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1. PRELIMINARIES



Over the last ten years, in collaboration with L.Bertini, A. De Sole,
D. Gabrielli and C. Landim we have formulated a theory, now
known as Macroscopic Fluctuation Theory (MFT), based on the
study of rare fluctuations.

This theory may be seen as an extension of Einstein equilibrium
fluctuation theory to stationary nonequilibrium states combined
with a dynamical point of view. The guide of lattice gas models
has been crucial.

MFT is very powerful in studying concrete microscopic models but
can be used also as a phenomenological theory. The input it
requires are measurable transport coefficients. It leads to several
new interesting predictions.



Einstein theory of equilibrium fluctuations

In Landau-Lifshitz book on statistical mechanics one finds the
following formula for the probability of a fluctuation in a system in
contact with an environment

P ' e−
Rmin
T0 (1)

where
Rmin = ∆E − T0∆S + P0∆V (2)

is the minimal work necessary to produce the fluctuation with a
reversible transformation and ∆E,∆S,∆V are the corresponding
variations of energy, entropy and volume. T0, P0 are the
temperature and pressure of the environment.



Typical setting



Assumptions

1. The macroscopic state is completely described by the local
density ρ = ρ(t, x) and the associated current j = j(t, x).

2. The macroscopic evolution is given by the continuity equation

∂tρ+∇ · j = 0 (3)

together with the constitutive equation

j = J(t, ρ) = −D(ρ)∇ρ+ χ(ρ)E(t) (4)

where the diffusion coefficient D(ρ) and the mobility χ(ρ) are
d× d positive matrices. The transport coefficients D and χ
satisfy the local Einstein relation

D(ρ) = χ(ρ) f ′′0 (ρ) (5)

where f0 is the equilibrium specific free energy.



The equations (3)–(4) have to be supplemented by the appropriate
boundary condition on ∂Λ due to the interaction with the external
reservoirs. If λ(t, x), x ∈ ∂Λ is the chemical potential of the
external reservoirs, this boundary condition is

f ′0
(
ρ(t, x)

)
= λ(t, x) x ∈ ∂Λ. (6)



Question: what is the probability of a macroscopic
trajectory?



2. RARE FLUCTUATIONS



The large deviation formula for joint fluctuations of the
density and current
L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio , C. Landim, Phys. Rev. Lett. 94,
030601 (2005); J. Stat. Phys 123, 237 (2006)

P
(
ρ(t), j(t) t ∈ [0, T ]

)
∼ exp{−ε−dG[0,T ](ρ, j)} (7)

Here P is the stationary probability measure,

G[0,T ](ρ, j) =

{
V (ρ(0)) + I[0,T ](j) if ∂tρ+∇ · j = 0

+∞ otherwise
(8)

where

I[0,T ](j) =
1

4

∫ T

0
dt
〈
[j − J(ρ)], χ(ρ)−1[j − J(ρ)]

〉
(9)

in which we recall that

J(ρ) = −D(ρ)∇ρ+ χ(ρ)E .



Large deviations of the density
L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio , C. Landim, Phys. Rev. Lett, 87,
040601 (2001); J. Stat. Phys. bf 107, 635 (2002)

P
(
ρ(t), t ∈ [0, T ]

)
∼ exp{−ε−dA[0,T ](ρ)} (10)

Here P is the stationary probability measure,

A[0,T ](ρ) = V (ρ(0)) + I[0,T ](ρ) (11)

where

I[0,T ](ρ) =
1

4

∫ T2

T1

dt
〈[
∂tρ+∇ · J(ρ)

]
K(ρ)−1

[
∂tρ+∇ · J(ρ)

]〉
(12)

The positive operator K(ρ) is defined on functions u : Λ→ R
vanishing at the boundary ∂Λ by K(ρ)u = −∇ ·

(
χ(ρ)∇u

)
. The

scale factor ε is a ratio between typical microscopic and
macroscopic lengths so that ε→ 0 corresponds to the
thermodynamic limit.



