Weakly self-avoiding walk in dimension four

Gordon Slade
University of British Columbia
Mathematical Statistical Physics
Kyoto: July 29, 2013

Abstract

We report on recent and ongoing work on the continuous-time weakly selfavoiding walk on the 4-dimensional integer lattice, with focus on a proof that the susceptibility diverges at the critical point with a logarithmic correction to meanfield scaling. The proof is based on a rigorous renormalisation group analysis of a supersymmetric field theory representation of the weakly self-avoiding walk.

The talk is based on collaborations with David Brydges, and with Roland Bauerschmidt and David Brydges.

Research supported in part by NSERC.

Self-avoiding walk

Discrete-time model: Let $\mathcal{S}_{n}(x)$ be the set of $\omega:\{0,1, \ldots, n\} \rightarrow \mathbb{Z}^{d}$ with: $\omega(0)=0, \omega(n)=x,|\omega(i+1)-\omega(i)|=1$, and $\omega(i) \neq \omega(j)$ for all $i \neq j$. Let $\mathcal{S}_{n}=\cup_{x \in \mathbb{Z}^{d}} \mathcal{S}_{n}(x)$.

Let $c_{n}(x)=\left|\mathcal{S}_{n}(x)\right|$. Let $c_{n}=\sum_{x} c_{n}(x)=\left|\mathcal{S}_{n}\right|$. Easy: $c_{n}^{1 / n} \rightarrow \mu$. Declare all walks in \mathcal{S}_{n} to be equally likely: each has probability c_{n}^{-1}.

Two-point function: $G_{z}(x)=\sum_{n=0}^{\infty} c_{n}(x) z^{n}$, radius of convergence $z_{c}=\mu^{-1}$.
Predicted asymptotic behaviour:

$$
c_{n} \sim A \mu^{n} n^{\gamma-1}, \quad \mathbb{E}_{n}|\omega(n)|^{2} \sim D n^{2 \nu}, \quad G_{z_{c}}(x) \sim C|x|^{-(d-2+\eta)},
$$

with universal critical exponents γ, ν, η obeying $\gamma=(2-\eta) \nu$.

Dimensions other than $d=4$

Theorem. (Brydges-Spencer (1985); Hara-Slade (1992); Hara (2008)...)
For $d \geq 5$,

$$
c_{n} \sim A \mu^{n}, \quad \mathbb{E}_{n}|\omega(n)|^{2} \sim D n, \quad G_{z_{c}}(x) \sim c|x|^{-(d-2)}, \quad \frac{1}{\sqrt{D n}} \omega(\lfloor n t\rfloor) \Rightarrow B_{t} .
$$

Proof uses lace expansion, requires $d>4$.
$d=2$. Prediction: $\gamma=\frac{43}{32}, \nu=\frac{3}{4}, \eta=\frac{5}{24}$,
Nienhuis (1982); Lawler-Schramm-Werner (2004) - connection with SLE $_{8 / 3}$.
$d=3$. Numerical: $\gamma \approx 1.16, \nu \approx 0.588, \eta \approx 0.031$.
E.g., Clisby (2011): $\nu=0.587597(7)$.

Theorem. (lower: Madras 2012, upper: Duminil-Copin-Hammond 2012)

$$
\frac{1}{6} n^{4 / 3 d} \leq \mathbb{E}_{n}|\omega(n)|^{2} \leq o\left(n^{2}\right), \quad \text { so } \nu \geq 2 /(3 d)
$$

Not proved for $d=2,3,4: \mathbb{E}_{n}|\omega(n)|^{2} \leq O\left(n^{2-\epsilon}\right)$, i.e., that $\nu<1$.

Predictions for $d=4$

Prediction is that upper critical dimension is 4 , and asymptotic behaviour for \mathbb{Z}^{4} has \log corrections (e.g., Brézin, Le Guillou, Zinn-Justin 1973):

$$
c_{n} \sim A \mu^{n}(\log n)^{1 / 4}, \quad \mathbb{E}_{n}|\omega(n)|^{2} \sim D n(\log n)^{1 / 4}, \quad G_{z_{c}}(x) \sim c|x|^{-2}
$$

The susceptibility and correlation length are defined by:

$$
\chi(z)=\sum_{n=0}^{\infty} c_{n} z^{n}, \quad \frac{1}{\xi(z)}=-\lim _{n \rightarrow \infty} \frac{1}{n} \log G_{z}\left(n e_{1}\right) .
$$

For these the prediction is:

$$
\chi(z) \sim \frac{A^{\prime}\left|\log \left(1-z / z_{c}\right)\right|^{1 / 4}}{1-z / z_{c}}, \quad \xi(z) \sim \frac{D^{\prime}\left|\log \left(1-z / z_{c}\right)\right|^{1 / 8}}{\left(1-z / z_{c}\right)^{1 / 2}} \quad \text { as } z \uparrow z_{c}
$$

Universality hypothesis.

