)+ (M)

Easy representation theory exercise
E= 50]750']' =1- 50’;,0’]
Pa = 5ai7éaj (SOa(Ui) + SDa(Uj))

s = B, a0+ G0 — g (90 + 60) = m%ﬂE
@ Scalar E (energy), vector ¢, (order parameter) and tensor Vap
@ Highest-rank tensor obtained from symmetrised combinations of
0’s by subtracting suitable multiples of lower-rank tensors

@ Constraint 3 , ¢a=0and 3, () Yab =

-~
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Switch to simpler notation

o t(N) js the rank-k tensor acting on N spins o1, ..., on.
By definition it vanishes if any two spins coincide.

@D = (14) — (1t(° 1))
t12) — (24) — 5 <1t(° 2))

1@ = (26) - =— (2t<1 2)) - ﬁ <1t(°’2))
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Switch to simpler notation

o t(N) js the rank-k tensor acting on N spins o1, ..., on.
By definition it vanishes if any two spins coincide.

t(L,1) _(15) Q (1t(° 1))
t12) — (24) — 5 (u(oz))

22 = (26) - ﬁ (2t02) - ﬁ (1) /

Extension to rank-k tensors for allk < N

k-1
t*N) = (ogd) = > ", <5k,it(i’N)>

NI P =0 (N (@i k)
N—K)1 T YT IR (Q - 20)

Qak =
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Geometrical interpretation of t(<:N)

One-spin results

<t(o,1)t(o,1)> —1
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Geometrical interpretation of t(<:N)

One-spin results

<t(o,1)t(o,1)> —1

v

@ In general we do not know the probability P [ that the two spins

belong to the same Fortuin-Kasteleyn cluster.
@ Butits large-distance asymptotics is predicted from CFT.
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Two-spin results

o) (552 () )55 ()
e S § e52()-=()

2
<t(2 2)4(2, 2)> — <5ac5bd + daddbe —

Q
. 2
(Q-2)(Q- 1

2(53(: aF (de i 5ad + 5bC)

O
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Two-spin results

or0n)=(52) (o () (1)) -2 (1)
<‘“”“’> @ (7 g) (%PG)“P(H))

2
<t(2 2)4(2, 2)> Q2 <5ac5bd + daddbe —

' (Q—Z)Z(Q—l (H;

Physical interpretation

@ For k = N, the operator t(¢:N) makes k clusters propagate

2(5ac + Opd + dad + Jbc)

@ In 2D equivalent to 2k-leg watermelon operator
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Continuum limit

Energy operator ¢; = E — (E), with E = 6,,,,,, invariant

(e(Ne(0)) = (Q — DA(Q)r22:(?),
@ All correlators of ¢; vanish at Q = 1 (true already on the lattice)
@ In 2D: exponent A.(Q) = d — v~ known exactly
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Continuum limit

Energy operator ¢; = E — (E), with E = 6,,,,,, invariant

(e(r)e(0)) = (Q — DAQ)r24(9),
@ All correlators of ¢; vanish at Q = 1 (true already on the lattice)
@ In 2D: exponent A.(Q) = d — v~ known exactly

Two-cluster operator z/Axab(ai ,0i41)

(Pan(r)eeq (0)) = % <5ac5bd + Jad dbc — ﬁ (0ac + dad
+ Obc + Obd) + CE 1)2(Q — 2)> x [282(Q),
CFT part
@ In 2D: exponent A, = %5’9_4) known from Coulomb gas

4
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Percolation Iimit Q — 1

Avoiding the Q — 1 catastrophe

@ The “scalar” part of (1oa(r )theq (0)) diverges
@ ButA, =A.=3atQ=1in2D

@ And actually & drFed bonds = v—1forall2 <d < dyc conigio1e82]
@ So we can cure the divergence by mixing the two operators:

Jan(r) = Danlr) + ﬁs(w
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Percolation Iimit Q — 1

Avoiding the Q — 1 catastrophe

@ The “scalar” part of (¢ap(r )theq (0)) diverges
@ ButA, =A.=3atQ=1in2D

@ And actually & drFed bonds = v=1lforall2 <d < dyc conigio1982]
@ So we can cure the divergence by mixing the two operators:

Fan(r) = Dan(r) + 5575 — (1)

Using ({ape) = 0, we find a finite limit at Q = 1

(Pab(r)Ped (0)) = 2A(1)r /2 (6ac + Sad + dbe + dbd + JacObd + adbc)

2\/§r—5/2

+4A(1)T x logr,

where we assumed that A(1) = A(1).

4
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Where does the log come from?

1 “20.(Q) _ . —2A5(Q) d(Az — A.) _5/2
— (e e ~2 = r logr
Q-1 ( ) Qoo .

@ We need 2D only to compute this derivative (universal prefactor)
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Where does the log come from?

1 (-22.Q) _ —28,(Q) d(Az — Ac) _5/2
— et — ~2 ——— I
o 1 (r r ) ) Q:lr ogr
@ We need 2D only to compute this derivative (universal prefactor)

Geometrical interpretation of this logarithmic correlator?

@ Idea: Translate the spin expressions into FK cluster formulation
@ In addition to the above results, it follows from the representation

therry that A .
(eap) = (ea) = (Yapdec) = 0, and also (Yap) = (¢a) = (€) = 0.

