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Abstract
We report on recent and ongoing work on the continuous-time weakly self-

avoiding walk on the 4-dimensional integer lattice, with focus on a proof that the

susceptibility diverges at the critical point with a logarithmic correction to mean-

field scaling. The proof is based on a rigorous renormalisation group analysis of a

supersymmetric field theory representation of the weakly self-avoiding walk.

The talk is based on collaborations with David Brydges, and with Roland

Bauerschmidt and David Brydges.

Research supported in part by NSERC.



Self-avoiding walk

Discrete-time model: Let Sn(x) be the set of ω : {0, 1, . . . , n} → Zd with:

ω(0) = 0, ω(n) = x, |ω(i + 1) − ω(i)| = 1, and ω(i) ̸= ω(j) for all i ̸= j.

Let Sn = ∪x∈ZdSn(x).

Let cn(x) = |Sn(x)|. Let cn =
∑

x cn(x) = |Sn|. Easy: c1/nn → µ.

Declare all walks in Sn to be equally likely: each has probability c−1
n .

Two-point function: Gz(x) =
∑∞

n=0 cn(x)z
n, radius of convergence zc = µ−1.

Predicted asymptotic behaviour:

cn ∼ Aµ
n
n

γ−1
, En|ω(n)|2 ∼ Dn

2ν
, Gzc(x) ∼ C|x|−(d−2+η)

,

with universal critical exponents γ, ν, η obeying γ = (2 − η)ν.

quad1



Dimensions other than d = 4

Theorem. (Brydges–Spencer (1985); Hara–Slade (1992); Hara (2008)...)

For d ≥ 5,

cn ∼ Aµ
n
, En|ω(n)|2 ∼ Dn, Gzc(x) ∼ c|x|−(d−2)

,
1

√
Dn

ω(⌊nt⌋) ⇒ Bt.

Proof uses lace expansion, requires d > 4.

d = 2. Prediction: γ = 43
32, ν = 3

4, η = 5
24,

Nienhuis (1982); Lawler–Schramm-Werner (2004) — connection with SLE8/3.

d = 3. Numerical: γ ≈ 1.16, ν ≈ 0.588, η ≈ 0.031.

E.g., Clisby (2011): ν = 0.587597(7).

Theorem. (lower: Madras 2012, upper: Duminil-Copin–Hammond 2012)

1
6n

4/3d ≤ En|ω(n)|2 ≤ o(n2), so ν ≥ 2/(3d).

Not proved for d = 2, 3, 4: En|ω(n)|2 ≤ O(n2−ϵ), i.e., that ν < 1.

quad2



Predictions for d = 4

Prediction is that upper critical dimension is 4, and asymptotic behaviour for Z4 has log

corrections (e.g., Brézin, Le Guillou, Zinn-Justin 1973):

cn ∼ Aµ
n
(log n)

1/4
, En|ω(n)|2 ∼ Dn(log n)

1/4
, Gzc(x) ∼ c|x|−2

.

The susceptibility and correlation length are defined by:

χ(z) =
∞∑

n=0

cnz
n
,

1

ξ(z)
= − lim

n→∞

1

n
logGz(ne1).

For these the prediction is:

χ(z) ∼
A′| log(1 − z/zc)|1/4

1 − z/zc
, ξ(z) ∼

D′| log(1 − z/zc)|1/8

(1 − z/zc)1/2
as z ↑ zc.

Universality hypothesis.

quad3



Continuous-time weakly self-avoiding walk

A.k.a. discrete Edwards model.

Let E0 denote the expectation for continuous-time nearest-neighbour simple random walk

X(t) on Zd started from 0 (steps at events of rate-2d Poisson process).

Let Lu,T =
∫ T

0
1X(s)=uds and

I(T ) =

∫ T

0

∫ T

0

1X(s)=X(t)ds dt =
∑
u∈Zd

L
2
u,T .

Let g ∈ (0,∞), ν ∈ (−∞,∞). The two-point function is

Gg,ν(x) =

∫ ∞

0

E0

(
e
−gI(T )

1X(T )=x

)
e
−νT

dT

(compare
∑

n cn(x)z
n).

