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Integrable models of interest
A few predictions

Generalities about lattice models

~ Linear operator H on Hilbert space H = H1 ⊗ · · · ⊗HL .
~ Spaces H` can be finite or infinite dimensional. Often isomophic H` 'H0.
~ Basis of operators O(α) on H0  local operators O(α)

`
= id ⊗ . . . id︸     ︷︷     ︸

`−1times

⊗O(α) ⊗ id . . . id︸  ︷︷  ︸
N−`−1

.

Often H has nearest neighbor coupling structure

H =
L∑

j=1
f(O(α)

j ,O
(β)
j+1) + bdry terms

What one would like to compute?

i) Find the Eigenstates and Eigenvectors of H|Ψβ 〉 = Eβ |Ψβ 〉 ;
ii) Compute in closed form and characterize the correlation functions

〈Ψγ |O
(α1)
1 . . .O

(αm)
m |Ψβ 〉 ;

Characterize intrinsic & response properties of the system.

Appear in perturbative expansions: H ↪→ H +Hpert .

iii) Characterize the behavior at finite temperature

〈O
(αm)
m O

(α1)
1 〉T ≡ tr

[
e−
H
T O

(αm)
m O

(α1)
1

]
/tr

[
e−
H
T
]

~ Program i) − iii) Get the L → +∞ limit for critical models and compare with CFT.

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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Some integrable models

~ The XXZ spin-1/2 chain

HXXZ = J
L∑

n=1

{
σx

nσ
x
n+1 + σ

y
nσ

y
n+1 + ∆σz

nσ
z
n+1 + hσz

n

}
, σn+L ≡ σn

L : length of circle, ∆ anisotropy parameter, h > 0 magnetic field.

Coordinate Bethe Ansatz for the XXX chain ∆ = 1 (’31 Bethe)

~ The non-linear Schrödinger model

H =

L∫
0

{
∂y Ψ† (y) ∂y Ψ (y) + cΨ† (y) Ψ† (y) Ψ (y) Ψ (y) − hΨ† (y) Ψ (y)

}
dy

L : length of circle, c > 0 coupling constant (repulsive regime), h > 0 chemical potential.

Eigenfunctions and spectrum (’63 Lieb, Liniger).

eiLλj =
N∏

a=1
,j

λj − λa + ic
λj − λa − ic

so that H| {λj } 〉 =

(
N∑

k=1
λ2

k − h
)
| {λj } 〉

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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A few predictions

Low-lying excitations in 1D quantum Hamiltonians

� 1D gapless models at T = 0K are critical

? ’70 Polyakov Conformal invariance of correlation functions in long-distance regime ;

? ’84 Cardy Central charge  finite-size corrections to ground state energy ;

EG.S. = Lε − c
πvF

6L
+ O

(
1

L2

)
and Eex − EG.S. =

2πvF

L
δ

? Bethe Ansatz  spectrum given by solutions to algebraic equations

F(λj) =
N∏

a=1
S(λj , λk ) and E({λj }) =

N∑
j=1

ε0(λj)

? Methods for computing finite-size corrections from Bethe Ansatz
’87-’95 (Batchelor, Destri, DeVega, Klumper, Pearce, Woynarowich, Zittartz , ...) ;

~ Proof of Cardy’s predictions for the conformal structure of spectrum:

c = 1 δ =
( N1

2Z

)2
+ (ZN2)2 + N3 and linear integral equations vF , Z

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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A few predictions

Asymptotic behavior of correlation functions

� Critical model  algebraic in distance decay of correlators.

? ’75 Luther, Peschel , ’81 Haldane Luttinger liquid approach to asymptotics ;

? ’84 Cardy Central charge, scaling dimensions  CFT approach to asymptotics;

⇒ Predictions of critical exponents by correspondence with Luttinger liquid/CFT.

� NLSM ≡ quantum critical model at T = 0K  density operator j (x) = Ψ† (x) Ψ (x)

〈G.S. |j (x) j (0) |G.S. 〉
〈G.S. | G.S.〉

= 〈j (x) j (0)〉 ' 〈j (0)〉2 +
C1

x2
+ C2

cos (2xpF )

x2Z2 + ...

and 〈Ψ (x) Ψ† (0)〉 ' C3x
− 1

2Z2 + ...

No access to non universal constants Ck .