Continuous-time weakly self-avoiding walk

A.k.a. discrete Edwards model.

Let E_{0} denote the expectation for continuous-time nearest-neighbour simple random walk $X(t)$ on \mathbb{Z}^{d} started from 0 (steps at events of rate-2d Poisson process).

Let $L_{u, T}=\int_{0}^{T} \mathbb{1}_{X(s)=u} d s$ and

$$
I(T)=\int_{0}^{T} \int_{0}^{T} \mathbb{1}_{X(s)=X(t)} d s d t=\sum_{u \in \mathbb{Z}^{d}} L_{u, T}^{2}
$$

Let $g \in(0, \infty), \nu \in(-\infty, \infty)$. The two-point function is

$$
G_{g, \nu}(x)=\int_{0}^{\infty} E_{0}\left(e^{-g I(T)} \mathbb{1}_{X(T)=x}\right) e^{-\nu T} d T
$$

(compare $\left.\sum_{n} c_{n}(x) z^{n}\right)$.
Subadditivity $\Rightarrow \exists \nu_{c}(g)$ s.t. susceptibility $\chi_{g}(\nu)=\sum_{x \in \mathbb{Z}^{d}} G_{g, \nu}(x)$ obeys

$$
\begin{array}{ll}
\chi_{g}(\nu)<\infty & \left(\nu>\nu_{c}(g)\right) \\
\chi_{g}(\nu)=\infty & \left(\nu<\nu_{c}(g)\right) .
\end{array}
$$

Main results

Theorem 1 (Bauerschmidt-Brydges-Slade 2013+). Let $d=4$. There exists $g_{0}>0$ such that for $0<g \leq g_{0}$, as $t \downarrow 0$,

$$
\chi_{g}\left(\nu_{c}(1+t)\right) \sim \frac{A(\log |t|)^{1 / 4}}{t}
$$

Theorem 2 (Brydges-Slade 2011, 2013+). Let $d \geq 4$. There exists $g_{0}>0$ such that for $0<g \leq g_{0}$, as $|x| \rightarrow \infty$,

$$
G_{g, \nu_{c}}(x) \sim \frac{c}{|x|^{d-2}} .
$$

Related results:

- weakly SAW on 4-dimensional hierarchical lattice (replacement of \mathbb{Z}^{4} by a recursive structure well-suited to RG): Brydges-Evans-Imbrie (1992); Brydges-Imbrie (2003); and with different RG method Ohno (2013+).
- 4-dimensional ϕ^{4} field theory: Gawedzki-Kupiainen (1985), Feldman-Magnen-Rivasseau-Sénéor (1987), Hara-Tasaki (1987).

Bubble diagram and role of $d=4$

Let Δ denote the discrete Laplacian on \mathbb{Z}^{d}, i.e., $\Delta \phi_{x}=\sum_{y:|y-x|=1}\left(\phi_{y}-\phi_{x}\right)$. Let

$$
C_{m^{2}}(x)=\int_{0}^{\infty} E_{0}\left(\mathbb{1}_{X(T)=x}\right) e^{-m^{2} T} d T=\left(-\Delta+m^{2}\right)_{0 x}^{-1}
$$

Let X, Y be independent continuous-time simple random walks started from $0 \in \mathbb{Z}^{d}$. The simple random walk bubble diagram is

$$
\mathrm{B}_{m^{2}}=\sum_{x \in \mathbb{Z}^{d}}\left(C_{m^{2}}(x)\right)^{2}=\int_{0}^{\infty} E_{0,0}\left(\mathbb{1}_{X(T)=Y(S)}\right) e^{-m^{2} S} e^{-m^{2} T} d S d T
$$

and the expected mutual intersection time is

$$
\mathrm{B}_{0}=\int_{0}^{\infty} E_{0,0}\left(\mathbb{1}_{X(T)=Y(S)}\right) d S d T
$$

