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Motivation

In 1999-2000 Nickel discovered and in 2001 Orrick,
Nickel, Guttmann and Perk extensively analyzed the
evidence for a natural boundary in the susceptibility
of the Ising model in the complex temperature plane.

This present study is an attempt to understand the
implications of this discovery.
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1. Problems for complex fugacity
1. Existence of a shape independent partition function
per site.

2. Equimodular curves versus partition function zeros

3. Areas versus curves of zeros

4. Analytic continuation versus natural boundaries

5. Integrable versus generic non-integrable systems
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2. Preliminaries for hard hexagons and
squares
1. Grand partition functionon anLv × Lh lattice
ZLv,Lh

(z) =
∑∞

N=0 g(N) · zN

whereg(N) is the number of allowed configurations.

2. Transfer matrices
T{b1,···bLh

},{a1,···.aLh
} =

∏Lh

j=1 W (aj, aj+1; bj, bj+1)

where the occupation numbersaj, bj take the values
0, 1 with

3. Boltzmann weights

a a

b b

j j+1

j j+1
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For hard squares
W (aj, aj+1; bj, bj+1) = 0 for
ajaj+1 = bjbj+1 = ajbj = aj+1bj+1 = 1,
and otherwise:
W (aj, aj+1; bj, bj+1) = z(aj+aj+1+bj+bj+1)/4

For hard hexagons
W (aj, aj+1; bj, bj+1) = 0 for
ajaj+1 = bjbj+1 = ajbj = aj+1bj+1 = aj+1bj = 1,
and otherwise:
W (aj, aj+1; bj, bj+1) = z(aj+aj+1+bj+bj+1)/4
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4. Partition functions from transfer matrices eigenval-

ues

For toroidalboundary conditions
ZT

Lv,Lh
(z) = TrTLv(z;Lh) =

∑
k λLv

k (z;Lh)

Forcylindrical boundary conditions
ZC

Lv,Ljh
(z) = 〈v|TLv(z;Lh)|v〉 =

∑
k λLv

k (z;Lh)ck

with
v(a1, a2. · · · , aLh

) =
∏Lh

j=1 zaj/2 and
ck = (v · vk)(vk · v)
whereλk are eigenvalues andvk are eigenvectors

Forhard squaresT = T t; λk real for realz
Forhard hexagonsT 6= T t; someλk complex for real
z
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5. Thermodynamic limit

For thermodynamics to be valid we must have
F/kBT = limLv,Lh→∞(LvLh)

−1 ln ZLv,Lh
(z)

independent of the aspect ratioLv/Lh.

In terms of the transfer matrix eigenvalues
limLv→∞ L−1

v ln ZLv,Lh
(z) = ln λmax(z;Lh)

Therefore if
limLh→∞ L−1

h limLv→∞ L−1
v ln ZLv,Lh

(z)

= limLv,Lh→∞(LvLh)
−1 ln ZLv,Lh

(z)
then
−F/kBT = limLh→∞ L−1

h ln λmax(z;Lh)
For z ≥ 0 this independence is rigorously true in
general. For complexz there is no general proof and
for hard squares forz = −1 it is known to be false.
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6. Partition function zeros versus equimodular curves

We begin with the simplest case where
Lv → ∞ with Lh fixed
where the aspect ratioLv/Lh → ∞.

The zeros will lie on curves where two or more
transfer matrix eigenvalues have equal modulus
|λ1(z;Lh)| = |λ2(z;Lh)|
On this curveλ1(z;Lh)

λ2(z;Lh) = eiφ(z) with φ(z) real.

The density of zeros on this curve is proportional to
dφ(z)/dz

The cases of cylindrical and toroidal boundary
conditions have distinct features which must be
treated separately.
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Cylindrical boundary conditions

Because the boundary vectorv is translationally
invariantonly eigenvectors in the sectorP = 0 will
have non vanishing scalar products(v · vk). All
equimodular curves have only two equimodular
eigenvalues.