Indirect conjecture for Ck in XXZ at zero magnetic field ’99 Lukyanov , ’03 Lukyanov,Terras .

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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A few predictions

Turning the time on

• Predictions for the long-distance/long-time behavior at T = 0K restricted to x � vF t :〈
j (x, t) j (0, 0)

〉
' 〈j (0, 0)〉2 + C′1

x2 + v2
F t2(

x2 − v2
F t2

)2
+ C′2

cos (2xpF )(
x2 − v2

F x2
)Z2 + ...

⇒ Consistency problem with time-dependent asymptotics

x2 + v2
F t2(

x2 − v2
F t2

)2
(1 + o (1)) =

1
x2

(1 + o (1)) when x � vF t

• What happens when x and vF t are of the same order asymptotically?

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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The edge exponents for dynamical structure factors

• Experiments measure dynamical structure factors (Fourier transforms)

S (k , ω) =
∫
R2

ei(ωt−kx)〈j (x, t) j (0, 0)〉dxdt

 DSF measured by Fourier sampling of time of flight images or Bragg spectroscopy.

? ’06 (Caux, Calabrese) Density structure factor in NLSM
? ’05 (Caux, Hagemans, M.) Density structure factor in XXZHahn-Meitner-Institut Berlin

in der Helmholtz-Gemeinschaft

Spinons in KCuF3S(Q,w) Bethe Ansatz

S(Q , ω) is the dynamical spin-spin structure factor. The Bethe ansatz curve is computed for a chain of
500 sites and compared to the experimental curve obtained by A. Tennant in Berlin by neutron scattering
experiments. Colors indicate the value of the function S(Q , ω).
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Predictions for the behavior near the edges

? ’67 (Mahan), ’67 (Nozières, De Dominicis) Arguments for a power-law behavior near edges.

? ’08 (Glazman, Imambekov) Non-linear Luttinger liquid  predictions for edge exponents.

S (k , ω) ' A (k) · ξ (ω − εh(k)) · [ω − εh(k)]ϑ

? ’09 (Affleck, Pereira, White) X-ray edge-type model  predictions for edge exponents.

? ’10 (Caux, Glazman, Imambekov, Shashi ) Predictions for A (k) (NLSM);

• Can these predictions be confirmed by a computation from the microscopic model?

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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The large-distance asymptotics
The large-distance and long-time asymptotics
The edge exponents

Long-distance asymptotics of densities at T = 0K
’11 Kitanine, Kozlowski, M., Slavnov, Terras

spin-spin correlation function of the XXZ chain at T = 0K :〈
G.S.

∣∣∣σz
1σ

z
m

∣∣∣G.S.〉〈
G.S.

∣∣∣G.S.〉 = 〈σz〉2 −
2Z2

π2m2
(1 + o (1)) +

+∞∑
`=1

2 cos (2m`pF )

m2`2Z2 · |F` |
2 (1 + o (1))

|F` |
2 = lim

L→+∞

(
L
2π

)2`2Z2
∣∣∣∣〈G.S.∣∣∣σz

1

∣∣∣umkp − `
〉∣∣∣∣2∣∣∣∣∣∣G.S.∣∣∣∣∣∣2 · ∣∣∣∣∣∣umkp − `
∣∣∣∣∣∣2

crrrrrrrrrrrrrrrrrrrrsR
−pF pF

∆P = 2pF ? ground state in positive chemical potential

? one umklapp excitation ∆E = 0 ∆P = 2pF .

" Confirms CFT and Luttinger liquid predictions.

" Agrees with RHP approach (’08 KKMST ).

" Similar results for NLSM.

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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The large-distance asymptotics
The large-distance and long-time asymptotics
The edge exponents

T=0K leading harmonics in long-time & distance asymptotics
’12 Kitanine, Kozlowski, M., Slavnov, Terras

Currents: j (x, t) ≡ eiHt Ψ† (x) Ψ (x) e−iHt asymptotic regime x → +∞ and x/t fixed.

