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What is a quantum ground state phase?
By phase, here we mean a set of models with qualitatively
similar behavior. E.g., a g.s. ψ0 of one model could evolve to a
g.s. ψ1 of another model in the same phase by some physically
acceptable dynamics and in finite time. For finite systems such
a dynamics is provided by a quasi-local unitary UΛ.

When we take the thermodynamic limit

lim
Λ↑Γ

U∗ΛAUΛ = α(A), A ∈ AΛ0 ,

this dynamics converges to an automorphism of the algebra of
observables.
To make this more precise, we need some notation.
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Ground states of quantum spin models
By quantum spin system we mean quantum systems of the
following type:

I (finite) collection of quantum systems labeled by x ∈ Λ,
each with a finite-dimensional Hilbert space of states Hx .
E.g., a spin of magnitude S = 1/2, 1, 3/2, . . . would have
Hx = C2,C3,C4, . . . .

I The Hilbert space describing the total system is the
tensor product

HΛ =
⊗
x∈Λ

Hx .

with a tensor product basis |{αx}〉 =
⊗

x∈Λ |αx〉
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I The algebra of observables of the composite system is

AΛ =
⊗
x∈Λ

B(Hx) = B(HΛ).

If X ⊂ Λ, we have AX ⊂ AΛ, by identifying A ∈ AX with
A⊗ 1lΛ\X ∈ AΛ. Then

A =
⋃

Λ

AΛ

‖·‖

A common choice for Λ’s are finite subsets of a graph Γ (often
called the ‘lattice’). E.g., if Γ = Zν , we may consider Λ of the
form [1, L]ν or [−N ,N]ν .
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Interactions, Dynamics, Ground States
The Hamiltonian HΛ = H∗Λ ∈ AΛ is defined in terms of an
interaction Φ: for any finite set X , Φ(X ) = Φ(X )∗ ∈ AX , and

HΛ =
∑
X⊂Λ

Φ(X )

For finite-range interactions, Φ(X ) = 0 if diamX ≥ R .
Heisenberg Dynamics: A(t) = τΛ

t (A) is defined by

τΛ
t (A) = e itHΛAe−itHΛ

For finite systems, ground states are simply eigenvectors of HΛ

belonging to its smallest eigenvalue (sometimes several ‘small
eigenvalues’).
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The quasi-locality property is expressed as follows: there exists
a rapidly decreasing function F (d), such that for observables
A supported in a set X ⊂ Γ, there exists Ad ∈ AXd

such that

‖α(A)− Ad‖ ≤ ‖A‖F (d)

where Xd ⊂ Γ is all sites of distance ≤ d to X .

α is the time evolution for a given unit of time.

For a short-range real dynamics we would have something of
the form

‖τt(A)− Ad‖ ≤ ‖A‖F (d − v |t|)

where v is often referred to as the Lieb-Robinson velocity.
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For X ,Y ⊂ Λ, s.t., X ∩ Y = ∅, A ∈ AX ,B ∈ AY ,
AB − BA = [A,B] = 0: observables with disjoint supports
commute. Conversely, if A ∈ AΛ satisfies

[A,B] = 0, for all B ∈ AY

then Y ∩ suppA = ∅.
So, one can find the support of A by looking which B it
commutes with.
A more general statement is true: if the commutators are
uniformly small for B ∈ AY , then A is close to AΛ\Y .
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Lemma
Let A ∈ AΛ, ε ≥ 0, and Y ⊂ Λ be such that

‖[A,B]‖ ≤ ε‖B‖, for all B ∈ AY (1)

then there exists A′ ∈ AΛ\Y such that

‖A′ ⊗ 1l− A‖ ≤ ε

⇒ we can investigate supp τΛ
t (A) by estimating [τΛ

t (A),B] for
B ∈ AY . This is what Lieb-Robinson bounds are all about.
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Lieb-Robinson bounds
Theorem (Lieb-Robinson 1972, Hastings-Koma 2006, N-Sims
2006, N-Ogata-Sims 2006)

Let F : [0,∞)→ (0,∞) be a suitable non-increasing function
such that the interaction Φ satisfies

‖Φ‖F = sup
x 6=y

F (d(x , y))−1
∑
X3x ,y

‖Φ(X )‖ <∞

Then, ∃ constants C and v (depending only on F , ‖Φ‖F , and
the lattice dimension, s. t. ∀ A ∈ AX and B ∈ AY ,∥∥[τΛ

t (A),B]
∥∥ ≤ C‖A‖ ‖B‖ min(|X |, |Y |)ev |t|F (d(X ,Y )).

where d(X ,Y ) is the distance between X and Y .



11

Suppose Φ0 and Φ1 are two interactions for two models on
lattices Γ.

