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Motivation

In 1999-2000 Nickel discovered and in 2001 Orrick,
Nickel, Guttmann and Perk extensively analyzed the
evidence for a natural boundary in the susceptibility
of the Ising model in the complex temperature plane.

This present study Is an attempt to understand the
Implications of this discovery.
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1. Problems for complex fugacity

1. Existence of a shape independent partition function
per site.

2. Equimodular curves versus partition function zeros
3. Areas versus curves of zeros

4. Analytic continuation versus natural boundaries

5. Integrable versus generic non-integrable systems
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2. Preliminaries for hard hexagons and
sguares

1. Grand partition functioron anl, x L, lattice

Zp,0,(2) = 289 g(N) - 27
whereg(N) is the number of allowed configurations.

2. Transfer matrices .

Tiby bry ydarwar, } = L2 Wiag, ajia; by, bjia)
where the occupation numbets b; take the values
0, 1 with

3. Boltzmann weights

bj Q+1
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For hard squares

W(CL]', Aj41; bj, bj_|_1) = ( for

ajajy1 = bibjt1 = azb; = ajibjp =1,
and otherwise:

W(CL]', (j41; bj, bj—H) — (a5 +ajp1+bit+bi41)/4

For hard hexagons

W(CL]', Aj41; bj, bj+1) — 0 for

ajaj41 = bjbjt1 = ajb; = ajpibj = ajb; =1,
and otherwise:

Wia;,aii1; b, biy1) = 2\ @tarthithin)/4
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4. Partition functions from transfer matrices eigenval-

ues

Fortoroidalboundary conditions
Zg,,,,Lh(Z) = TeTh (2 L) = >, )\é“(z; L)

For cylindrical boundary conditions

7§ 1on(2) = (V[T (2 Ly)|[v) = Y0 Ay (25 L)y
with

v(ay, as. -+ ,ar, ) = fﬁl 2%/2 and

c = (V- Vi) (Ve - V)

where)\;, are eigenvalues ang, are eigenvectors
For hard square% = T*; \, real for realz

For hard hexagon%' # T*; some)\; complex for real
<
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5. Thermodynamic limit

For thermodynamics to be valid we must have
F/]{JBT — thv,Lh—wo(Lth)_l In ZL’I)7Lh (Z)
independent of the aspect rafiQ/ L.

In terms of the transfer matrix eigenvalues
limy, oo L' In Zp, 1, (2) = In Apax(2; L)

Therefore If
limLh_m L;l 1iva—>oo L,;l In ZL’I)7Lh (Z)

— thv,Lh—wo(Lth)_l In ZL’U)L}‘L (Z)
then
—F/kpT =limp, oo L; ' In Apax(2; L)
For z > 0 this independence is rigorously true in
general. For complex there Is no general proof and
for hard squares for = —1 it is known to be false.
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6. Partition function zeros versus equimodular curves

We begin with the simplest case where
L,— oo with L, fixed
where the aspect ratib, /L, — oo.

The zeros will lie on curves where two or more
transfer matrix eigenvalues have equal modulus

A1(z; L) | = | Aa(z; L)

On this curvetgﬁ:; — ¢??)  with ¢(2) real.

The density of zeros on this curve Is proportional to
dp(z)/dz

The cases of cylindrical and toroidal boundary
conditions have distinct features which must be
treated separately.

Partition functions for complex fugacity — p.10/51



Cylindrical boundary conditions

Because the boundary vectors translationally
Invariantonly eigenvectors in the sectér = 0 will
have non vanishing scalar produ¢ts: v;). All
eguimodular curves have only two equimodular
eigenvalues.

Toroidal boundary conditions

In this caseall eigenvalues contribute. The
eigenvalues foP and— P have equal modulus
because of translational invariance and thus on
equimodular curves there can be either 2, 3, or 4
equimodular eigenvalues.
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3. Hard hexagon analytic results

Baxter in 1980 has computed the fugacitgnd the
partition function per site
/f:l:(z) — thh—>oo )\max(z; Lh)
for positive z terms of an auxiliary variable using
the functions

1/L

o0 1

G(z) =11,= (1—25n—2)(1—z5" 1)

H(z) =[]~ (1_x5n—3)1(1_;,;5n—2)

Qz) = H;;O:1 (1 —a").