Time reversal

To the time reversed process corresponds the adjoint generator
with respect to the stationary ensemble. Let us define the operator
inverting the time of a trajectory [θf ](t) = f(−t) for f scalar and
[θj](t) = −j(−t) for the current. The stationary adjoint process,
that we denote by PN,a

µN
, is the time reversal of PN

µN
, i.e. we have

PN,a
µN

= PN
µN
◦ ϑ−1. Then

PNµN
(
ρ, j t ∈ [−T, T ]

)
= PN,a

µN

(
ϑρ, ϑj t ∈ [−T, T ]

)
(13)

At the level of large deviations this implies

G[−T,T ](ρ, j) = Ga[−T,T ](ϑρ, ϑj) (14)

where Ga[−T,T ] is the large deviation functional for the adjoint
process.



The quasi-potential and the associated Hamilton-Jacobi
equation

V (ρ) = inf
ρ : ρ(−∞)=ρ̄

ρ(0)=ρ

I[−∞,0](ρ) (15)

By considering I[0,T ](ρ) as a Lagrangian we obtain that V (ρ)
satisfies the following Hamilton-Jacobi equation〈

∇δV
δρ
, χ(ρ)∇δV

δρ

〉
−
〈δV
δρ
,∇ · J(ρ)

〉
= 0 (16)

corresponding to the Hamiltonian

H(ρ, π) =
〈
∇π · χ(ρ)∇π

〉
+
〈
∇π · J(ρ)

〉
(17)

where π is the conjugate momentum.



The hydrodynamic equations in terms of V

∂tρ = ∇ ·
(
χ(ρ)∇δV

δρ

)
+A(ρ) (18)

∂tρ = ∇ ·
(
χ(ρ)∇δV

δρ

)
−A(ρ) (19)

The second equation is the hydrodynamics corresponding to the
time reversed system. The Hamilton–Jacobi equation implies the
orthogonality condition 〈δV

δρ
, A(ρ)

〉
= 0

Correspondingly there is an orthogonal decomposition of the
current J(ρ) = JS(ρ) + JA(ρ) with

JS(ρ) = −χ(ρ)∇δV
δρ
,
〈
JSχ

−1JA
〉

= 0 (20)



As a simple illustration let us consider a charged particle in a
viscous medium subjected to a magnetic field,

ṗ =
e

mc
p ∧H − 1

τ
p , (21)

where p is the momentum, e the charge, H the magnetic field, m
the mass, c the velocity of the light, and τ the relaxation time.
The dissipative term p/τ is orthogonal to the Lorenz force p ∧H.

We define time reversal as the transformation p 7→ −p, H 7→ −H.
In this case the adjoint equation coincides with the time reversed
dynamics, which is given by

ṗ = − e

mc
p ∧H − 1

τ
p (22)

In this example, JS(p) = p/τ and JA(p) = −(e/mc)p ∧H.



Another simple example is the case of a system of independent
particles, the corrisponding transport coefficients are D(ρ) = I and
χ(ρ) = ρI where D0, χ0 are scalar and I denotes the identity
matrix.

In the one dimensional case, with Λ = (0, L), λ(0) = λ0,
λ(L) = λ1 the stationary density profile is
ρ̄(x) = ρ0(1− x/L) + ρ1x/L where ρ0 and ρ1 are the densities
associated to λ0 and λ1. In this case

JS(ρ) = −∇ρ+
ρ1 − ρ0

L

ρ

ρ̄

JA(ρ) = − ρ1 − ρ0

L

ρ

ρ̄



3. THERMODYNAMIC TRANSFORMATIONS



Energy balance

Fix T > 0, a density profile ρ(x), an external field E(t, x) and a
chemical potential λ(t, x), 0 ≤ t ≤ T . Let ρ(t, x) the solution of
hydrodynamics with initial condition ρ(x) and j(t, x) the
corresponding current. The total energy involved in the process is

W[0,T ] =

∫ T

0
dt
{
−
∫
∂Λ
dσ(x)λ(t, x) j(t, x)·n̂(x)+

∫
Λ
dx j(t, x)·E(t, x)

}
,

(23)
where n̂ is the outer normal to ∂Λ and dσ is the surface measure
on ∂Λ. The first term on the right hand side is the energy provided
by the reservoirs while the second is the energy provided by the
external field. When T =∞, we denote W[0,T ] by W .