Direct calculation shows $d=4$ is critical: as $m^{2} \downarrow 0$,

$$
\mathrm{B}_{m^{2}} \sim \begin{cases}c m^{-(d-4)} & d<4 \\ c|\log m| & d=4 \\ c & d>4\end{cases}
$$

Bubble diagram and role of $d=4$

For $d \geq 5$ and use of the lace expansion an essential feature is $\mathrm{B}_{0}<\infty$.
For $d=4$, the logarithmic divergence $\mathrm{B}_{m^{2}} \sim c|\log m|$ is the source of the logarithmic corrections to scaling for the 4-d SAW.

Comparison of WSAW and SRW

Our strategy is to determine an effective approximation of the WSAW two-point function by the two-point function of a renormalised SRW:

$$
G_{g, \nu}(x) \approx\left(1+z_{0}\right) G_{0, m^{2}}(x) \quad \text { with } m^{2} \downarrow 0 \text { as } \nu \downarrow \nu_{c} \text {. }
$$

In physics terminology:

- m is the renormalised mass (or physical mass),
- $1+z_{0}$ is the field strength renormalisation.

We use a rigorous RG method to construct $z_{0}=z_{0}(g, \nu)$ and $m^{2}=m^{2}(g, \nu)$ such that

$$
\chi_{g}(\nu)=\left(1+z_{0}\right) \chi_{0}\left(m^{2}\right)=\left(1+z_{0}\right) m^{-2}
$$

with, as $t \downarrow 0$,

$$
z_{0}\left(g, \nu_{c}(1+t)\right) \rightarrow \text { const, }, \quad m^{2}\left(g, \nu_{c}(1+t)\right) \sim \text { const } \frac{t}{|\log t|^{1 / 4}} .
$$

Finite-volume approximation

Fix $g>0$. Given a (large) positive integer L, let Λ_{N} be the torus $\mathbb{Z}^{d} / L^{N} \mathbb{Z}^{d}$. Finite-volume two-point function is defined by

$$
G_{N, \nu}(x)=\int_{0}^{\infty} E_{0}^{N}\left(e^{-g I(T)} \mathbb{1}_{X(T)=x}\right) e^{-\nu T} d T
$$

with E_{0}^{N} the expectation for the continuous-time simple random walk on Λ_{N}. Let $\chi_{N}(\nu)=\sum_{x \in \Lambda_{N}} G_{N, \nu}(x)$ denote the susceptibility on Λ_{N}.

Easy:

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \chi_{N}(\nu)=\chi(\nu) \in[0, \infty] \quad(\nu \in \mathbb{R}), \\
\lim _{N \rightarrow \infty} \chi_{N}^{\prime}(\nu)=\chi^{\prime}(\nu) \quad\left(\nu>\nu_{c}\right)
\end{gathered}
$$

We work in finite volume, maintaining sufficient control to take the limit.

Gaussian expectation and super-expectation

Let $\phi: \Lambda \rightarrow \mathbb{C}$, with complex conjugate $\bar{\phi}$, and let $C=\left(-\Delta+m^{2}\right)^{-1}$.
The standard Gaussian expectation is

$$
E_{C} F(\bar{\phi}, \phi)=Z_{C}^{-1} \int_{\mathbb{C}^{\Lambda}} e^{-\bar{\phi} C^{-1} \phi} F(\bar{\phi}, \phi) d \bar{\phi} d \phi
$$

The super-expectation is (differentials anti-commute)

$$
\mathbb{E}_{C} F(\bar{\phi}, \phi, d \bar{\phi}, d \phi)=\int_{\mathbb{C}^{\Lambda}} e^{-\bar{\phi} C^{-1} \phi-\frac{1}{2 \pi i} d \bar{d} C^{-1} d \phi} F(\bar{\phi}, \phi, d \bar{\phi}, d \phi) .
$$

Then

$$
\mathbb{E}_{C} F(\bar{\phi}, \phi)=E_{C} F(\bar{\phi}, \phi), \quad \text { so in particular } \mathbb{E}_{C} \bar{\phi}_{0} \phi_{x}=E_{C} \bar{\phi}_{0} \phi_{x}=C_{0 x}
$$