There are two regimes 0 < z < z. < z < oo Where
2o = LEVD — 11.090169 - - -

Both k. (z) have singularities only at
Zey 2= —1/z.=-0.090169---, oo.
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Partition functions per site

High densityz,. < z < o

G(x)\o
2 =1 (i)

1 GS(Qf) Q2(£U5) . HOO (1_x3n—2)(1_x3n—1)

Ry = am H2(z) n—1 (1—231)2
where, as: increases frono to 1, the value of: !
increases frond to 2 1.

Low density0 < z < z,

H(x)\5
2=z (g)

B H3(CB> Q2(CB5> 50 ( 6n 4)(1 x6n 3) (1_x6n—2>
K_ = G2 (2) | anl (1—267=53)(1—zb7—1)(1—z57)2 7

where, as: decreases frorbito —1, the value ofz
Increases frond to z..

Partition functions for complex fugac

ity — p.13/51



Algebraic equation for « (z)

Both . (z) are algebraic functions af Joyce in 1987
obtained the equation fer, (z) using the polynomials

Vi (2) =1+ 11z — 22
Oo(2) = 2* + 22827 + 4942% — 2282 + 1
Os3(z) = (22 +1)- (2 —52223 — 100062 + 522z +1).

[z m) = Yheg O (2)A% = 0, where

Ci(z) = =327 22

Ci(z) = =392 . Q3(2)

Ci(z) = =31210 . [Q4(2) — 2430z - Q3(2)]
Ci(z) = —2* - Q3(2) - [Q3(2) — 1458 2 - (2]
Cy(2) = Q°(2)
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Algebraic equation for x_(z)

For low density we have obtained by means of a
Maple computation the algebraic equation £or(z)

foz,m) =302, Cr (2)- K* =0, where

_932 327, 22

I\

I\

N—

26,323 .37 .,18 . Qo (2),
26 . 319 47. 216 . Q4(2),
—217.318. 5701 - 214 - Q2(2),
—216.314.72.19.37. 212 . Q5 (2) Q3(2),
—210. 3107 2101273001 - Q%(2) +26-3%-5-4933 -z - Q3(2)],
—29.310.11.13-139 - 2% - Q3(z) Q2(2),
—3% .20 Qa(z) - [7-1028327 - Q3(z) —2°-3%-11-419-16811 -2 - Q3(2)],
—z% - Q3(z) - [37- 79087 Q3(z) + 26 - 3% - 5150251 - z - Q3(2)],
—22 - Q2(2) - [19-139Q3(2) —2-3%.151-317 -2 - Q9(2)]
—Q2(2) Q3(2) - [Q2(2) —2-613-2- Q}(2)],

= Q10(2).
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Analyticity of k. (2)

High density
k4 (z) is real and positive fot,. < z < oo

Forz — o

/f+(z) _ 21/3 %Z_Z/S gz—5/3

k4 (z) Is analytic in the plane cut fromoo < 2z < 2,

On the segmentoo < 2z < zg k4 (2) has the phase
e=™/3 for Imz = +e — 0.

Low density

~_ IS real and positive fot; < z < z.

~_ IS analytic in the plane cut from. < z < oo and
—0 < 2 < 2y
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Values of k4 (z) at z. and z4

At z.
(Wer +3%)3 =0 with w., = —(5%2/2.)3k5 (2.)