Each has its set Si , i = 0, 1, of ground states in the
thermodynamic limit. I.e., for ω ∈ Si , there exists

ψΛn g.s. of HΛn =
∑
X⊂Λn

Φi(X ),

for a sequence of Λn ∈ Γ such that

ω(A) = lim
n→∞
〈ψΛn ,AψΛn〉.
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If the two models are in the same phase, we have a suitably
local automorphism α such that

S1 = S0 ◦ α

This means that for any state ω1 ∈ S1, there exists a state
ω0 ∈ S0, such that the expectation value of any observable A
in ω1 can be obtained by computing the expectation of α(A)
in ω0:

ω1(A) = ω0(α(A)).

The quasi-local character of α guarantees that the support of
α(A) need not be much larger than the support of A in order
to have this identity with small error.
Where do such quasi-local automorphisms α come form?
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Fix some lattice of interest, Γ and a sequence Λn ↑ Γ. Let
Φs , 0,≤ s ≤ 1, be a differentiable family of short-range
interactions for a quantum spin system on Γ.
Assume that for some a,M > 0, the interactions Φs satisfy

sup
x ,y∈Γ

ead(x ,y)
∑
X⊂Γ
x,y∈X

‖Φs(X )‖+ |X |‖∂sΦs(X )‖ ≤ M .

E.g,

Φs = Φ0 + sΨ

with both Φ0 and Ψ finite-range and uniformly bounded.
Let Λn ⊂ Γ, Λn → Γ, be a sequence of finite volumes,
satisfying suitable regularity conditions and suppose that the
spectral gap above the ground state (or a low-energy interval)
of

HΛn(s) =
∑
X⊂Λn

Φs(X )

is uniformly bounded below by γ > 0.
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Theorem (Bachmann, Michalakis, N, Sims (2012))
Under the assumptions of above, there exist a co-cycle of
automorphisms αs,t of the algebra of observables such that
S(s) = S(0) ◦ αs,0, for s ∈ [0, 1].
The automorphisms αs,t can be constructed as the
thermodynamic limit of the s-dependent “time” evolution for
an interaction Ω(X , s), which decays almost exponentially.

Concretely, the action of the quasi-local transformations
αs = αs,0 on observables is given by

αs(A) = lim
n→∞

V ∗n (s)AVn(s)

where Vn(s) solves a Schrödinger equation:

d

ds
Vn(s) = iDn(s)Vn(s), Vn(0) = 1l,

with Dn(s) =
∑

X⊂Λn
Ω(X , s).
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The αt,s satisfy a Lieb-Robinson bound of the form

‖[αt,s(A),B]‖ ≤ ‖A‖‖B‖min(|X |, |Y |)eC |t−s|F (d(X ,Y )),

where A ∈ AX ,B ∈ AY , d(X ,Y ) is the distance between X
and Y . F (d) can be chosen of the form

F (d) = Ce
−b d

(log d)2 .

with b ∼ γ/v , where γ and v are bounds for the gap and the
Lieb-Robinson velocity of the interactions Φs , i.e., b ∼ aγM−1.
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The AKLT model
(Affleck-Kennedy-Lieb-Tasaki, 1987)
Antiferromagnetic spin-1 chain: [1, L] ⊂ Z, Hx = C3,

H[1,L] =
L∑

x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
=

L∑
x=1

P
(2)
x ,x+1

The ground state space of H[1,L] is 4-dimensional for all L ≥ 2.
In the limit of the infinite chain, the ground state is unique,
has a finite correlation length, and there is a non-vanishing
gap in the spectrum above the ground state (Haldane phase).

Theorem (Bachmann-N, CMP 2013, to appear)
There exists a curve of uniformly gapped Hamiltonians with
nearest neighbor interaction s 7→ Φs such that Φ0 is the AKLT
interaction and Φ1 defines a model with a unique ground state
of the infinite chain that is a product state.
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J2

J1ferro Haldane

dimer

AKLT

Sutherland SU(3)

Potts SU(3)

Bethe Ansatz

H =
∑

x J1Sx · Sx+1 + J2(Sx · Sx+1)2
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Symmetry protected phases in 1 dimension
For a given system with λ-dependent G -symmetric
interactions, we would like to find criteria to recognize that
the system at λ0 is in a different gapped phase than at λ1,
meaning that the gap above the ground state necessarily
closes for at least one intermediate value of λ.

This is the same problem as before but restricted to a class of
models with a given symmetry group (and representation) G .

Our goal is to find invariants, i.e., computable and, in
principle, observable quantities that can be different at λ0 and
λ1, only if the model is in a different ground state phase.
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The case G = SU(2) and the Excess Spin
Models to keep in mind: antiferromagnetic chains in the
Haldane phase and generalizations. Unique ground state with
a spectral gap and an unbroken continuous symmetry.

Let S i
x , i = 1, 2, 3, x ∈ Z, denote the ith component of the

spin at site x . Claim: one can define

+∞∑
x=1

S i
x ,

as s.a. operators on the GNS space of the ground state and
they generate a representation of SU(2) that is characteristic
of the gapped ground state phase.
We can prove the existence of these excess spin operators for
two classes of models (Bachmann-N, arXiv:1307.0716):
1) models with a random loop representation;
2) models with a matrix product ground state (MPS).
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Frustration-free chains with SU(2) invariant
MPS ground states

H =
∑
x

hx ,x+1

Ground state is defined in terms of an isometry V , which
intertwines two representations of SU(2):

Vug = (Ug ⊗ ug )V , g ∈ SU(2).