Toroidal boundary conditions

In this caseall eigenvalues contribute. The
eigenvalues forP and−P have equal modulus
because of translational invariance and thus on
equimodular curves there can be either 2, 3, or 4
equimodular eigenvalues.
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3. Hard hexagon analytic results
Baxter in 1980 has computed the fugacityz and the
partition function per site
κ±(z) = limLh→∞ λmax(z;Lh)

1/Lh

for positivez terms of an auxiliary variablex using
the functions

G(x) =
∏∞

n=1
1

(1−x5n−4)(1−x5n−1)

H(x) =
∏∞

n=1
1

(1−x5n−3)(1−x5n−2)

Q(x) =
∏∞

n=1 (1 − xn).

There are two regimes 0 ≤ z ≤ zc ≤ z ≤ ∞ where

zc = 11+5
√

5
2 = 11.090169 · · ·

Bothκ±(z) have singularities only at
zc, zd = −1/zc = −0.090169 · · · , ∞.
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Partition functions per site
High densityzc < z < ∞
z = 1

x · (G(x)
H(x))

5

κ+ = 1
x1/3 · G3(x) Q2(x5)

H2(x) ·
∏∞

n=1
(1−x3n−2)(1−x3n−1)

(1−x3n)2

where, asx increases from0 to 1, the value ofz−1

increases from0 to z−1
c .

Low density0 < z < zc

z = −x · (H(x)
G(x) )

5

κ− = H3(x) Q2(x5)
G2(x) ·

∏∞
n=1

(1−x6n−4)(1−x6n−3)2(1−x6n−2)
(1−x6n−5)(1−x6n−1)(1−x6n)2 ,

where, asx decreases from0 to−1, the value ofz
increases from0 to zc.
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Algebraic equation for κ+(z)

Bothκ±(z) are algebraic functions ofz. Joyce in 1987
obtained the equation forκ+(z) using the polynomials
Ω1(z) = 1 + 11z − z2

Ω2(z) = z4 + 228z3 + 494z2 − 228z + 1
Ω3(z) = (z2 +1) · (z4−522z3−10006z2 +522z +1).

f+(z, κ+) =
∑4

k=0 C+
k (z)κ6k

+ = 0, where

C+
0 (z) = −327 z22

C+
1 (z) = −319z16 · Ω3(z)

C+
2 (z) = −310z10 · [Ω2

3(z) − 2430z · Ω5
1(z)]

C+
3 (z) = −z4 · Ω3(z) · [Ω2

3(z) − 1458 z · Ω5
1(z)]

C+
4 (z) = Ω10

1 (z).
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Algebraic equation for κ−(z)

For low density we have obtained by means of a
Maple computation the algebraic equation forκ−(z)

f−(z, κ−) =
∑12

k=0 C−
k (z) · κ2k

− = 0, where

C−

0
(z) = −232 · 327 · z22

C−

1
(z) = 0

C−

2
(z) = 226 · 323 · 31 · z18 · Ω2(z),

C−

3
(z) = 226 · 319 · 47 · z16 · Ω3(z),

C−

4
(z) = −217 · 318 · 5701 · z14 · Ω2

2
(z),

C−

5
(z) = −216 · 314 · 72 · 19 · 37 · z12 · Ω2(z)Ω3(z),

C−

6
(z) = −210 · 310 · 7 · z10 · [273001 · Ω2

3
(z) + 26 · 35 · 5 · 4933 · z · Ω5

1
(z)],

C−

7
(z) = −29 · 310 · 11 · 13 · 139 · z8 · Ω3(z)Ω2

2
(z),

C−

8
(z) = −35 · z6 · Ω2(z) · [7 · 1028327 · Ω2

3
(z) − 26 · 34 · 11 · 419 · 16811 · z · Ω5

1
(z)],

C−

9
(z) = −z4 · Ω3(z) · [37 · 79087 Ω2

3
(z) + 26 · 36 · 5150251 · z · Ω5

1
(z)],

C−

10
(z) = −z2 · Ω2

2
(z) · [19 · 139Ω2

3
(z) − 2 · 36 · 151 · 317 · z · Ω5

1
(z)]

C−

11
(z) = −Ω2(z)Ω3(z) · [Ω2

3
(z) − 2 · 613 · z · Ω5

1
(z)],

C−

12
(z) = Ω10

1
(z).
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Analyticity of κ±(z)

High density
κ+(z) is real and positive forzc < z < ∞
For z → ∞
κ+(z) = z1/3 + 1

3z
−2/3 + 5

9z
−5/3 + · · ·

κ+(z) is analytic in the plane cut from−∞ < z < zc

On the segment−∞ < z < zd κ+(z) has the phase
e±πi/3 for Imz = ±ǫ → 0.