(Wee + 242 (Wee — 3°) - (we —2%-3%)0 =0
with  we_ = 5°2K%(2.)/ 2

At z = 2z,

(way +3%)° =0 with wg = —(55%/24)3k5 (24)
(wd_ — 24)2 . (wd_ -+ 33)3 . (wd_ -+ 24 . 33)6 =0
with  wg_ = 5°2k2 (24)%/ 24

Thus using appropriate boundary conditions
fg(2e) = ki_(2.) = (3% - 57%/2 2,)1/2 = 2.3144003 - - -
kit (z4) = €X™/30.208689,  k_(z4) = 4]r+(24))
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Expansion ofp_(z) at z4

Joyce obtained an algebraic equation for the low
density density functiop_(z) and expanded it a..
We have obtained the expansion:ats

p—(2) = tg "o (ta) + Tu(ta) + 1 Sa(ta) + 17" (ta) +

t " Salta) + tg " Ss(ta)

wheret; = 573/2(1 — z/z)

S0 = — 9= + 75 (5+ \1/1_)15 + 4 ( 75 + 6\5/39)152 T (17765+ 37312)152 SR

.
- (1) st (5 ) - (1= )t -

S

N

Yo =~ — 15(25—4V5)ta + 45(125 — 108V5)t] — 405(16775 4621V/5)t3 +
_ 3 3 1189 2 646 3
Sy = — 2 - 1(15——)75 +16(175—W)t _ (705—7)15 T
Y4 = % = (175—13V/5)tq+ = (1625 —2637v/5)t2 — 22 (22100 —3499+/5)t3 +
_ 6 1 31 34641 2 40892 3
s = —0 —1 (95— 2L ) tg+ 4 (3875 — 21041) 42— 3L (55685 — 40892 43 ..

The term int>’* was first obtained by Dhar but the full
expansion has not been previously reported.
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comments

All six infinite series converge.
The form follows from the renormalization group

expansion of the singular part of the free energy at
& = Zd

2 4 —n(y’
f s — td/y ‘ ano td " Ziifzo Apym tgl-

y = 12/5is the leading renormalization group

exponent for the Yang-Lee edge which is equalto
(the inverse of the correlation length exponent). The
exponent at z; has never been directly computed.

y' = —2is the exponent for the contributing
Irrelevant operator which breaks rotational invariance
on the triangular lattice.
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Factorization of the characteristic equation

For a transfer matrix with cylindrical boundary
conditions the characteristic equation factorizes into
subspaces characterized by a momentum eigenvalue
P. In general the characteristic polynomial in the
translationally invarianf = 0 subspace will be
Irreducible. We have found that this is indeed the case
for hard squares. Howevdnr hard hexagons we find
that forL; = 12, 15, 18, the characteristic
polynomial, forP = 0, factors into the product of

two irreducible polynomials with integer coefficients.
We have not been able to study the factorization for
larger values of_;, but we presume that factorization
always occurs and Is a result of the integrability of
hard hexagons. What is unclear is if for larger lattices
a factorization into more than two factors can occur.
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Multiplicity of the roots of the resolvent

An even more striking non-generic property of hard
hexagons Is seen in the computation of the resultant o
the characteristic polynomial in the translationally
Invariant sector. The zeros of the resultant locate the
positions of all potential singularities of the
polynomials.

We have been able to compute the resultant for

L, = 12, 15, 18, and find that almost all zeros of the
resultant have multiplicity twavhich indicates that
there Is In fact no singularity at the point and that the
two eigenvalues cross.his very dramatic property
will almost certainly hold for allL;, and must be a
conseguence of the integrability (although to our
knowledge no such theorem is in the literature)
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The equimodular curve |k_(2)| = |k (2)]

If the two eigenvalues (z) andx. (z) were

sufficient to describe the partition function in the
entire complex: plane then there will be zeros on the
equimodular curveéx_(z)| = |k.(2)|. An algebraic
expression for this curve can be obtained but In
practice it is too large to use. Instead we have
numerically computed the curve from the parametric
expressions of Baxter.

o
1
o
_4:_

-8

_1 2 N N N N N S
- - 12
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4. Hard hexagon equimodular
curves

We have numerically computed equimodular curves
for systems up to sizé; = 30. We have restricted our
attention tol; /3 an integer which is commensurate
with hexagonal ordering in the high density phase.

For cylindrical boundary conditions only eigenvalues
with P = 0 contribute to the partition function.