Overall structure of the asymptotic series (space-like regime) :

〈
j (x, t) j (0, 0)

〉
=

(pF

π

)2
−
Z2

2π2

x2 + t2v2
F(

x2 − t2v2
F

)2
(1 + o (1))

+
∑

`+;`−∈Z
`++`−≤0

∗ eix`+pF

[−i(x − vF t)]
∆

(R)
`+;`−

e−ix`−pF

[i(x + vF t)]
∆

(L)
`+;`−

× e−i(`++`−)[xp(λ0)−tε(λ0)]

(
[p′ (λ0)]2

−i[xp′′(λ0) − tε′′(λ0)]

) |`++`− |
2

2
·

(2π)
|`++`− |

2
∣∣∣F (j)
`+ ,`−

∣∣∣2
G

(
1 +

∣∣∣`+ + `−
∣∣∣) (1 + o (1)) .

? λ0 Saddle-point of the oscillating phase: p′(λ0) − tε′(λ0) /x = 0.

 p dressed momentum & ε dressed energy.

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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The large-distance asymptotics
The large-distance and long-time asymptotics
The edge exponents

Form factor interpretation of the amplitudes

∣∣∣F (j)
`+ ,`−

∣∣∣2 = lim
L→+∞


(

L
2π

)|`++`− |
2+∆

(R)
`+;`−

+∆
(L)
`+;`−

·

∣∣∣∣〈G.S.∣∣∣ j (0)
∣∣∣Ex(`+; `−)

〉∣∣∣∣2∣∣∣∣∣∣G.S.∣∣∣∣∣∣2 · ∣∣∣∣∣∣Ex(`+; `−)
∣∣∣∣∣∣2


? `+: # additional particles at q `−: # additional particles at −q |`+ + `− |: # particles at

λ0

bbbrrrrrrrrrrrrrrrrrbb rrrrrr�-
−(`R +`L )

−q q λ0
? ground state in positive chemical potential

? excitation

 ∆E = |`+ + `− |ε(λ0)

∆P = |`+ + `− |p(λ0) − |`+ |pF − |`− |(−pF )

�-
−`−

�-
−`+

Critical exponents ∆
(R/L)
`+;`−

originate from excitations on Fermi boundaries.

∆
(R)
`+;`−

= (`+ + `−)φ(q, λ0) − `−φ(q,−q) − `+φ(q, q)
(
I −

K
2π

)
· φ(λ, µ) = θ(λ − µ)

Critical exponent
|`+ + `− |

2

2
originates from gaussian saddle-point.

" Agrees with the first terms obtained through Natte series (’11 Kozlowski, Terras).

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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The large-distance asymptotics
The large-distance and long-time asymptotics
The edge exponents

The power-law behavior of dynamical structure factors (NLSM)

’12 Kitanine, Kozlowski, M., Slavnov, Terras

(k , ω) configuartion close to the hole excitation line

(pF − p(λ0) ,−ε(λ0)) with λ0 ∈ ]−q ; q [ .

? The hole treshold (leading)

S
(
pF − p(λ0),−ε(λ0) + δω

)
'

ξ (δω) [δω]
∆

(R)
1;0 + ∆

(L)
1;0−1

[v + vF ]
∆

(R)
1;0 [vF − v]

∆
(L)
1;0

·
(2π)2 ∣∣∣F (j)

1,0

∣∣∣2
Γ(∆

(R)
1;0 + ∆

(L)
1;0 )

.

? v: velocity of the hole at λ0 vF : velocity excitations on Fermi boundary.

∣∣∣F (j)
1,0

∣∣∣2 = lim
L→+∞


(

L
2π

)1+∆
(R)
1;0 + ∆

(L)
1;0

∣∣∣∣〈G.S.∣∣∣ j (0)
∣∣∣Ex

〉∣∣∣∣2∣∣∣∣∣∣G.S.∣∣∣∣∣∣2 · ∣∣∣∣∣∣Ex
∣∣∣∣∣∣2


rrrrrrrrrrrrrr rrrrsc ^

−q qλ0

? ground state

? excitation
{

∆E = −ε (λ0)
∆P = pF − p(λ0)

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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The large-distance asymptotics
The large-distance and long-time asymptotics
The edge exponents

(k , ω) configuration close to the particle excitation line

(p(λ0) − pF , ε(λ0)) with λ0 ∈ ] q ; +∞ [ .

? The particle treshold (leading)

S
(
p(λ0) − pF , ε(λ0) + δω

)
'

[δω]
∆

(R)
−1;0 + ∆

(L)
−1;0−1

[v + vF ]
∆

(R)
−1;0 [vF − v]

∆
(L)
−1;0

·
(2π)2 ∣∣∣F (j)

−1,0

∣∣∣2
Γ(∆

(R)
1;0 + ∆

(L)
1;0 )

×
ξ(δω) sin

[
π∆

(L)
−1;0

]
+ ξ(−δω) sin

[
π∆

(R)
−1;0

]
sin π

[
∆

(R)
−1;0 + ∆

(L)
−1;0

]
" Microscopic model approach the non-linear Luttinger-based predictions.