Low density
κ− is real and positive forzd < z < zc

κ− is analytic in the plane cut fromzc < z < ∞ and
−∞ < z < zd
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Values ofκ±(z) at zc and zd

At zc

(wc+ + 39)3 = 0 with wc+ = −(55/2/zc)
3κ6

+(zc)

(wc− + 24)2 · (wc− − 33)3 · (wc− − 24 · 33)6 = 0

with wc− = 55/2κ2
−(zc)/zc

At z = zd

(wd+ + 39)3 = 0 with wd+ = −(55/2/zd)
3κ6

+(zd)

(wd− − 24)2 · (wd− + 33)3 · (wd− + 24 · 33)6 = 0

with wd− = 55/2κ2
−(zd)

2/zd

Thus using appropriate boundary conditions
κ+(zc) = κ−(zc) = (33 · 5−5/2 zc)

1/2 = 2.3144003 · · ·
κ+(zd) = e±πi/30.208689, κ−(zd) = 4|κ+(zd)|
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Expansion ofρ−(z) at zd

Joyce obtained an algebraic equation for the low
density density functionρ−(z) and expanded it atzc.
We have obtained the expansion atzd as
ρ−(z) = t

−1/6
d Σ0(td) + Σ1(td) + t

2/3
d Σ2(td) + t

3/2
d Σ3(td) +

t
7/3
d Σ4(td) + t

19/6
d Σ5(td)

wheretd = 5−3/2(1 − z/zd)
Σ0 = − 1

√

5
+ 1

12

“

5 + 11
√

5

”

td + 1

144

“

275 + 639
√

5

”

t2
d

+ 1

1296

“

17765 + 37312
√

5

”

t3
d

+ · · ·

Σ1 = 1

2

“

1 + 1
√

5

”

+ 1
√

5
td + 1

2

“

5 − 1
√

5

”

t2
d
− 1

2

“

5 − 83
√

5

”

t3
d

+ · · ·
Σ2 = − 2

√

5
− 2

15
(25− 4

√
5)td + 4

45
(125− 108

√
5)t2

d
− 4

405
(16775− 4621

√
5)t3

d
+ · · ·

Σ3 = − 3
√

5
− 3

4

“

15 − 7
√

5

”

td + 3

16

“

175 − 1189
√

5

”

t2
d
− 21

16

“

705 − 646
√

5

”

t3
d

+ · · ·
Σ4 = − 4

√

5
− 2

15
(175−13

√
5)td+ 2

45
(1625−2637

√
5)t2

d
− 52

405
(22100−3499

√
5)t3

d
+ · · ·

Σ5 = − 6
√

5
− 1

2

“

95 − 31
√

5

”

td + 1

24

“

3875 − 34641
√

5

”

t2
d
− 31

216

“

55685 − 40892
√

5

”

t3
d

+ · · ·

The term int2/3d was first obtained by Dhar but the full
expansion has not been previously reported.
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comments

All six infinite series converge.
The form follows from the renormalization group
expansion of the singular part of the free energy at
z = zd

fs = t
2/y
d ·

∑4
n=0 t

−n(y′/y)
d ·

∑∞
m=0 an;m · tmd .

y = 12/5 is the leading renormalization group
exponent for the Yang-Lee edge which is equal toν−1

(the inverse of the correlation length exponent). The
exponentν at zd has never been directly computed.

y′ = −2 is the exponent for the contributing
irrelevant operator which breaks rotational invariance
on the triangular lattice.
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Factorization of the characteristic equation

For a transfer matrix with cylindrical boundary
conditions the characteristic equation factorizes into
subspaces characterized by a momentum eigenvalue
P . In general the characteristic polynomial in the
translationally invariantP = 0 subspace will be
irreducible. We have found that this is indeed the case
for hard squares. However,for hard hexagons we find
that forLh = 12, 15, 18, the characteristic
polynomial, forP = 0, factors into the product of
two irreducible polynomials with integer coefficients.
We have not been able to study the factorization for
larger values ofLh but we presume that factorization
always occurs and is a result of the integrability of
hard hexagons. What is unclear is if for larger lattices
a factorization into more than two factors can occur.
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Multiplicity of the roots of the resolvent

An even more striking non-generic property of hard
hexagons is seen in the computation of the resultant of
the characteristic polynomial in the translationally
invariant sector. The zeros of the resultant locate the
positions of all potential singularities of the
polynomials.

