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Introduction

In this talk we are concerned with an old topic from integrable
quantum field theory in two dimensions: to describe the space of
local fields and their vacuum expectation values (VEVs), or one
point functions.
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Introduction

VEV

The significance of VEV has been underlined in the work of
Al.Zamolodchikov 1991 on integrable perturbation of conformal
field theory.

To study the correlator of some field Φ(x) at short distances, one
can apply the operator product expansion,

Φ(x)Φ(0) =
∑

i

C i
ΦΦ(x)Ai (0) ,

where {Ai (0)} is a complete set of local fields in the theory.
The coefficients C i

ΦΦ(x) are local data accessible by perturbation
theory. In contrast, the VEVs 〈Ai (0)〉 are global data which encode
all non-perturbative information. For the characterization of
correlation functions, it is necessary to know all of them.
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Our main example is the sine-Gordon (sG) model

LsG =
1

16π
(∂µϕ)

2 − µ2

sinπβ2
(e−iβϕ + e iβϕ) .

It is a perturbation of a CFT of massless bosons.
In CFT, the space of fields is a Verma module spanned by a

primary field e iaϕ

and their descendants,

∂m1ϕ · · · ∂mKϕ ∂̄n1ϕ · · · ∂̄nLϕ · e iaϕ .

In the sG model we consider local fields of this form. Among them,
VEV has been known for the primary field and for the first
non-trivial descendant.
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Known results about VEV

Primary field (LZ 1997)

〈e iaϕ〉 = [Γ(ν)µ]
να

2(1−ν)

× exp
( ∞∫

0

( sinh2(ναt)

2 sinh(1− ν)t sinh t cosh νt −
ν2α2

2(1− ν)e
−2t

)dt
t

)
.

First non-trivial descendant (FFLZZ 1998)

〈L−2L̄−2e iaϕ〉
〈e iaϕ〉 = − (Γ(ν)µ)4/ν

(1− ν)2
γ(− 1

2 + α
2 + 1

2ν )

γ( 12 + α
2 −

1
2ν )

γ(α2 −
1
2ν )

γ(α2 + 1
2ν )

where

γ(x) =
Γ(x)

Γ(1− x)
, ν = 1− β2, να = 2βa .
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Introduction

The goal of this talk is to explain that there is a conjectural basis
better suited for the systematic description of VEVs.
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Fermionic basis

To create the ‘descendants’, we use two kinds of linear operators
acting on the space of local fields.

The first is the adjoint action by the local integrals of motion (IM)

ip(O) = [Ip,O], īp(O) = [Īp,O] (p = 1, 3, 5, · · · )

The second is a set of fermions commuting with IM,

β∗
p,γ

∗
p, β̄

∗
p, γ̄

∗
p (p = 1, 3, 5, · · · ) .

The basis in question is given by

iK ī K̄β
∗
J+γ

∗
J−β̄

∗
J̄+ γ̄

∗
J̄−e

iaϕ ((J+ = (J−, (J̄+ = (J̄−)

where

β∗
J+ = β∗

j1 · · ·β
∗
jk (J+ = {j1, · · · , jk}, j1 < · · · < jk), etc..
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The VEV of the basis elements are given by

⟨β∗
J+γ

∗
J−β̄

∗
J̄+ γ̄

∗
J̄−

e iaφ⟩
⟨e iaφ⟩

= µ2ν−1(|J+|+|J−|)δJ+,J̄−δJ−,J̄+

×
∏
p∈J+

i

ν
cot

π

2ν
(p + να)

∏
r∈J−

i

ν
cot

π

2ν
(r − να) ,

where |I | =
∑
p∈I

p.

The IM do not contribute to VEV: ⟨[Ip,O]⟩ = ⟨[Īp,O]⟩ = 0.
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Introduction

Existence of such a fermionic basis is our main conjecture.

Remark. The fermions β∗
p, etc., are not dynamical variables but

rather a member of a symmetry algebra.
They are not to be confused with the fermions of the massive
Thirring model.
These fermions seem to appear totally out of the blue, but they
appeared already in the literature (Babelon et al. 1997, will
comment later.)
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Plan of the talk

1 6 vertex model and expectation values (Existence theorem)

2 Field theory limit (Conjectures)

3 Relation to previous works: Form factors, Reflection equation

4 Summary

Joint work with

T.Miwa, F.Smirnov,
H.Boos, Y.Takeyama (in part)



Ferminoic Basis in Integrable Models: Profile and Prospect

6 vertex model

Lattice regularization: 6 vertex model

Consider a six vertex model on an infinite cylinder,

q = eπiν (0 < ν <
1

2
) .

On one row, we allow background fields qκσ
3
j (for all j), qασ

3
j (for

j ≤ 0) and a local dislocation O. One can think of

q2αS(0), S(0) =
1

2

0∑

j=−∞
σ3j ,

as a lattice analog of the primary field e iaϕ.
We take the following set as an analog of the space of local fields.