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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Around form factor expansion
Around form factor expansion
Form factors series and asymptotics

The form factor approach

Form factor expansion for finite L of O (x, t) ≡ eiHtO (x) e−iHt

〈G.S. |O (x, t)O† (0, 0) |G.S. 〉 =
∑
{µ}ex

〈G.S. |e−ixP+itHO (0, 0) eixP−itH | {µ}ex 〉〈 {µ}ex |O
† (0, 0) |G.S. 〉

=
∑
{µ}ex

eix(PG.S.−Pex)−it(EG.S.−Eex)
∣∣∣〈G.S. |O (0, 0) | {µ}ex 〉

∣∣∣2

Steps of the computation
Characterize the excitations above the ground state;

Asymptotic in size L formula for 〈G.S. |O(0, 0)| {µ}ex 〉;

Localize sums at stationary-points: saddle-point, ends of Fermi zone ;

Sum-up in the asymptotic regime.

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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Around form factor expansion
Form factors series and asymptotics

Free fermion model in finite volume

• Eigenfunctions  from plane-waves ϕ(x | {λa }
N
1 ) = exp

{
i

N∑
k=1

λk xk

}
• Boundary conditions λa  quantization of momenta λa =

2π
L

na for some integers na .

• Simple form of spectrum E({λa }
N
1 ) =

N∑
a=1

λ2
a and P({λa }

N
1 ) =

N∑
a=1

λa

Ground state Momenta tightly packed around origin  na = a − (N + 1)/2
Particle-hole excitations other choices of integers:

nj = j −
N + 1

2
for j ∈ {1, . . . ,N} \ {h1, . . . , hn} and nha = pa −

N + 1
2

for a ∈ {1, . . . , n}

"holes" in continuous distribution of rapidities at µh1 , . . . , µhn

new "particle" rapidities at µp1 , . . . , µpn

⇒ Excitation spectrum is additive.

Pex − PG.S. =
n∑

a=1

µpa − µha and Eex − EG.S. =
n∑

a=1

µ2
pa − µ

2
ha

J. M. MAILLET Form factor approach to the correlation functions of critical models.



Motivations, results
Results following from our form factor approach

A short sketch of the method
Conclusion

Around form factor expansion
Around form factor expansion
Form factors series and asymptotics

Excited states in the interacting case

Particle-hole excitations

"holes" in continuous distribution of rapidities at µh1 , . . . , µhn

new "particle" rapidities at µp1 , . . . , µpn

• • • • • • • • • •× × × × × ×

• × • • • ◦ • • ◦ • • • × × × •

G.S. {λj }

Exited {νj }

-� - �
1

Lρ
F
Lρ

⇒ Excited state’s rapidities νj shifted infinitesimally in respect to GS rapidities λj .

νj − λj =
1

Lρ(λj)
· F

(
λj

∣∣∣∣ µp1 , . . . , µpn

µh1 , . . . , µhn

)
+ O(L−2) j ∈ {1, . . . ,N} \ {h1, . . . , hn} .

⇒ Additive excitation spectrum.

Pex−PG.S. =
n∑

a=1

p(µpa )−p(µha ) + O(L−1) and Eex−EG.S. =
n∑

a=1

ε(µpa )−ε(µha ) + O(L−1)

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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Around form factor expansion
Around form factor expansion
Form factors series and asymptotics

Excitations on the Fermi boundaries

~ n-particle hole excitations with macroscopic momenta {µpa }
n
1 , {µha }

n
1 on the Fermi surface

n+
h holes and n+

p particles on right Fermi zone⇒ local deficiency ` ≡ n+
p − n+

h ;

n−h holes and n−p particles on left Fermi zone⇒ local deficiency −` ≡ n−p − n−h .

 parametrization in terms of effective integers h±a and p±a

µpa ∼ q +
2π

Lρ(q)
p+

a or µpa ∼ −q −
2π

Lρ(q)
p−a

µha ∼ q −
2π

Lρ(q)
h+

a or µha ∼ −q +
2π

Lρ(q)
h−a

• Simple form for the excitation momentum

Pex − PG.S. ∼ 2`pF +
2π
L

( n+
p∑

a=1

p+
a +

n+
h∑

a=1

h+
a

)
−

2π
L

( n−p∑
a=1

p−a +

n−h∑
a=1

h−a
)
.