For toroidal boundary conditions all momentum
sectors contribute. This Is particularly important
because In the ordered phase there are eigenvalues
with P = £27 /3 which for realz are asymptotically
degenerate in modulus with tlié = 0 maximum
eigenvalue.

Partition functions for complex fugacity — p.23/51



conditions withP = 0.

12 12 12
- 12 - 15 - 18
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4; 4 4
of o o
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12 12 12
- 21 - 24
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a4l 4l 4k
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Hard hexagon equimodular curves with cylindrical boundary
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- 30

_12-...|...|...|...|...|...
-12 -8 -4 0 4 8 12

Comparison of the dominant eigenvalue crossihgs= 30 In
redwith |k (2)| = |k_(2)| in black
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Comments

1. There are no gaps in these curveésis is a
consequence of the resolvent having double roots. We
will see that hard squares are very different.

2. The right side of all the plots is extremely well fit
by the equimodular curve:  (2)| = |k_(2)|.

3. There i1s anecklace on the left hand siadhich IS
“bisected” by the curveéx, (2)| = |k_(2)].

4. Up throughl;, = 27 the number of necklace
regions isL /3 — 4 but L, = 24 andL;, = 30 each
have 4 regions. There is no conjectureligr> 30.
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Equimodular curves of hard hexagon eigenvalues for tofoida
lattices.Red= 2 eigenvalues; = 3 eigenvalues; Blue =4
eigenvalues. The curnve_(z)| = |k, ()| is black.
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Comments
1.0nly P = 0, +2x/3 contribute

2. Rays to infinity
The rays which extend to infinity separate regions
where the single eigenvalue Bt= 0 is dominant
from regions where the two eigenvalues with

= 427 /3 are dominantOn these rays three
eigenvalues have equal modulus

3. Dominance ofP = 0 asl; — o

As L;, Increases the regions with = 0 grow and
squeeze the regions with = +27/3 down to a very
small area. It is thus most naturald¢onjecture that in
the necklace, in the limif;, — oo, only momentum
P = 0 survives except possibly on the equimodular
curves themselves.




5. Hard hexagon partition func-
tion zeros

For cylindrical boundary conditionwe have
computed hard hexagon partition function zeros on
3L x 3L lattices up to siz8L = 39 and we compare
them with equimodular curves by computing

27 X 27, 27 x 54, 27 x 135, 27 x 270.

Fortoroidal boundary conditionae have computed
partition function zeros oL x 3L lattices for up to
size3L = 27 and we compare them with equimodular
curves by computindg5 x 150, 15 x 300, 15 X

600, 18 x 180, 18 x 360, 21 x 210.
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Partition function zeros of hard hexagons with cylindrical
boundary conditions.
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Comments

1. Starting with30 x 30 zeros start to appear in the
necklace and separated regions begin to be apparent.

2. For36 x 36 It can be argued that there @eegions
3. For39 x 39 it can be argued that there afeegions

4. It 1Is unknown If as, — oo the zeros fill the entire
necklace region.
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The partition function zeros fak,;, x L, cylindrical lattices. For
27 x 270 the equimodular eigenvalue curve is superimposed in
red
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Comments

These plots illustrate a general phenomenon that wha
appears in th@7 x 27 plot as a very slight deviation
from smooth curves develops foy, x L, with

L, — oo Into the lines separating regions seen in the
equimodular plots.
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Density of zerosD(z) for z < z,

D(z) =lim; Dr(z;) where
Di(%) = w0,

Ny (zj—zj41) "

As 2 — z4, D(z) diverges agl — z/z,) !/
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Log plots of the density of zerad, (z;) on the negative axis
for L x L lattices with cylindrical boundary conditions. The
figure on the right is an expanded scale near the singulat pgin
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- 39x39 ||

DL(z)/D’L(z)

-0. 1 1 1 1 ! -0.0 I I I I ! I I I
-4 -3 -2 -1 0 —02.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04

V4 z

Plots of Dy (z;)/ D’ (z;) on the negative axis for L x L lattices
with cylindrical boundary conditions.