E.g., in the AKLT chain Ug is the spin-1 representation and ug

is the spin-1/2 representation of SU(2), corresponding to the
well-known spin 1/2 degrees of freedom at the edges.
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Outline of the argument
(i) First consider the model on the half-infinite chain. The
space of ground states transforms as ug under the action of
SU(2). We call this the edge representation. We prove that,
in general, along a curve of models with a non-vanishing gap,
the edge representation is constant.
(ii) On the infinite chain, we show that the excess spin
operators are well-defined.
(iii) Observe that on the subspace of the GNS Hilbert space of
the infinite-chain ground state consisting of the ground state
of the Hamiltonian of the half-infinite chain, acts as (an
infinite number of copies of) ug .

This is also shows that ug is experimentally observable.
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Elementary excitations
The current interest in gapped ground state phases is
motivated by the potential applications of topologically
ordered phases to quantum information processing, in
particular the nature of elementary excitations (anyons) in
systems with topological order.

As a first step, we looked at the localized nature of the
excitations corresponding to isolated branches in the spectrum
(‘particles’).

Such excitations occur, e.g., the spin-1 Heisenberg
antiferromagnetic chain.
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AF Heisenberg chain spectrum. From: Zheng-Xin Liu, Yi Zhou,

Tai-Kai Ng, arXiv:1307.4958
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AKLT chain

The excitation spectrum of the AKLT chain looks similar:
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Assume that at quasi-momentum p we have a gap ≥ δ > 0
between Ep and the higher eigenvalues of the Hamiltonian and
the same quasi-momentum, uniformly in the size of the
system.

The general result is that, under a technical condition, the
eigenvectors belonging Ep, are of the form

ψp = ψ(Ap) =
∑
x

e ipxTx(Ap)Ω

where Ω is the ground state, Tx denotes translation by x and
Ap is a quasi-local observable. More precisely:

Theorem (Haegeman, Michalakis, N, Osborne, Schuch,
Verstraete, PRL, to appear)

There exists a constants v > 0 and n ≥ 1, such that for
` ≥ `0, there exists A

(`)
p ∈ AB`

such that

|〈ψp, ψ(A(`)
p )〉| ≥ 1− c`ne−δ`/v .
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Concluding comments: implications of locality
The fundamental theories of physics, all relativistic quantum
field theories (QFT) as well as all standard Hamiltonian
models in quantum statistical mechanics (QSM), have a
locality property reflecting the nature of physical space.

In QFT this is due to the finite speed of light and Poincaré
invariance, and is usually expressed by the commutation of
observables with space-like separated supports.

In QSM there is a corresponding of finite speed of propagation
property that can be proved if the particle interactions are of
short (or at least not too long) range: Lieb-Robinson bounds.
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Wightman Axioms (R. Haag, Local Quantum Physics, 1992).

For (x , t) and (y , s) ∈ R3 × R are space-like separated if
‖x − y‖ > c |t − s|, and two regions X and Y are space-like
separated if all points in X are space-like separated from all
points in Y .
The smeared fields are operators on a Hilbert space defined by

ψ(f ) =

∫
f (r)ψ(r)dr

Where f is a test function. The locality property is expressed
by the causality axiom: for f and g with space-like separated
supports we have (in the bosonic case)

[ψ(f ), ψ(g)] = 0.
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Consequences of Locality for QFT
Together with the other Wightman axioms, causality implies a
number of fundamental properties:

I A mass gap implies exponential clustering (Araki, Hepp,
Ruelle (1962), Fredenhagen (1985))

I The Spin-Statistics Theorem

I Additivity of the Energy-Momentum Spectrum: If (p1,E1)
and (p2,E2) are in the spectrum of the
(Momentum,Energy) operator, then so is
(p1 + p2,E1 + E2).

I Borchers classes: a field ψ′ on the same Hilbert space as
ψ that commutes with ψ at space-like separation, is
‘equivalent’ in the sense that the S-matrix is the same.

I Particles



29

Consequences of Locality for Lattice Systems
I A spectral gap above the ground states implies

exponential decay of correlations. (N. Sims, 2006,
Hastings-Koma 2006).

I Existence of thermodynamic limit of the dynamics.

I Local Perturbations Perturb Locally

I Automorphic Equivalence within gapped phases (∼
Borchers classes). Quantum Phase Transitions between
different equivalence classes.

I Area Law for the entanglement entropy

I Particle-like spectrum of excitations.
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Concluding Remarks
I Non-relativistic quantum many-body system have a

locality property similar to relativistic quantum field
theories.

I This locality property can be exploited much in the same
way as one can combine causality in QFT with other
properties to derive important general properties.

I The ground state problem of one-dimensional spin
systems is universal

I We are close to a comprehensive picture gapped ground
state phases in one dimension, but in two (and more)
dimensions many questions remain open (work in progress
with Bachmann, Hamza, and Young.)