Much of the standard theory of Gaussian integration carries over to this setting, with beautiful properties, e.g., for a function of $\tau=\left(\tau_{x}\right)$ with $\tau_{x}=\bar{\phi}_{x} \phi_{x}+\frac{1}{2 \pi i} d \bar{\phi}_{x} d \phi_{x}$,

$$
\mathbb{E}_{C} F(\tau)=F(0)
$$

Functional integral representation

Let

$$
\begin{gathered}
\tau_{x}=\phi_{x} \bar{\phi}_{x}+\frac{1}{2 \pi i} d \phi_{x} d \bar{\phi}_{x} \\
\tau_{\Delta, x}=\frac{1}{2}\left(\phi_{x}(-\Delta \bar{\phi})_{x}+\frac{1}{2 \pi i} d \phi_{x}(-\Delta d \bar{\phi})_{x}+\text { c.c. }\right)
\end{gathered}
$$

Theorem.

$$
\begin{aligned}
G_{N, \nu}(x) & =\int_{0}^{\infty} E_{0}^{N}\left(e^{-g I(T)} \mathbb{1}_{X(T)=x}\right) e^{-\nu T} d T \\
& =\int_{\mathbb{C}^{\Lambda} N} e^{-\sum_{u \in \Lambda}\left(g \tau_{u}^{2}+\nu \tau_{u}+\tau_{\Delta, u}\right)} \bar{\phi}_{0} \phi_{x}
\end{aligned}
$$

RHS is the two-point function of a supersymmetric field theory with boson field ($\phi, \bar{\phi}$) and fermion field $(d \phi, d \bar{\phi})$.
(Parisi-Sourlas '80; McKane '80; Dynkin '83; Le Jan '87; Brydges-Imbrie '03; Brydges-Imbrie-Slade '09).

Renormalised parameters and Gaussian approximation

Let $z_{0}>-1$ and $m^{2}>0$. Change of variables $\phi_{x} \mapsto \sqrt{1+z_{0}} \phi_{x}$ in the integral representation gives

$$
G_{g, \nu}(x)=\left(1+z_{0}\right) \mathbb{E}_{C}\left(e^{-V_{0}} \bar{\phi}_{0} \phi_{x}\right)
$$

where \mathbb{E}_{C} denotes Gaussian super-expectation with covariance

$$
C=\left(-\Delta+m^{2}\right)^{-1}
$$

and

$$
\begin{gathered}
V_{0}=\sum_{u \in \Lambda}\left(g_{0} \tau_{u}^{2}+\nu_{0} \tau_{u}+z_{0} \tau_{\Delta, u}\right) \\
g_{0}=g\left(1+z_{0}\right)^{2}, \quad \nu_{0}=\left(1+z_{0}\right) \nu-m^{2} .
\end{gathered}
$$

Thus the two-point function is the two-point function of a perturbation (by $e^{-V_{0}}$) of a supersymmetric Gaussian field.

Now we study $\mathbb{E}_{C}\left(e^{-V_{0}} \bar{\phi}_{0} \phi_{x}\right)$ and forget about the walks.

Objective

Given $m^{2}, g_{0}, \nu_{0}, z_{0}$, define $C=\left(-\Delta+m^{2}\right)^{-1}, V_{0}=\sum_{u \in \Lambda}\left(g_{0} \tau_{u}^{2}+\nu_{0} \tau_{u}+z_{0} \tau_{\Delta, u}\right)$,

$$
\hat{\chi}_{N}=\hat{\chi}_{N}\left(g_{0}, \nu_{0}, z_{0}, m^{2}\right)=\sum_{x \in \Lambda} \mathbb{E}_{C}\left(e^{-V_{0}} \bar{\phi}_{0} \phi_{x}\right), \quad \hat{\chi}=\lim _{N \rightarrow \infty} \hat{\chi}_{N}
$$

Objective: choose z_{0}, ν_{0} depending on g_{0}, m^{2} such that

$$
\hat{\chi}=\frac{1}{m^{2}}, \quad \frac{\partial \hat{\chi}}{\partial \nu_{0}} \sim-c_{g_{0}} \frac{1}{m^{4}} \frac{1}{\mathrm{~B}_{m^{2}}^{1 / 4}} .
$$

This suffices because after some implicit function theory it allows $\nu_{c}(g)$ to be identified and gives

$$
\frac{\partial \chi}{\partial \nu} \sim-C_{g} \chi^{2}(\log \chi)^{1 / 4} \quad\left(\nu \downarrow \nu_{c}\right)
$$

which implies that

$$
\chi\left(\nu_{c}(1+t)\right) \sim c t^{-1}(|\log t|)^{1 / 4}
$$

So our focus now is on $\hat{\chi}_{N}$.