Subadditivity ⇒ ∃νc(g) s.t. susceptibility χg(ν) =
∑

x∈Zd Gg,ν(x) obeys

χg(ν) < ∞ (ν > νc(g)),

χg(ν) = ∞ (ν < νc(g)).

quad4



Main results

Theorem 1 (Bauerschmidt–Brydges–Slade 2013+). Let d = 4. There exists g0 > 0 such

that for 0 < g ≤ g0, as t ↓ 0,

χg(νc(1 + t)) ∼
A(log |t|)1/4

t
.

Theorem 2 (Brydges–Slade 2011, 2013+). Let d ≥ 4. There exists g0 > 0 such that for

0 < g ≤ g0, as |x| → ∞,

Gg,νc(x) ∼
c

|x|d−2
.

Related results:

• weakly SAW on 4-dimensional hierarchical lattice (replacement of Z4 by a recursive

structure well-suited to RG): Brydges–Evans–Imbrie (1992); Brydges–Imbrie (2003);

and with different RG method Ohno (2013+).

• 4-dimensional ϕ4 field theory: Gawȩdzki–Kupiainen (1985), Feldman–Magnen–

Rivasseau–Sénéor (1987), Hara–Tasaki (1987).

quad5



Bubble diagram and role of d = 4

Let ∆ denote the discrete Laplacian on Zd, i.e., ∆ϕx =
∑

y:|y−x|=1(ϕy − ϕx).

Let

Cm2(x) =

∫ ∞

0

E0(1X(T )=x)e
−m2T

dT = (−∆ + m
2
)
−1
0x .

Let X,Y be independent continuous-time simple random walks started from 0 ∈ Zd.

The simple random walk bubble diagram is

Bm2 =
∑
x∈Zd

(Cm2(x))
2
=

∫ ∞

0

E0,0(1X(T )=Y (S))e
−m2S

e
−m2T

dSdT,

and the expected mutual intersection time is

B0 =

∫ ∞

0

E0,0(1X(T )=Y (S))dSdT.

Direct calculation shows d = 4 is critical: as m2 ↓ 0,

Bm2 ∼


cm−(d−4) d < 4

c| logm| d = 4

c d > 4.

quad6



Bubble diagram and role of d = 4

For d ≥ 5 and use of the lace expansion an essential feature is B0 < ∞.

For d = 4, the logarithmic divergence Bm2 ∼ c| logm| is the source of the logarithmic

corrections to scaling for the 4-d SAW.

quad7



Comparison of WSAW and SRW

Our strategy is to determine an effective approximation of the WSAW two-point function

by the two-point function of a renormalised SRW:

Gg,ν(x) ≈ (1 + z0)G0,m2(x) with m
2 ↓ 0 as ν ↓ νc.

In physics terminology:

• m is the renormalised mass (or physical mass),

• 1 + z0 is the field strength renormalisation.

We use a rigorous RG method to construct z0 = z0(g, ν) and m2 = m2(g, ν) such that

χg(ν) = (1 + z0)χ0(m
2
) = (1 + z0)m

−2

with, as t ↓ 0,

z0(g, νc(1 + t)) → const, m
2
(g, νc(1 + t)) ∼ const

t

| log t|1/4
.

quad8



Finite-volume approximation

Fix g > 0. Given a (large) positive integer L, let ΛN be the torus Zd/LNZd.

Finite-volume two-point function is defined by

GN,ν(x) =

∫ ∞

0

E
N
0

(
e
−gI(T )

1X(T )=x

)
e
−νT

dT,

with EN
0 the expectation for the continuous-time simple random walk on ΛN .

Let χN(ν) =
∑

x∈ΛN
GN,ν(x) denote the susceptibility on ΛN .

Easy:

lim
N→∞

χN(ν) = χ(ν) ∈ [0,∞] (ν ∈ R),

lim
N→∞

χ
′
N(ν) = χ

′
(ν) (ν > νc).

We work in finite volume, maintaining sufficient control to take the limit.

quad9



Gaussian expectation and super-expectation

Let ϕ : Λ → C, with complex conjugate ϕ̄, and let C = (−∆ + m2)−1.

The standard Gaussian expectation is

ECF (ϕ̄, ϕ) = Z
−1
C

∫
CΛ

e
−ϕ̄C−1ϕ

F (ϕ̄, ϕ)dϕ̄dϕ.

The super-expectation is (differentials anti-commute)

ECF (ϕ̄, ϕ, dϕ̄, dϕ) =

∫
CΛ

e
−ϕ̄C−1ϕ− 1

2πidϕ̄C
−1dϕ

F (ϕ̄, ϕ, dϕ̄, dϕ).