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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Around form factor expansion
Around form factor expansion
Form factors series and asymptotics

Asymptotic behavior of form factors: the result

NLSE, ’90 Slavnov , XX ’06 Arikawa,Karbach,Müller,Wiele
6-Vertex R matrix ’09-’10 Kitanine, Kozlowski, M., Slavnov, Terras

excited state with particles µp1 , . . . , µpn and holes µh1 , . . . , µhn .

F shift function associated to such excitation.

{λa }
N
1 GS distr. momenta, {νa }

N′
1 excited state momenta.

Structural assumption

Fermi repulsion-like behavior of the form factor (XXZ exact results : ’99 Kitanine, M., Terras )

〈Excited |O (0, 0) |G.S. 〉
‖Excited‖ · ‖G.S.‖

∼

N∏
j<k

(λj − λk )
N′∏
j>k

(νj − νk )

N∏
k=1

N′∏
j=1

(λk − νj)

×A
(
µp1 , . . . , µpn

µh1 , . . . , µhn

)
︸                   ︷︷                   ︸

regular

.

~ Extract the large volume L behavior =⇒ many cancellation of terms going to zero with L.

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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Around form factor expansion
Around form factor expansion
Form factors series and asymptotics

The power-law decay of form factors

 Algebraic decay of form factors (in the volume L )∣∣∣∣∣∣ 〈Excited |O (0, 0) |G.S. 〉
‖Excited‖ · ‖G.S.‖

∣∣∣∣∣∣2 ∼
(

2π
L

)θ[F]

· Rn

(
{pa }; {µpa }

{ha }; {µha }

)
[F]︸                       ︷︷                       ︸

discrete

· An

(
{µpa }

{µha }

)
︸           ︷︷           ︸

smooth

.

 Excitation on the Fermi boundary =⇒ description in terms of `-shifted states

• • • • • • • • • •× × × × × ×

× × ◦ ◦ ◦ • • • • • • • • • • ×

G.S. ({λ})

ψ` state ({ν})

~ Local shifts of rapidities N, L � s:

νN−s − λN−s ∼ s ·
F`;+

Lρ(q)
right Fermi and νs − λs ∼ s ·

F`;−
Lρ(−q)

left Fermi

~ one value for volume power θ`.

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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Around form factor expansion
Around form factor expansion
Form factors series and asymptotics

Form factors of `-shifted states

∣∣∣F` ∣∣∣2 = lim
L→+∞

{
Lθ`

∣∣∣∣ 〈G.S. |O|ψ` 〉
‖G.S‖ · ‖ψ`‖

∣∣∣∣2} model/operator dependent .

~ Form factors of any low-lying excitation with ` particles more on right Fermi zone:

∣∣∣∣∣∣ 〈Ex |O (0, 0) |G.S. 〉
‖Ex‖ · ‖G.S.‖

∣∣∣∣∣∣2 ∼
∣∣∣F` ∣∣∣2
Lθ`

×
G2(1 + F`;+)G2(1 − F`;−)

G2(1 + ` + F`;+)G2(1 − ` − F`;−)

( sin(πF`;+)

π

)2n+
h

×

( sin(πF`;−)

π

)2n−h
Rn+

p ,n
+
h

(
{p+

a }, {h
+
a } | F`;+

)
Rn−p ,n

−
h

(
{p−a }, {h

−
a } | −F`;−

)
.

~ Red part is universal. G  Barnes function.