Laplace transformation

Omit conjugates for simpler formulas. Let $Z_{0}(\phi)=e^{-V_{0}}$. Given $f: \Lambda \rightarrow \mathbb{C}$, let

$$
\Gamma(f)=\mathbb{E}_{C}\left(e^{(\phi, f)} Z_{0}(\phi)\right)=e^{(f, C f)} \mathbb{E}_{C}\left(Z_{0}(\phi+C f)\right) \equiv e^{(f, C f)} Z_{N}(C f)
$$

(by completing the square). Then with $f \equiv 1$ (so $C f=\left(-\Delta+m^{2}\right)^{-1} f=m^{-2}$),

$$
\begin{aligned}
\hat{\chi}_{N}=\sum_{x \in \Lambda} \mathbb{E}_{C}\left(Z_{0}(\phi) \phi_{0} \phi_{x}\right) & =\frac{1}{\left|\Lambda_{N}\right|} D^{2} \Gamma(0 ; f, f) \\
& =\frac{1}{\left|\Lambda_{N}\right|}(f, C f)+\frac{1}{\left|\Lambda_{N}\right|} D^{2} Z_{N}(0 ; C f, C f) \\
& =\frac{1}{m^{2}}+\frac{1}{\left|\Lambda_{N}\right|} D^{2} Z_{N}(0 ; C f, C f)
\end{aligned}
$$

Want to show in particular that, given m^{2}, g_{0}, with well chosen z_{0}, ν_{0}, the last term goes to zero as $N \rightarrow \infty$. So we study $Z_{N}(\phi)$.

Need for multi-scale analysis

Naive attempt via cumulant expansion:

$$
\mathbb{E}_{C} e^{-V_{0}} \approx \exp \left[-\mathbb{E}_{C} V_{0}+\frac{1}{2} \mathbb{E}_{C}\left(V_{0} ; V_{0}\right)-\cdots\right]
$$

fails, e.g., a contribution to the second term on RHS is

$$
\nu_{0}^{2} \sum_{x, y \in \Lambda} C(x, y)^{2} \sim \nu_{0}^{2}|\Lambda| \mathrm{B}_{m^{2}},
$$

and it becomes worse at higher order, $\left(\mathrm{B}_{m^{2}}\right)^{2}$, etc. Terms are exploding.
The renormalisation group method (Wilson, . . .) proposes an approach to solve this problem at the level of theoretical physics via a multi-scale analysis:
Perform the integration by progressively taking into account increasingly large scales.
We do this in a mathematically rigorous manner.

Convolution integrals and progressive integration

Recall that a random variable $X \sim N\left(0, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$ has the same distribution as $X_{1}+X_{2}$ where $X_{1} \sim N\left(0, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(0, \sigma_{2}^{2}\right)$ are independent. In particular,

$$
E_{\sigma_{2}^{2}+\sigma_{1}^{2}} f(X)=E_{\sigma_{2}^{2}}\left(E_{\sigma_{1}^{2}}\left(f\left(X_{1}+X_{2}\right) \mid X_{2}\right)\right) .
$$

This finds expression for \mathbb{E}_{C} via:

$$
\mathbb{E}_{C_{2}+C_{1}} F=\mathbb{E}_{C_{2}} \circ \mathbb{E}_{C_{1}} \theta F,
$$

where

$$
(\theta F)(\phi, \xi, d \phi, d \xi)=F(\phi+\xi, d \phi+d \xi)
$$

$\mathbb{E}_{C_{1}}$ integrates out ξ and $d \xi$, leaving ϕ and $d \phi$ fixed, $\mathbb{E}_{C_{2}}$ integrates out ϕ and $d \phi$.
More generally,

$$
\mathbb{E}_{C_{N}+\cdots+C_{1}} \theta=\mathbb{E}_{C_{N}} \theta \circ \cdots \circ \mathbb{E}_{C_{2}} \theta \circ \mathbb{E}_{C_{1}} \theta
$$