W(α) =
⊕

s∈Z
Wα−s,s ,

Wα−s,s = {q2(α−s)S(0)O | O: local, spin s}





Ferminoic Basis in Integrable Models: Profile and Prospect

6 vertex model

Lattice analogs of VEV (more generally, of matrix elements) is the
ratio of partition functions with/without dislocation,

Z
{
q2αS(0)O

}
=
⟨Φ|Tr[K ,L]

{
T[K ,L],M(1)q2κS[K ,L]+2αS[K ,0]O

}
|Ψ⟩

⟨Φ|Tr[K ,L]

{
T[K ,L],M(1)q2κS[K ,L]+2αS[K ,0]

}
|Ψ⟩

,

where K ≪ 0≪ L,

T[K ,L],M =

↷
L∏

j=K

Tj ,M(1) , Tj ,M(ζ) =

↶
n∏

m=1

Lj ,m(ζ)

is the monodromy matrix, and Φ, Ψ are eigen(co)vector of the
transfer matrix in the vertical direction

TM(ζ, κ) = Trj

[
Tj ,M(ζ)qκσ

3
j

]
.
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6 vertex model

Fermions on the lattice

One can construct fermions acting on W(α) (BJMST 2007–2009)

b(ζ), c(ζ), b∗(ζ), c∗(ζ) ,

b(ζ) =
∞∑
p=1

bp(ζ
2 − 1)−p , b∗(ζ) =

∞∑
p=1

b∗p(ζ
2 − 1)p−1 , etc.

such that

They commute with integrals of motion: t∗1, t
∗
2, · · ·

The following is a basis of W(α):

(t∗1)
pt∗i1 · · · t

∗
irb

∗
j1 · · ·b

∗
jsc

∗
k1 · · · c

∗
kt (q

2αS(0))

(i1 ≥ · · · ≥ ir ≥ 2, j1 > · · · > js ≥ 1,

k1 > · · · > kt ≥ 1, p ∈ Z, r , s, t ≥ 0) .
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6 vertex model

The main formula

The following is the key result (JMS 2009).

Z
{
t∗(η1) · · · t∗(ηs)b∗(ζ1) · · ·b∗(ζr )c∗(ξr ) · · · c∗(ξ1)(q2αS(0))

}
=

s∏
i=1

2ρ(ηi ) · det (ω(ζj , ξk)) ,

where

ρ(η) =
TΦ(η)

TΨ(η)
, TM(η)|Ψ⟩ = TΨ(η)|Ψ⟩ ,

and ω(ζ, ξ) is defined through linear and non-linear integral
equations of Thermodynamic Bethe Ansatz type.
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6 vertex model

TBA data

auxiliary function characterizing |κ⟩

log a(ζ, κ) = −2πiνκ+ log
a(ζ)

d(ζ)
−

∫
γ
K0(ζ/ξ) log(1 + a(ξ, κ))

dξ2

ξ2
,

where γ encircles the Bethe roots clockwise, and

a(ζ) = (1− qζ2)n , d(ζ) = (1− q−1ζ2)n ,

Kα(ζ) = ∆ζψ(ζ, α) , ψ(ζ, α) =
ζα

ζ2 − 1
,

∆ζ f (ζ) = f (qζ)− f (q−1ζ) .

resolvent

Rdress −Rdress ⋆ Kα = Kα ,

f ⋆ g(ζ, ξ) =

∫
γ
f (ζ, η)g(η, ξ)

1

1 + a(η, κ)

1

ρ(η)

dη2

η2
.
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6 vertex model

formula for ω is

1

4
ω(ζ, ξ) = fleft ⋆ (I +Rdress) ⋆ fright(ζ, ξ)− ω0(ζ, ξ) ,

where

fleft(ζ, ξ) =
1

2πi
δ−ζ ψ(ζ/ξ, α) , fright(ζ, ξ) = δ−ξ ψ(ζ/ξ, α) ,

δ−ζ f (ζ) = f (qζ)− ρ(ζ)f (ζ) ,

ω0(ζ, ξ) = −δ−ζ δ
−
ξ ∆

−1
ζ ψ(ζ/ξ, α) .
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6 vertex model

Comments

Why fermions? — Result of guess work and hard
computations. No conceptual understanding.

q is generic, not at the free fermion point.

The formula says that an arbitrary correlator is expressed in
terms of two functions ρ(ξ) and ω(ξ, ζ). This phenomenon is
sometimes referred to as the ‘factorization of multiple
integrals’. (Boos-Korepin 2001, Takahashi et al. 2003–, Boos
et al. 2007, · · · )
The result holds in a very general setting (arbitrary spins in
rows, finite temperature, ...)
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Field theory limit

Let us explain the continuous limit to CFT

ϵ =
2πR

n
→ 0 , ζ = (Cϵ)νλ (λ fixed) .

In this limit, the transfer matrix TM(ζ, κ) tends to that of a chiral
CFT on a cylinder with the central charge c = 1 + 6Q2, where

Q = b + b−1, b = iβ.