We have been able to compute the resultant for
Lh = 12, 15, 18, and find that almost all zeros of the
resultant have multiplicity twowhich indicates that
there is in fact no singularity at the point and that the
two eigenvalues cross.This very dramatic property
will almost certainly hold for allLh and must be a
consequence of the integrability (although to our
knowledge no such theorem is in the literature).
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The equimodular curve |κ−(z)| = |κ+(z)|

If the two eigenvaluesκ−(z) andκ+(z) were
sufficient to describe the partition function in the
entire complexz plane then there will be zeros on the
equimodular curve|κ−(z)| = |κ+(z)|. An algebraic
expression for this curve can be obtained but in
practice it is too large to use. Instead we have
numerically computed the curve from the parametric
expressions of Baxter.

!"# !$ !% & % $ "#
!"#

!$

!%

&

%

$

"#
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4. Hard hexagon equimodular
curves
We have numerically computed equimodular curves
for systems up to sizeLh = 30. We have restricted our
attention toLh/3 an integer which is commensurate
with hexagonal ordering in the high density phase.

For cylindrical boundary conditions only eigenvalues
with P = 0 contribute to the partition function.

For toroidal boundary conditions all momentum
sectors contribute. This is particularly important
because in the ordered phase there are eigenvalues
with P = ±2π/3 which for realz are asymptotically
degenerate in modulus with theP = 0 maximum
eigenvalue.
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Comments

1. There are no gaps in these curves. This is a
consequence of the resolvent having double roots. We
will see that hard squares are very different.

2. The right side of all the plots is extremely well fit
by the equimodular curve|κ+(z)| = |κ−(z)|.
3. There is anecklace on the left hand sidewhich is
“bisected” by the curve|κ+(z)| = |κ−(z)|.
4. Up throughLh = 27 the number of necklace
regions isL/3 − 4 butLh = 24 andLh = 30 each
have 4 regions. There is no conjecture forLh > 30.
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Comments

1.Only P = 0,±2π/3 contribute

2. Rays to infinity
The rays which extend to infinity separate regions
where the single eigenvalue atP = 0 is dominant
from regions where the two eigenvalues with
P = ±2π/3 are dominant.On these rays three
eigenvalues have equal modulus.

3. Dominance ofP = 0 asLh → ∞
As Lh increases the regions withP = 0 grow and
squeeze the regions withP = ±2π/3 down to a very
small area. It is thus most natural toconjecture that in
the necklace, in the limitLh → ∞, only momentum
P = 0 survives, except possibly on the equimodular
curves themselves. Partition functions for complex fugacity – p.28/51



5. Hard hexagon partition func-
tion zeros
Forcylindrical boundary conditionswe have
computed hard hexagon partition function zeros on
3L × 3L lattices up to size3L = 39 and we compare
them with equimodular curves by computing
27 × 27, 27 × 54, 27 × 135, 27 × 270.

For toroidal boundary conditionswe have computed
partition function zeros on3L × 3L lattices for up to
size3L = 27 and we compare them with equimodular
curves by computing15 × 150, 15 × 300, 15 ×
600, 18 × 180, 18 × 360, 21 × 210.
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Comments

1. Starting with30 × 30 zeros start to appear in the
necklace and separated regions begin to be apparent.

2. For36×36 it can be argued that there are5 regions.

3. For39×39 it can be argued that there are7 regions.

4. It is unknown if asL → ∞ the zeros fill the entire
necklace region.
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Comments

These plots illustrate a general phenomenon that what
appears in the27 × 27 plot as a very slight deviation
from smooth curves develops forLh × Lv with
Lv → ∞ into the lines separating regions seen in the
equimodular plots.
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Density of zerosD(z) for z < zd

D(z) = limL→∞ DL(zj) where
DL(zj) = 1

NL· (zj−zj+1)
.

As z → zd, D(z) diverges as(1 − z/zd)
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Log plots of the density of zerosDL(zj) on the negativez axis
for L × L lattices with cylindrical boundary conditions. The
figure on the right is an expanded scale near the singular point zd.
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Plots ofDL(zj)/D
′
L(zj) on the negativez axis forL × L lattices

with cylindrical boundary conditions.