Using the Einstein relation and the divergence theorem W[0,T ] can
be written

W[0,T ] = F (ρ(T ))− F (ρ(0)) +

∫ T

0
dt

∫
Λ
dx j(t) · χ(u(t))−1j(t)

(24)
where

F (ρ) =

∫
Λ
dx f(ρ(x)) .

From this equation the inequality follows

W[0,T ] ≥ F (ρ(T ))− F (ρ(0)) (25)

which is the second law here derived dynamically.



For very slow transformations taking into account the orthogonal
decomposition of the current J(ρ) = JS(ρ) + JA(ρ) the second
term in (24) can be written∫ T

0
dt

∫
Λ
dx jS(t)·χ(u(t))−1jS(t) +

∫ T

0
dt

∫
Λ
dx jA(t)·χ(u(t))−1jA(t)

(26)
We identify the last term with the work necessary to keep the
system out of equilibrium. This can be seen by recalling the
hydrodynamic equation expressed in terms of V

∂tρ = ∇ ·
(
χ(ρ)∇δV

δρ

)
+A(ρ) (27)

Consider a stationary state. Since δV
δρ = 0 the stationary current

coincides with JA.



Renormalized work
L. Bertini, D. Gabrielli, G. Jona-Lasinio , C. Landim, (2012), J. Stat. Phys. 149, 773
(2012); Phys. Rev. Lett. 110, 020601 (2013).

We define the renormalized work

W ren
[0,T ] = F (ρ(T ))− F (ρ(0)) +

∫ T

0
dt

∫
Λ
dx jS(t) · χ(u(t))−1jS(t)

(28)
from which the stronger inequality follows

W ren
[0,T ] ≥ F (ρ(T ))− F (ρ(0)) (29)

Equality is obtained for quasi-static transformations. In fact in
such a case the integral in (28) can be made as small as we want.

The idea of renormalized work was introduced in Y. Oono, M.
Paniconi, Prog. Theor. Phys. Suppl. 130, 29 (1998).



The quasi-potential as excess work

Consider the following transformation: at time t = 0 the system is
in a stationary state ρ̄0(x) corresponding to a chemical potential
λ0(x) which suddenly changes to λ1(x). The system will relax to a
new stationary state ρ̄1(x) following hydrodynamics with new
boundary conditions.

A simple computation shows that

Vρ̄1(ρ̄0) =

∫ ∞
0
dt

∫
Λ
dx jS(t) · χ(u(t))−1jS(t)

= lim
T→∞

{W[0,T ] −∆F −
∫ T

0
dt

∫
Λ
dx jA(t) · χ(u(t))−1jA(t)}

= W ren −∆F = W ren −minW ren = Wex

(30)



An alternative renormalization
C. Maes, K. Netocny, arXiv:1206.3423

One may ask whether there exist alternative renormalizations of
the total work. For instance, in a recent work, Maes and Netocny
considered the topic of a renormalized Clausius inequality in the
context of a single Brownian particle in a time dependent
environment. To compare their approach to the present one,
consider N independent diffusions in the thermodynamic limit
N →∞. Each diffusion solves the Langevin equation
Ẋ = E(t,X) +

√
2 ẇ, where E is a time dependent vector field

and ẇ denotes white noise. The corresponding stationary measure
with E frozen at time t is denoted by exp{−v(t, x)}.