It is hard to control the limit of the fermionic basis at the level of
operators. We define them in the ‘weak sense’, i.e., take the limit
of matrix elements.
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Field theory limit

In the definition of ω(ζ, ξ), let us choose Φ,Ψ to be the ground
states of TM(ζ, κ′), TM(ζ, κ) and take the scaling limit

ωsc(λ, µ) = lim
1

4
ω
(
(Cϵ)νλ, (Cϵ)νµ

)
.

We postulate that each coefficient of the asymptotic expansion

ωsc(λ, µ) ≃
∑

p,r :odd>0

ωp,r λ
− p

ν µ−
r
ν (λ2, µ2 →∞) .

is a three-point function with the insertion of primary fields at
z = 0,∞, and some descendant of e iaφ at z = 1.
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Field theory limit

We then define this descendant of e iaφ to be β∗
pγ

∗
r e

iaφ:

⟨1− κ′|β∗
pγ

∗
r e

iaφ|1 + κ⟩
⟨1− κ′|e iaφ|1 + κ⟩

= ωp,r .

The general matrix elements of β∗
pγ

∗
r e

iaφ are defined similarly by
taking general eigenvectors Φ,Ψ.

It is non-trivial to check that this procedure indeed defines
β∗
pγ

∗
r e

iaφ consistently. At the moment we have been able to check
this statement upto some low degrees, and only modulo the action
of integrals of motion.

Following the same logic in the sine-Gordon case, we arrive at the
formulas for VEV of the fermionic basis.
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Field theory limit

Form factors

In a massive theory with asymptotic particles, giving a local field O
is the same as giving the tower of matrix elements

fO = (fO,n)
∞
n=0, fO,n(θ1, · · · , θn) = ⟨θ1, · · · , θn|O|vac⟩ .

For integrable models, these towers are characterized by form
factor axioms (Smirnov 1992). The general solutions of these
axioms are given in terms of q-hypergeometric integrals.

For the (restricted) sine-Gordon model, Babelon, Bernard and
Smirnov 1997 have shown that the space of all towers have the
same size as the space of local fields in CFT. For this purpose they
devised certain fermions which act on the space of towers
preserving the form factor axioms.
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Field theory limit

An important part of the form factor axioms is the qKZ equation.
Its solutions are constructed by representation theory of quantum
affine algebras. In the sine-Gordon model the relevant q shift is√
−1, at which point the Chevalley generators of the quantum

affine algebra become fermions (Tarasov 2000). This is the origin
of the ‘combinatorial fermions’ of Babelon et al.

We have compared our fermions with those of Babelon et al.. It
turns out that they just coincide.
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Field theory limit

Reflection equation

The VEV for the first non-trivial descendant

H(a) =
⟨(∂φ)2(∂̄φ)2e iaφ⟩

⟨e iaφ⟩

was found by Fateev et al. 1999, making use of the so-called
Liouville reflection equation for the sinh-Gordon (shG) model.
Roughly speaking the argument goes as follows.
The shG model

LshG =
1

16π
(∂µφ)

2 +
µ2

sinπb2
(ebφ + e−bφ)

can be viewed as a perturbation either of the Liouville theory, or of
the Gaussian theory.
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Field theory limit

Correspondingly we have two bases of the space of fields modulo
IM: the descendants by the Virasoro algebra

L−N1 · · · L−Nk
L̄−N̄1

· · · L̄−N̄l
eaφ

or descendants by the Heisenberg algebra

(∂m1φ) · · · (∂mkφ)(∂̄n1φ) · · · (∂̄nlφ)eaφ.

If V (a), H(a) are the matrix of normalized VEV, we have the
obvious symmetries

V (a) = V (Q − a), H(a) = H(−a) .

Introducing the transition matrix by V (a) = U(a)H(a) we obtain

V (Q + a) = S(a)V (a), S(a) = U(−a)U(a)−1 .

For the first non-trivial descendant, the matrix S(a) is a scalar, and
this equation was solved under the assumption on analyticity.
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Field theory limit

In a recent work, Negro and Smirnov 2013 explained the role of
fermions in reflection equations.

From the construction of fermions one expects that under both of
the symmetries

a→ −a, a→ Q − a,

the fermions transform as

β∗
p ←→ γ∗

p .

Under some assumptions they check (upto degree 10) that the
fermionic basis is uniquely determined by this requirement.

So the matrix W (a) of the normalized VEV for the fermionic basis
satisfies

W (−a) = JW (a) , W (Q − a) = JW (a) ,

where J is the permutation matrix exchanging β∗ and γ∗.
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Summary

Summary

Conjecturally, the space of fields in the sine Gordon model has
a fermionic basis, whose VEV can be given explicitly.

Such a basis exists on the lattice.

Field theory limit is defined as ‘weak limit’. Obscure, but the
picture seems natural and self-consistent.
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Summary

There are more questions than answers. Among others,

The present construction relies too much on the specific
nature of spin 1/2. Give a conceptual explanation.

Asymptotic analysis of the function ω, esp. in the presence of
IM. Is there a connection to spectral problems of ODE and
PDE?

Study OPE in the fermionic basis.

· · ·
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THANK YOU VERY MUCH FOR YOUR ATTENTION
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