For the plot on the left for the range
—4.0 < z < —0.14 the data is extremely well fitted

by the power law form with an exponentl.32 and
an intercept; = —0.029. The plot on the right is an

expanded scale neay and the line passing through
z = zg4 corresponds to the true exponeat—1/6

which only is observed in a very narrow range near
of —0.095 < z < z; = —0.0901 - - -.
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6. Hard square zeros

For cylindrical boundary conditionwe have
computed partition function zeros @i x 2L lattices
up to size2L = 38.

Fortoroidal boundary conditionae have computed
partition function zeros oL x 2L lattices for up to
Size2L = 28.

For cylindrical boundary conditionge study the
dependence on aspect rafig/ L;, by computing
partition function zeros o6 x L, lattices up to
L, = 260.
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Gapson—1 < z < z4

The maximum eigenvalue is real for < z < z
wherez, andz; are roots of the resolvant of the

characteristic equation.

Ly | 2 2 gap
—(0.4783 —0.52383 | 0.04900
—0.30373 —0.30603 | 0.00230

10 | —0.23722 —0.23736 1.4 x 104
—0.73653 —0.77923 | 0.04270

12 | —0.204004 | —0.204016 | 1.2 x 107°
—0.49353 —0.49533 | 0.00180

14 | —0.1846428 | —0.1846440 | 1.2 x 1075
—0.37181 —0.37193 1.2 x 1074
—0.9195 —0.9255 0.0060
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Gapson—1 < z < z4

16

13

20

—0.1721143
—0.305078
—0.64204
—0.163383998
—0.2643045
—0.494388
—0.156991029
—0.2237253
—0.404120
—0.7523

—0.17211444
—0.305086
—0.64336
—0.163389012
—0.2643054
—0.494482
—0.156991031
—0.23723539
—0.404127
—0.7537

1.4 x 1077
8 x 1076
0.00132
1.4 x 1078
9 x 1077
9.4 x 1077
2 x 107?
9 x 1078
7 x 1076
0.0014
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/. Square Ising in a field

The Ising model on a square lattice in a magnetic field
H 1s defined by

E=—-F Zj,k{aj,ka'j—kl,k + 0Oy — H Zj,k T4,k
We use the notation

x = e 2H/ET gndy = g1/2e4E/FT

Hard squares = lim, g p— 0 §°

IsingatHd =0iIsx = 1.

The partition zeros have been computed on the
20 x 20 lattice.
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Universality

Universality says (in some rather vague way) that the
behaviors at the following points are the same

24 Of hard hexagons
24 Of hard squares

The “ferromagnetic” complex singularity of Ising at
H # 0

The sigularity at the Lee=Yang edge.

Does this chain of reasoning connect the natural
boundary of Nickel with the analyticity of hard
squares for-1 < z < zz and with analyticity of the
Lee-Yang arc?
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8. Further open questions

1. If for hard squares the real gaps become dense on
—1 < z < z4 will this prevent analytic continuation In
the thermodynamic limit?

2. |Is there any meaning to the great structure seen Iin
the hard square zeros?

3. What is the implication that for hard squares all
eigenvalues are equimodularzat —17?

4. Neither the zeros nor the equimodular curves
approach,. on the positive real axis as a single curve.
What does this imply about analyticity at?

5. There are only three “endpoints” in tBé x 260
zero plots. Does this affect analyticity at?
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6. The expansion gf_(z) for hard squares at; is
expected by renormalization and universality
arguments to have the same form as the hard hexagol
expansion. Will the infinite series which multiply

each of the six exponents converge?

/. Does the non generic factorization of the
characteristic equation in the¢ = 0 sector for hard
hexagons imply that the analyticity properties of hard
hexagons are not generic?

8. What Is the thermodynamic limit of the necklace
region for hard heagons?
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9. Conclusion
| am fond of the following theorem from philosophy

No one can be said to understand a paper until and
unless they can generalize it.

A corollary to this theorem is that
No author understands their most recent paper

This talk well illustrates this corollary
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