Then

ECF (ϕ̄, ϕ) = ECF (ϕ̄, ϕ), so in particular ECϕ̄0ϕx = ECϕ̄0ϕx = C0x.

Much of the standard theory of Gaussian integration carries over to this setting, with

beautiful properties, e.g., for a function of τ = (τx) with τx = ϕ̄xϕx + 1
2πidϕ̄xdϕx,

ECF (τ) = F (0).

quad10



Functional integral representation

Let

τx = ϕxϕ̄x + 1
2πidϕxdϕ̄x,

τ∆,x =
1

2

(
ϕx(−∆ϕ̄)x + 1

2πidϕx(−∆dϕ̄)x + c.c.
)
,

Theorem.

GN,ν(x) =

∫ ∞

0

E
N
0

(
e
−gI(T )

1X(T )=x

)
e
−νT

dT

=

∫
CΛN

e
−

∑
u∈Λ(gτ2u+ντu+τ∆,u)ϕ̄0ϕx.

RHS is the two-point function of a supersymmetric field theory with boson field (ϕ, ϕ̄)

and fermion field (dϕ, dϕ̄).

(Parisi–Sourlas ’80; McKane ’80; Dynkin ’83; Le Jan ’87; Brydges–Imbrie ’03;

Brydges–Imbrie–Slade ’09).

quad11



Renormalised parameters and Gaussian approximation

Let z0 > −1 and m2 > 0. Change of variables ϕx 7→
√
1 + z0ϕx in the integral

representation gives

Gg,ν(x) = (1 + z0)EC(e
−V0ϕ̄0ϕx)

where EC denotes Gaussian super-expectation with covariance

C = (−∆ + m
2
)
−1

,

and

V0 =
∑
u∈Λ

(g0τ
2
u + ν0τu + z0τ∆,u)

g0 = g(1 + z0)
2
, ν0 = (1 + z0)ν − m

2
.

Thus the two-point function is the two-point function of a perturbation (by e−V0) of a

supersymmetric Gaussian field.

Now we study EC(e
−V0ϕ̄0ϕx) and forget about the walks.

quad12



Objective

Given m2, g0, ν0, z0, define C = (−∆+m2)−1, V0 =
∑

u∈Λ(g0τ
2
u + ν0τu + z0τ∆,u),

χ̂N = χ̂N(g0, ν0, z0,m
2
) =

∑
x∈Λ

EC(e
−V0ϕ̄0ϕx), χ̂ = lim

N→∞
χ̂N .

Objective: choose z0, ν0 depending on g0,m
2 such that

χ̂ =
1

m2
,

∂χ̂

∂ν0

∼ −cg0
1

m4

1

B
1/4

m2

.

This suffices because after some implicit function theory it allows νc(g) to be identified

and gives
∂χ

∂ν
∼ −Cgχ

2
(logχ)

1/4
(ν ↓ νc)

which implies that

χ(νc(1 + t)) ∼ ct
−1

(| log t|)1/4.
So our focus now is on χ̂N .

quad13



Laplace transformation

Omit conjugates for simpler formulas. Let Z0(ϕ) = e−V0. Given f : Λ → C, let

Γ(f) = EC(e
(ϕ,f)

Z0(ϕ)) = e
(f,Cf)EC(Z0(ϕ + Cf)) ≡ e

(f,Cf)
ZN(Cf)

(by completing the square). Then with f ≡ 1 (so Cf = (−∆ + m2)−1f = m−2),

χ̂N =
∑
x∈Λ

EC(Z0(ϕ)ϕ0ϕx) =
1

|ΛN |
D

2
Γ(0; f, f)

=
1

|ΛN |
(f, Cf) +

1

|ΛN |
D

2
ZN(0;Cf,Cf)

=
1

m2
+

1

|ΛN |
D

2
ZN(0;Cf,Cf).

Want to show in particular that, given m2, g0, with well chosen z0, ν0, the last term goes

to zero as N → ∞. So we study ZN(ϕ).

quad14



Need for multi-scale analysis

Naive attempt via cumulant expansion:

ECe
−V0 ≈ exp

[
−ECV0 +

1

2
EC(V0;V0) − · · ·

]
fails, e.g., a contribution to the second term on RHS is

ν
2
0

∑
x,y∈Λ

C(x, y)
2 ∼ ν

2
0|Λ|Bm2,

and it becomes worse at higher order, (Bm2)
2, etc. Terms are exploding.