Rn,m
(
{pa }

n
1 , {ha }

m
1 | F

)
≡

n∏
j>k

(pj − pk )2
m∏

j>k
(hj − hk )2

n∏
j=1

m∏
k=1

(pj + hk − 1)2

n∏
k=1

Γ2(pk + F)

Γ2(pk )

m∏
k=1

Γ2(hk − F)

Γ2(hk )
.
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Around form factor expansion
Around form factor expansion
Form factors series and asymptotics

Form factor expansion of the generating function

〈
O (x)O† (0)

〉
=

∑
{ν}ex

eix(PG.S.−Pex)
∣∣∣〈G.S. |O (0, 0) | {ν}ex 〉

∣∣∣2
The x → +∞ asymptotics

Only states having the same per-site energy as GS contribute in L → +∞ ;

Only the individual leading in L behavior contributes to L → +∞ limit;∣∣∣〈G.S. |O (0, 0) | {ν}ex 〉
∣∣∣2 ∼ L−θ[{µ}ex] F ({µ}ex)

Pex − PG.S. =
n∑

a=1
p(µpa ) − p (µha ) + O

(
L−1

)
Eex − EG.S. =

n∑
a=1

ε(µpa ) − ε (µha ) + O
(
L−1

)
Approximate summand at stationary points  endpoints of Fermi zone ;

sum-up the resulting critical series .

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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The effective form factor series I

〈
O (x)O† (0)

〉
=

N∑
n=0

∑
p1<···<pn

∑
h1<···<hn

(
2π
L

)θ[F] n∏
a=1

 eixp(µpa )

eixp(µha )

 ·Rn

(
{pa } ; {µpa }

{ha } ; {µha }

)
[F] ·An

(
{µpa }

{µha }

)

• Smooth part and state depending shift function.

• Stationary points

Endpoints of the Fermi zone

 holes ∈ {1, . . . ,N}  µh ∈ [−q ; q ]

particles ∈ Z \ {1, . . . ,N}  µp ∈ R \ [−q ; q ]

Partition the domain according to the stationary points and keep only leading contributions

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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Form factors series and asymptotics

• Stationary points of the space-like regime:

Particle/hole excitations on right Fermi boundary and ` additional particles ;

Particle/hole excitations on left Fermi boundary and −` additional particles .

• Partition sums according to right, left Fermi zones

{pa }
n
1 = {N + p+

a }
n+

p
1 ∪ {1 − p−a }

n−p
1 and {ha }

n
1 = {N + 1 − h+

a }
n+

h
1 ∪ {h−a }

n−h
1 .

There are particle deficiencies on Fermi boundaries : n+
h = n+

p − ` and n−h = n−p + `.

• Keep leading approximation of phases and form factors.

Several algebraic manipulations later ...

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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The form of the series at x → +∞

〈
O (x)O† (0)

〉
∼ lim

N,L→+∞

∑
`∈Z

ei2x`pF ·
∣∣∣F` ∣∣∣2 ·R`

(
x | F`;+

)
R−`

(
− x | −F`;−

)

R`(x | ν) =

(
2π
L

)(ν+`)2
G2(1 + ν)

G2(1 + ν + `)

∑
np ,nh≥0
np−nh =`

∑
p1<···<pnp

pa∈N
∗

∑
h1<···<hnh

ha∈N
∗

( sin πν
π

)2nh
np∏

a=1

{
e

2iπ
L pa x

}
·

nh∏
a=1

{
e

2iπ
L (ha−1)x

}

np∏
a<b

(pa − pb )2 ·
nh∏

a<b
(ha − hb )2

np∏
a=1

nh∏
b=1

(pa + hb − 1)2

·

np∏
a=1

Γ2
(

pa + ν
pa

) nh∏
a=1

Γ2
(

ha − ν
ha

)

R`(x | ν) =
( 2π/L

1 − e
2iπ
L x

)(ν+`)2

` = 0 Z-measures on partitions (’00, Borodin-Olshanski, Okounkov ) ;

generalization to ` , 0 and alternative proof at ` = 0 (’11, KKMST ).

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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The last step

〈
O (x)O† (0)

〉
∼ lim

N,L→+∞

∑
`∈Z

ei2x`pF ·
∣∣∣F` ∣∣∣2 · ( 2π/L

1 − e
2iπ
L x

)(F`;++`)2 (
2π/L

1 − e−
2iπ
L x

)(F`;−+`)2

.

〈
O (x)O† (0)

〉
∼

∑
`∈Z

ei2x`pF ·
∣∣∣F` ∣∣∣2

(−ix)∆`;+ · (ix)∆`;−
.