Finite-range decomposition of covariance

Theorem (Brydges-Guadagni-Mitter '04, Bauerschmidt '13).
Let $d=4$ and let $C=\left(-\Delta_{\Lambda}+m^{2}\right)^{-1}$ with $\Lambda=\mathbb{Z}^{d} / L^{N} \mathbb{Z}^{d}$.
There exist positive definite C_{1}, \ldots, C_{N} such that:

- $C=\sum_{j=1}^{N} C_{j}$
- $C_{j}(x, y)=0$ if $|x-y| \geq \frac{1}{2} L^{j}$
- for $j=1, \ldots, N-1,\left|\nabla_{x}^{\alpha} \nabla_{y}^{\alpha} C_{j}(x, y)\right| \leq O\left(L^{-\left(2+2|\alpha|_{1}\right) j}\right)$.

Progressive integration with this covariance decomposition gives

$$
Z_{N}(\phi)=\mathbb{E}_{C}\left(Z_{0}\left(\phi^{\prime}+\phi\right)\right)=\mathbb{E}_{C_{N}} \theta \circ \cdots \circ \mathbb{E}_{C_{2}} \theta \circ \mathbb{E}_{C_{1}} \theta Z_{0} .
$$

Thus we study the mapping

$$
Z_{j} \mapsto Z_{j+1}=\mathbb{E}_{C_{j+1}} \theta Z_{j}
$$

and for this we need good coordinates to describe the mapping.

Relevant, marginal, irrelevant directions

The covariance estimates suggest that under $\mathbb{E}_{C_{j+1}}$:

- a typical field $\phi_{x} \approx\left[C_{j+1 ; x, x}\right]^{1 / 2} \approx L^{-j}$,
- this field is approximately constant over distance L^{j}.

Thus, for a block B of side L^{j},

$$
\sum_{x \in B}\left|\phi_{x}\right|^{p} \approx|B| L^{-j p}=L^{j(4-p)} .
$$

The RHS is relevant for $p<4$, marginal for $p=4$, irrelevant for $p>4$.
Taking symmetries and derivatives into account, the relevant and marginal monomials are:

$$
\tau \text { (relevant }), \quad \tau_{\Delta}(\text { marginal }), \quad \tau^{2}(\text { marginal })
$$

The RG map

Up to an error that must be controlled, seek approximation $Z_{j} \approx e^{-V_{j}(\Lambda)}$, with

$$
V_{j}(\Lambda)=\sum_{u \in \Lambda}\left(g_{j} \tau_{u}^{2}+\nu_{j} \tau_{u}+z_{j} \tau_{\Delta, u}\right),
$$

and write $\mu_{j}=L^{2 j} \nu_{j}$.
The error in the approximation is described by a family of forms $K_{j}=\left(K_{j}(X)\right)$:

$$
Z_{j}=\sum_{X \in \mathcal{P}_{j}(\Lambda)} e^{-V_{j}(\Lambda \backslash X)} K_{j}(X) .
$$

Then

$$
Z_{j} \text { is characterised by }\left(g_{j}, \mu_{j}, z_{j}, K_{j}\right) .
$$

The main effort: to devise an appropriate Banach space whose norm measures the size of K_{j}, and calculate how the coupling constants in V_{j} should evolve with j in such a way that K_{j} remains small.

The RG map is the description of the dynamical system $Z_{j} \mapsto Z_{j+1}=\mathbb{E}_{C_{j+1}} Z_{j}$ via

$$
\mathrm{RG}:\left(g_{j}, z_{j}, \mu_{j}, K_{j}\right) \mapsto\left(g_{j+1}, z_{j+1}, \mu_{j+1}, K_{j+1}\right)
$$

Flow of coupling constants

We compute V_{j+1} accurately to second order in the coupling constants, estimate higher-order errors, and prove that K_{j} contracts. In particular,

$$
\begin{aligned}
g_{j+1} & =g_{j}-\beta_{j} g_{j}^{2}+\cdots & & \text { (marginal) } \\
z_{j+1} & =z_{j}+\cdots & & \text { (marginal) } \\
\mu_{j+1} & =L^{2}\left(1-\frac{1}{4} \beta_{j} g_{j}\right) \mu_{j}+\cdots & & \text { (relevant) }
\end{aligned}
$$

The important coefficient β_{j} is related to the bubble diagram:

$$
\sum_{j=1}^{\infty} \beta_{j}=8 \mathrm{~B}_{m^{2}}
$$

Phase portrait

For each $m^{2} \geq 0$, study the dynamical system:

$$
\mathrm{RG}:\left(g_{j}, z_{j}, \mu_{j}, K_{j}\right) \mapsto\left(g_{j+1}, z_{j+1}, \mu_{j+1}, K_{j+1}\right)
$$

Fixed point: $\mathrm{RG}(0,0,0,0)=(0,0,0,0)=$ free field $=$ simple random walk.