@ All correlators take a simple form in terms of FK clusters
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For example we find:

(Dab (i, Ty +1)Ped (01 Tipr1)) o Po(r =1 — 12).

ip i+l

Pa(ry —r2) =
(i1,i1 +1) ¢ samecluster
P | (ip,ip +1) ¢ same cluster
two clusters 1 — 2

This probability should thus behave as
LY

iy i+l
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@ Just like in the CFT limit, we introduce

~ ~ A 2
Yap (i) = Yab(0i; 0i41) = Yab(0i, oiy1) + mdm,diﬂ)
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@ Just like in the CFT limit, we introduce

an(1i) = PYan(0i, 0i11) = Yan (01, 0i41) + @E(Uiam-ﬁ-l)

@ Exact discrete expression for <1Zab(r1)zﬂcd(r2)> atQ =1
@ Expression in terms of simple percolation probabilities

o ([ ([ oo )
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@ Just like in the CFT limit, we introduce

Van () = Pav(01,0i11) = bav (01, 0141) + ﬁdai,aiﬂ)

@ Exact discrete expression for @ab(rl)zﬂcd(rz)) atQ =1
@ Expression in terms of simple percolation probabilities

S

Exact two-point function of ., at Q = 1

(han (r1)¥ed (r2)) = 2 (Sac + dad + dbe + dbd + dacdbd + addbe) X Pa(r)
+ 4 [Po(r) + Py(r) — 2P5(r) — P2 .
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Putting it all together

Exact Two-point function of 'zﬁab atQ =1

(thap (r1)Wed (r2)) = 2 (Sac + dad + dbc + dbd + dacdbd + addbe) X Pa(r)
+4 [IP’O(r) +Py(r) — 2P5(r) — PZ] .
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Putting it all together

Exact Two-point function of 'zﬂab atQ =1

(ab(r1)Pcd (r2)) = 2 (ac + dad + dbe + dbd + Jacbd + daddbe) X P2(r)
+ 4 [Po(r) + Py(r) — 2P5(r) — P2 .

v

Reminder: CFT Expression

(ab(F)ed (0)) = 2A(1)r /% (6ac + dad + dbe + Obd + JacObd + ad be)
2\/_ (—5/2

+4A(1)— x logr,
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Numerical check

Comparison with the CFT expression yields geometrical interpretation

_Po(r) +Pu(r) -P%2 273

F = ~
") P,(r) T
universal

logr,
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Numerical check

Comparison with the CFT expression yields geometrical interpretation

_Po(r) +Pu(r) -P%2 273

F = ~
") P,(r) T
universal

logr,

O 300x300
4T o 200%x200

35F

F(r)

N
T

151
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Generalisation

@ Log is in the disconnected part Py(r)
@ Also true for polymers and disordered
Systems [cardy 1999]

@ Should hold for 2 < d < dy., but
prefactor depends on d

@ Compute universal prefactor in
e = 6 — d expansion?
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Generalisation

@ Log is in the disconnected part Py(r)
@ Also true for polymers and disordered
Systems [cardy 1999]

@ Should hold for 2 < d < dy., but
prefactor depends on d

@ Compute universal prefactor in
e = 6 — d expansion?

Other interesting logarithmic limits
@ Q — 0 (spanning trees, dense polymers, resistor networks ...)
@ Q — 2 (Ising model)

@ Logarithms for any integer Q.
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Three-point functions on two spins (for Q = 1)

Ap—A.
Just example, but we have complete results. . 6 = limg_,1 —5 5T

Péwﬁimd) /\Fim

A A4 (1)
(r1oraara) ¥ (rior2aran) ¥
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Three-point functions on two spins (for Q = 1)

Ap—A.
Just example, but we have complete results. . 5 = limg_,1 —5 5T

PAN% /\Fim

A A4 (1)
(r1oraara) ¥ (rior2aran) ¥

R IR VR P VAR IR VAN

Ple of + P|- .| +P e .

— PL|P|ee| +P [ +2P%

_ 2
F1(1) Fi(ll) [cst ~ #log <r12r2§r31) ]
(r1orasrar)™s) a
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Conclusion

@ Logarithmic observables specific to percolation (Q = 1)
= LCFT as limits of ordinary CFT
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Conclusion

Logarithmic observables specific to percolation (Q = 1)
= LCFT as limits of ordinary CFT

Completion of [Polyakov 1970]'s program, here only for percolation
Logarithms tend to appear in disconnected observables
Logarithmic dependence can be checked numerically

Universal prefactor in front of the log closely related to g in LCFT
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Conclusion

@ Logarithmic observables specific to percolation (Q = 1)
= LCFT as limits of ordinary CFT

Completion of [Polyakov 1970]'s program, here only for percolation
Logarithms tend to appear in disconnected observables
Logarithmic dependence can be checked numerically

Universal prefactor in front of the log closely related to g in LCFT

In 2D: operator mixing between a primary and a descendent.
Ind > 2: Sq repr. theory predicts mixing between two primaries.
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Conclusion

@ Logarithmic observables specific to percolation (Q = 1)
= LCFT as limits of ordinary CFT

Completion of [Polyakov 1970]'s program, here only for percolation
Logarithms tend to appear in disconnected observables
Logarithmic dependence can be checked numerically

Universal prefactor in front of the log closely related to g in LCFT

In 2D: operator mixing between a primary and a descendent.
Ind > 2: Sq repr. theory predicts mixing between two primaries.

@ In 2D: Extremely fertile link to representation theory of
non-semisimple algebras, both on the lattice (Temperley-Lieb
algebra) and in the continuum limit (Virasoro algebra).
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