Structure of the asymptotics

Asymptotics indexed by typical umklapp excitations ` ;∣∣∣F` ∣∣∣2 model dependent but universal interpretation ;

Critical exponent ∆`;+ = (F`;+ + `)2 and ∆`;− = (F`;− + `)2 ;

Summation works also for temperature correlation functions : see Kozlowski, M.,
Slavnov (2011) and Dugave, Gohmann, Kozlowski (2013) .
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The XXZ results

 leading asymptotic terms for 〈σz
1 σ

z
m+1〉:

〈σz
1σ

z
m+1〉cr = (2D − 1)2 − 2Z2

π2m2 + 2
∑∞
`=1 |F

z
`
|2finite

cos(2m`kF )

(2πm)2`2Z2

with |F z
`
|2finite = lim

M→∞
M2`2Z2 |〈ψg |σ

z
1 |ψ` 〉|

2

||ψg ||2 ||ψ` ||
2 ,

|ψ` 〉 being the `-shifted ground state.

 leading asymptotic terms for 〈σ+
1 σ−m+1〉:

〈σ+
1 σ
−
m+1〉cr =

(−1)m

(2πm)
1

2Z2

∑∞
`=−∞(−1)` |F+

`
|2finite

e2im` kF

(2πm)2`2Z2∣∣∣F+
`

∣∣∣2
finite

= limM→∞M
(2`2Z2+ 1

2Z2 ) |〈ψg |σ
+
1 |ψ` 〉|

2

||ψg ||2 ||ψ` ||
2

|ψ` 〉 being the `-shifted ground state in the (N0 + 1)-sector.

with Z = Z(±q) and Z(λ) + 1
2π

∫ q
−q dµ sin 2ζ

sinh(λ−µ+iζ) sinh(λ−µ−iζ)
Z(µ) = 1. At free fermion

point, ζ = π/2, and Z = 1 for zero magnetic field.
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The n-point correlation functions

’13, to appear Kitanine, Kozlowski, M., Terras

C
(
xr ; or

)
= 〈Ψg |O1(x1) . . .Or (xr )|Ψg 〉 .

Local operators Oa(x) connect states with N and N + oa pseudo-particles; form factor

expansion given as a multiple sum over intermediate normalized states |Ψ
(
I

(s)
n

)
〉 with

s = 1, . . . r − 1, labelled by sets of integers corresponding to particles and holes excitations :

I
(s)
n =

{
{p(s)

a }
n
1 ; {h(s)

a }
n
1

}
〈Ψ

(
I

(s−1)
m

)
|Os(x)|Ψ

(
I

(s)
n

)
〉 = eix(∆P)s

s−1 · FOs

(
I

(s−1)
m | I

(s)
n

)
(∆P)s

s−1 = P
I

(s−1)
m
− P

I
(s)
n

C
(
xr ; or

)
=

r−1∏
s=1

{ ∑{
I

(s)

n(s)

}
}
·

r−1∏
s=1

{
exp

[
i(xs+1 − xs) ·∆P(I

(s)

n(s)
)
]}
·

r∏
s=1

FOs

(
I

(s−1)

n(s−1)
| I

(s)

n(s)

)

J. M. MAILLET Form factor approach to the correlation functions of critical models.



Motivations, results
Results following from our form factor approach

A short sketch of the method
Conclusion

Around form factor expansion
Around form factor expansion
Form factors series and asymptotics

General form factors

FOs

(
I

(s−1)
m

∣∣∣∣I(s)
n

)
= FOs (`s−1, `s) · C(`s−1;`s )

(
ν+

s , ν
−
s

)
×F (+)

[
J

(s−1)
mp;+;mh;+

;J
(s)
np;+;nh;+

| ν+
s

]
·

·F (−)
[
J

(s−1)
mp;−;mh;−

;J
(s)
np;−;nh;−

| ν−s

]

FOs (`s−1, `s) = lim
L→+∞


(

L
2π

)ρs (ν+
s )+ρs (ν−s )

〈Ψ
(
L

(s−1)
`s−1

)
|Os(0)|Ψ

(
L

(s)
`s

)
〉


ρs(ν) =

1
2

(`s − `s−1)2 +
1
2
ν2 − (`s − `s−1)ν .

ν+
s = νs(q) − os and ν−s = νs(−q)

in terms of the relative shift function between the `s , `s−1 critical states

νs(λ) = Fs−1(λ) − Fs(λ) .