Phase portrait of dynamical system near a hyperbolic fixed point:

Difficulty: Fixed point is not hyperbolic, but picture remains true.

Susceptibility

On the stable manifold (choose z_{0}, ν_{0} depending on $\left.g_{0}, m^{2}\right),\left(V_{N}, K_{N}\right)$ is bounded, and

$$
Z_{N}(\phi)=e^{-V_{N}(\phi)}+K_{N}(\phi) \approx e^{-V_{N}(\phi)}
$$

Thus, with $C f=m^{-2}$ (constant),

$$
\begin{aligned}
\hat{\chi} & =\frac{1}{m^{2}}+\lim _{N \rightarrow \infty} \frac{1}{\left|\Lambda_{N}\right|} D^{2} Z_{N}(0 ; C f, C f) \\
& =\frac{1}{m^{2}}+\lim _{N \rightarrow \infty} \frac{1}{\left|\Lambda_{N}\right|} D^{2} e^{-V_{N}}(0 ; C f, C f) \\
& =\frac{1}{m^{2}}-\lim _{N \rightarrow \infty} 2 \nu_{N} \frac{1}{m^{4}} \\
& =\frac{1}{m^{2}},
\end{aligned}
$$

since $\nu_{N}=L^{-2 N} \mu_{N} \rightarrow 0$.

Logarithmic correction to susceptibility

Study derivative with respect to ν_{0} along stable flow:

$$
\frac{\partial \hat{\chi}}{\partial \nu_{0}}=\lim _{N \rightarrow \infty} \frac{1}{\left|\Lambda_{N}\right|} \frac{\partial}{\partial \nu_{0}} D^{2} e^{-V_{N}(\phi)}(0 ; C f, C f)=-2 \frac{1}{m^{4}} \lim _{N \rightarrow \infty} L^{-2 N} \frac{\partial \mu_{N}}{\partial \nu_{0}} .
$$

Use in particular that

$$
\begin{aligned}
g_{j+1} & =g_{j}-\beta_{j} g_{j}^{2}+\cdots \\
\mu_{j+1} & =L^{2}\left(1-\frac{1}{4} \beta_{j} g_{j}\right) \mu_{j}+\cdots,
\end{aligned}
$$

with $\sum_{j} \beta_{j}=8 \mathrm{~B}_{m^{2}}$ to conclude that

$$
g_{N} \rightarrow \operatorname{const} \frac{1}{\mathrm{~B}_{m^{2}}}, \quad \frac{\partial \mu_{N}}{\partial \nu_{0}} \sim L^{2 N} g_{N}^{1 / 4}
$$

and hence the desired result:

$$
\frac{\partial \hat{\chi}}{\partial \nu_{0}} \sim-\text { const } \frac{1}{m^{4}}\left(\frac{1}{B_{m^{2}}}\right)^{1 / 4} \sim-\text { const } \frac{1}{m^{4}}\left(\frac{1}{-\log m^{2}}\right)^{1 / 4}
$$

Outlook

Some other problems that could be attempted with this method:

1. Similar results for WSAW with nearest-neighbour attraction.
(In preparation Bauerschmidt-Brydges-Slade.)
2. Logarithmic correction for two mutually interacting continuous-time 4- d WSAWs. (In preparation Bauerschmidt-Tomberg-Slade: 2-watermelon and 2-star.)
3. Logarithmic correction to correlation length for $d=4$.
4. Logarithmic corrections to fixed- T quantities (mean-square displacement) for $d=4$. Solved on 4- d hierarchical lattice by Brydges-Imbrie 2003.
5. Similar results for the particular model of discrete-time strictly SAW on \mathbb{Z}^{4} with arbitrary steps (x, y) with weight $\left(-\frac{1}{\varepsilon} \Delta+1\right)_{x y}^{-1}$ and $\varepsilon \ll 1$.
6. 4-d N-component ϕ^{4} field theory. Solved for $N=1$ by Gawedzzki-Kupiainen and Hara-Tasaki 1980's.