The scheme discussed here can be now applied. The transport
coefficients are D = 1 and χ(ρ) = ρ. We subtract the energy
dissipated by JA(t, ρ) = ρ

[
E(t, x) +∇v(t, x)

]
. The

renormalization introduced in Maes and Netocny is instead
obtained by introducing a potential field such that the
corresponding stationary state has minimal entropy production.
Namely, they write E = f −∇U and subtract from the energy
exchanged the space-time integral of |Jφt |2/ρ where

Jφt = ρ(f −∇φ)−∇ρ and φ = φ(t, x; ρ) is chosen so that

∇ · Jφt = 0. While the two renormalization schemes are different,
both satisfy a Clausius inequality with F (ρ) =

∫
dx ρ log ρ. Observe

that in this case of independent particles our renormalization is
local while the dependence of Jφt on ρ is nonlocal.



Analysis of the energy balance
L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio , C. Landim, paper in preparation

For simplicity we here restrict the discussion to one space
dimension. Let E(s) and λ(s) with s ∈ [0, 1] be a protocol. The
slow transformation is then realized by{

Eτ (t) = E (t/τ) ,
λτ (t) = λ (t/τ) ,

t ∈ [0, τ ] .

Let also ρτ (t) and jτ (t), 0 ≤ t ≤ τ , be the solution to
∂tρ

τ +∇ · J(t/τ, ρτ (t)) = 0,
jτ (t) = J(t/τ, ρτ (t))
f ′(ρτ (t))

∣∣
∂Λ

= λτ (t)

ρτ (0) = ρ̄(0)

(31)

where we recall that

J(t, ρ) = −D(ρ)∇ρ+ χ(ρ)E (t) ,

and ρ̄(0) is the unique stationary solution of the hydrodynamics
with external field E(0) and chemical potential λ(0).



Along the trasformation (ρτ , jτ ) the energy balance can be written

τ

∫ 1

0
ds

∫
Λ
dx jτ (τ s) · E(s)− τ

∫ 1

0
ds

∫
∂Λ
dσ λ(s)jτ (τ s) · n̂

− τ
∫ 1

0
ds

∫
Λ
dxJA

(
s, ρτ (τs)

)
χ
(
ρτ (τs)

)−1
JA
(
s, ρτ (τs)

)
= F

(
ρτ (τ)

)
− F

(
ρ̄(0)

)
+ τ

∫ 1

0
ds

∫
Λ
dxJS

(
s, ρτ (τs)

)
χ
(
ρτ (τs)

)−1
JS
(
s, ρτ (τs)

)
(32)



We now expand in 1/τ

ρτ (τs) = ρ̄(s) + 1
τ r(s) +O

(
1
τ2

)
, s ∈ [0, 1]

where ρ̄(s) is the stationary solution to the hydrodynamic equation
having external field E(s) and chemical potential λ(s).

jτ (τs) = J(s, ρ̄(s)) + 1
τ g(s) +O

(
1
τ2

)
. (33)

JS(s, ρτ (τs)) = − 1
τ χ(ρ̄(s))∇

(
C−1
s ? r(s)

)
+O

(
1
τ2

)
. (34)

C−1
s (x, y) =

δ2Vλ(s),E(s)(ρ̄(s))

δρ(x)δρ(y)
.



r solves
∂sρ̄(s) +∇ · g(s) = 0
g(s) = −D(ρ̄(s))∇r(s)

−r(s)
[
D′(ρ̄(s))∇ρ̄(s) + χ′(ρ̄(s))E(s)

]
r(s, x) = 0, x ∈ ∂Λ

(35)

which has the form of a Poisson equation for r(s).



We obtain to order 0 in 1/τ

F
(
ρ̄(1)

)
− F

(
ρ̄(0)

)
=

∫ 1

0
ds

∫
Λ
dxE(s) · g(s)−

∫ 1

0
ds

∫
∂Λ
dσ λ(s)g(s) · n

−
∫ 1

0
ds

∫
Λ
dx r(s)

χ′
(
ρ̄(s)

)
χ2
(
ρ̄(s)

)J2
(
s, ρ̄(s)

)
.