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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General sums (1)

C
(
xr ; or

)
'

∑
`r−1
∈Zr−1

(
2π
L

)ϑ(`r−1 ,or ) r−1∏
s=1

{
e2i`s (xs+1−xs )pF

} r∏
s=1

{
C(`s−1;`s )

(
ν+

s , ν
−
s

)}
·

r∏
s=1

{
F Os (`s−1, `s)

}
S −
`r−1

({2π
L

(xs+1 − xs)
}r−1

1
, {ν−s (`s)}r1

)
S +
`r−1

({2π
L

(xs+1 − xs)
}r−1

1
,
{
ν+

s (`s)
}r

1

)

ϑ(`r−1,or ) =
1
2

r∑
s=1

{
(ν+

s )2+(ν−s )2
}
−

r−1∑
s=1

{(
ν+

s + ν−s − ν
+
s+1 − ν

−
s+1

)
`s−2`2

s

}
− 2

r−1∑
s=2

`s`s−1

S ±
`r−1

({ts }, {νs }) =
r−1∏
s=1

+∞∑
n(s)

p ,n(s)
h =0

n(s)
p −n(s)

h =±`s

∑
J

(s)

n
(s)
p ;n

(s)
h

r−1∏
s=1

R±(J
(s)

n(s)
p ;n(s)

h

|νs , νs+1; ts)
r−1∏
s=2

$
(
J

(s−1)

n(s−1)
p ;n(s−1)

h

;J
(s)

n(s)
p ;n(s)

h

| ±νs
)

Summation over all the possible choices of the sets of integers that parametrize the states
with $ terms coupling previous combinatorial sums!

J
(s)

n(s)
p ;n(s)

h

=
{
{p(s)

a }
n(s)

p
1 ; {h(s)

a }
n(s)

h
1

}
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General sums (2)
Amazingly, these generalized combinatorial sums can be computed exactly!

S ±
`r−1

(
{ts }r−1

1 , {νs }
r
1

)
=

r−1∏
s=1

e±its
`s (`s +1)

2 G
(

1 ± (`s − νs), 1 ± (`s + νs+1)
1 ∓ νs , 1 ± νs+1

)
×

r−1∏
s=2

G
(

1 ± νs , 1 ± (`s−1 − `s + νs)
1 ∓ (`s − νs), 1 ± (`s−1 + νs)

)
·

r∏
b>a

(
1 − e

±i
b−1∑
s=a

ta
)(νa +κa )(νb +κb )

κs = `s−1 − `s for s = 1, . . . , r so that
r∑

a=1

κa = 0.

C
(
xr ; or

)
=

∑
κr∈Z

r∑
κa =0

r∏
s=1

{e2ipF κs xs } · F
(
{κa }

r
1; {oa }

r
1

)
·

r∏
s=1

( 2π
L

) 1
2 [θ+

s (κs )]2+ 1
2 [θ−s (κs )]2

r∏
b>a

{[
1 − e

2iπ
L (xb−xa )

]θ+
b (κb )θ+

a (κa )
·
[
1 − e−

2iπ
L (xb−xa )

]θ−b (κb )θ−a (κa )
}

θ±b (κb ) = ν±b + κb
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Asymptotic behavior of n-point correlation functions

Taking the thermodynamic limit we arrive at the following n-point correlation function leading
asymptotic behavior :

C
(
xr ; or

)
=

∑
κr∈Z

r∑
κa =0

r∏
s=1

{
e2ipF κs xs

}
· F

(
{κa }

r
1; {oa }

r
1

)

r∏
b>a

 [
i(xb − xa)

]θ−b (κb )θ−a (κa )
·
[
− i(xb − xa)

]θ+
b (κb )θ+

a (κa )

 .
Note that the above asymptotic expansion provides one with an expression that is
symmetric under a simultaneous permutation(

xr ,or
)
7→

(
xσr ,o

σ
r

)
with xσr =

(
xσ(1), . . . , xσ(r)

)
σ ∈ Sr .

This is directly related to locality, namely to the fact that the local operators Or (xr ) commute
at different distances and, in particular, in the long-distance regime.
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Conclusion and perspectives

Results

" Leading asymptotics of any harmonic in long-distance

" All harmonics in long-distance and large-time for pure particle-hole spectrum

" Reproduction of edge exponents with amplitudes from ABA

" Leading asymptotic behavior of n-point correlation functions

What’s next?

~ Include the effects of bound states (time dependent case)

~ Full test of CFT (OPE of local operators + structure constants)

J. M. MAILLET Form factor approach to the correlation functions of critical models.
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