For the plot on the left for the range
−4.0 ≤ z ≤ −0.14 the data is extremely well fitted
by the power law form with an exponent−1.32 and
an interceptzf = −0.029. The plot on the right is an
expanded scale nearzd and the line passing through
z = zd corresponds to the true exponent= −1/6
which only is observed in a very narrow range nearzd

of −0.095 ≤ z ≤ zd = −0.0901 · · ·.
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6. Hard square zeros
Forcylindrical boundary conditionswe have
computed partition function zeros on2L × 2L lattices
up to size2L = 38.

For toroidal boundary conditionswe have computed
partition function zeros on2L × 2L lattices for up to
size2L = 28.

Forcylindrical boundary conditionswe study the
dependence on aspect ratioLv/Lh by computing
partition function zeros on26 × Lv lattices up to
Lv = 260.
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Partition function zeros of hard squares with cylindrical
boundary conditions.
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Gaps on−1 < z < zd

The maximum eigenvalue is real forzr < z < zl

wherezr andzl are roots of the resolvant of the
characteristic equation.

Lh zr zl gap

6 −0.4783 −0.52383 0.04900

8 −0.30373 −0.30603 0.00230

10 −0.23722 −0.23736 1.4 × 10−4

−0.73653 −0.77923 0.04270

12 −0.204004 −0.204016 1.2 × 10−5

−0.49353 −0.49533 0.00180

14 −0.1846428 −0.1846440 1.2 × 10−6

−0.37181 −0.37193 1.2 × 10−4

−0.9195 −0.9255 0.0060
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Gaps on−1 < z < zd

16 −0.1721143 −0.17211444 1.4 × 10−7

−0.305078 −0.305086 8 × 10−6

−0.64204 −0.64336 0.00132

18 −0.163388998 −0.163389012 1.4 × 10−8

−0.2643045 −0.2643054 9 × 10−7

−0.494388 −0.494482 9.4 × 10−5

20 −0.156991029 −0.156991031 2 × 10−9

−0.2237253 −0.23723539 9 × 10−8

−0.404120 −0.404127 7 × 10−6

−0.7523 −0.7537 0.0014
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7. Square Ising in a field
The Ising model on a square lattice in a magnetic field
H is defined by
E = −E

∑
j,k{σj,kσj+1,k + σj,kσj,k+1} − H

∑
j,k σj,k.

We use the notation

x = e−2H/kT andy = x1/2e−4E/kT

Hard squaresz = limx→0,E→−∞ y2

Ising atH = 0 is x = 1.

The partition zeros have been computed on the
20 × 20 lattice.
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Universality

Universality says (in some rather vague way) that the
behaviors at the following points are the same

zd of hard hexagons

zd of hard squares

The “ferromagnetic” complex singularity of Ising at
H 6= 0

The sigularity at the Lee=Yang edge.

Does this chain of reasoning connect the natural
boundary of Nickel with the analyticity of hard
squares for−1 < z < zd and with analyticity of the
Lee-Yang arc?
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8. Further open questions

1. If for hard squares the real gaps become dense on
−1 < z < zd will this prevent analytic continuation in
the thermodynamic limit?

2. Is there any meaning to the great structure seen in
the hard square zeros?

3. What is the implication that for hard squares all
eigenvalues are equimodular atz = −1?

4. Neither the zeros nor the equimodular curves
approachzc on the positive real axis as a single curve.
What does this imply about analyticity atzc?

5. There are only three “endpoints” in the26 × 260
zero plots. Does this affect analyticity atzc?
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6. The expansion ofρ−(z) for hard squares atzd is
expected by renormalization and universality
arguments to have the same form as the hard hexagon
expansion. Will the infinite series which multiply
each of the six exponents converge?

7. Does the non generic factorization of the
characteristic equation in theP = 0 sector for hard
hexagons imply that the analyticity properties of hard
hexagons are not generic?

8. What is the thermodynamic limit of the necklace
region for hard heagons?
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9. Conclusion
I am fond of the following theorem from philosophy

No one can be said to understand a paper until and
unless they can generalize it.

A corollary to this theorem is that

No author understands their most recent paper

This talk well illustrates this corollary
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