For large finite τ a direct calculation shows that

W ren
[0,τ ] = ∆F +

1

τ
B +O

(
1
τ2

)
. (36)

where

B =

∫ 1

0
ds

∫
Λ
dxχ(ρ̄(s))

[
C−1
s ? r(s)

]2
> 0 (37)

and

C−1
s (x, y) =

δ2Vλ(s),E(s)(ρ̄(s))

δρ(x)δρ(y)
.

We observe that B depends on the protocol but it has a strictly
positive lower bound. For slow trasformation we can select the
“best” protocol by minimizing B.



Dissipation

The infinitesimal version of the identity (24) gives the istantaneous
energy balance which reads

Ẇ =

∫
Λ
dx
[
f ′(ρ)ρ̇+ j · χ(ρ)−1j

]
(38)

where Ẇ is the power injected by the reservoirs and external field
in the system. Accordingly, f ′(ρ)ρ̇ represents the rate of change of
the free energy while j · χ(ρ)−1j is the dissipated power.



In general the dissipation is not minimal in the stationary state.

As a simple example let us consider the case of independent
particles. the minimizer of the second term on the right with the
prescribed boundary conditions ρ(0) = ρ0, ρ(L) = ρ1 is

ρ̂(x) =
[√
ρ0(1− x/L) +

√
ρ1x/L

]2
while the stationary profile is ρ̄(x) = ρ0(1− x/L) + ρ1x/L.
Observe that, in accordance with the Prigogine principle,
ρ̄− ρ̂ = O([(ρ1 − ρ0)/L]2).



The quasi-potential as relative entropy
L. Bertini, D. Gabrielli, G. Jona-Lasinio , C. Landim, J. Stat. Phys. 149, 773 (2012).

The relative entropy S(ν|µ) of the probability ν with respect to µ
is defined by

S(ν|µ) =

∫
dµ

dν

dµ
log

dν

dµ
· (39)

We discuss the case of stochastic lattice gases. If Λ ⊂ Rd is the
macroscopic volume and Λε the corresponding subset of the lattice
with spacing ε, the number of sites in Λε is approximately ε−d|Λ|.
Given (λ0, E0) and (λ1, E1), we claim that

lim
ε→0

εd S
(
µλ0,E0

Λε

∣∣µλ1,E1

Λε

)
= Vλ1,E1(ρ̄0), (40)

where ρ̄0 is the stationary profile corresponding to (λ0, E0).



In view of the definition (39) of the relative entropy we have that

εd S
(
µλ0,E0

Λε

∣∣µλ1,E1

Λε

)
= εd

∑
η

µλ0,E0

Λε
(η) log

µλ0,E0

Λε
(η)

µλ1,E1

Λε
(η)

.

By the large deviation formula we then get

εd S
(
µλ0,E0

Λε

∣∣µλ1,E1

Λε

)
≈ εdβ

∑
η

µλ0,E0

Λε
(η)
[
Vλ1,E1(ρε(η))− Vλ0,E0(ρε(η))

]
≈ β

[
Vλ1,E1(ρ̄0)− Vλ0,E0(ρ̄0)

]
= β Vλ1,E1(ρ̄0) ,

where ρε(η) denotes the density profile associated to the
microscopic configuration η. In the final step we used the law of
large numbers for the microscopic density profile under the
probability µλ0,E0

Λε
.



False counterexamples

Let, for instance, µβε be the Gibbs measure for a one-dimensional
Ising model at zero magnetic field and inverse temperatures β0 and
β1 on a ring with ε−1 sites. The magnetization satisfies a large
deviation formula and its typical value is zero for both ensembles
so that the right hand side of (40) vanishes. On the other hand, by

a direct computation, for β0 6= β1, limε εS(µβ0ε |µβ1ε ) > 0.

However this example does not contradict (40) as we are
comparing two ensembles in which we varied the temperature and
not the magnetic field. In this example, the correct formulation of
(40) would have been in terms of the large deviation function for
the energy, that is the extensive variable conjugated the the
intensive parameter that has been changed.