The renormalisation group method (Wilson, . . . ) proposes an approach to solve this

problem at the level of theoretical physics via a multi-scale analysis:

Perform the integration by progressively taking into account increasingly large scales.

We do this in a mathematically rigorous manner.

quad15



Convolution integrals and progressive integration

Recall that a random variable X ∼ N(0, σ2
1 +σ2

2) has the same distribution as X1+X2

where X1 ∼ N(0, σ2
1) and X2 ∼ N(0, σ2

2) are independent. In particular,

Eσ22+σ21
f(X) = Eσ22

(
Eσ21

(f(X1 + X2)|X2)
)
.

This finds expression for EC via:

EC2+C1
F = EC2

◦ EC1
θF,

where

(θF )(ϕ, ξ, dϕ, dξ) = F (ϕ + ξ, dϕ + dξ),

EC1
integrates out ξ and dξ, leaving ϕ and dϕ fixed, EC2

integrates out ϕ and dϕ.

More generally,

ECN+···+C1
θ = ECN

θ ◦ · · · ◦ EC2
θ ◦ EC1

θ.

quad16



Finite-range decomposition of covariance

Theorem (Brydges–Guadagni–Mitter ’04, Bauerschmidt ’13).

Let d = 4 and let C = (−∆Λ + m2)−1 with Λ = Zd/LNZd.

There exist positive definite C1, . . . , CN such that:

• C =
∑N

j=1 Cj

• Cj(x, y) = 0 if |x − y| ≥ 1
2L

j

• for j = 1, . . . , N − 1, |∇α
x∇

α
yCj(x, y)| ≤ O(L−(2+2|α|1)j).

Progressive integration with this covariance decomposition gives

ZN(ϕ) = EC(Z0(ϕ
′
+ ϕ)) = ECN

θ ◦ · · · ◦ EC2
θ ◦ EC1

θZ0.

Thus we study the mapping

Zj 7→ Zj+1 = ECj+1
θZj

and for this we need good coordinates to describe the mapping.

quad17



Relevant, marginal, irrelevant directions

The covariance estimates suggest that under ECj+1
:

• a typical field ϕx ≈ [Cj+1;x,x]
1/2 ≈ L−j,

• this field is approximately constant over distance Lj.

Thus, for a block B of side Lj,∑
x∈B

|ϕx|p ≈ |B|L−jp
= L

j(4−p)
.

The RHS is relevant for p < 4, marginal for p = 4, irrelevant for p > 4.

Taking symmetries and derivatives into account, the relevant and marginal monomials are:

τ (relevant), τ∆ (marginal), τ
2
(marginal).

quad18



The RG map

Up to an error that must be controlled, seek approximation Zj ≈ e−Vj(Λ), with

Vj(Λ) =
∑
u∈Λ

(gjτ
2
u + νjτu + zjτ∆,u),

and write µj = L2jνj.

The error in the approximation is described by a family of forms Kj = (Kj(X)):

Zj =
∑

X∈Pj(Λ)

e
−Vj(Λ\X)

Kj(X).

Then

Zj is characterised by (gj, µj, zj, Kj).

The main effort: to devise an appropriate Banach space whose norm measures the size of

Kj, and calculate how the coupling constants in Vj should evolve with j in such a way

that Kj remains small.

The RG map is the description of the dynamical system Zj 7→ Zj+1 = ECj+1
Zj via

RG : (gj, zj, µj, Kj) 7→ (gj+1, zj+1, µj+1, Kj+1).

quad19



Flow of coupling constants

We compute Vj+1 accurately to second order in the coupling constants, estimate

higher-order errors, and prove that Kj contracts. In particular,

gj+1= gj − βjg
2
j + · · · (marginal)

zj+1= zj + · · · (marginal)

µj+1= L
2

(
1 −

1

4
βjgj

)
µj + · · · (relevant)

The important coefficient βj is related to the bubble diagram:

∞∑
j=1

βj = 8Bm2.

quad20



Phase portrait

For each m2 ≥ 0, study the dynamical system:

RG : (gj, zj, µj, Kj) 7→ (gj+1, zj+1, µj+1, Kj+1),

Fixed point: RG(0, 0, 0, 0) = (0, 0, 0, 0) = free field = simple random walk.

Phase portrait of dynamical system near a hyperbolic fixed point:

stable manifold fixed point

unstable manifold

Difficulty: Fixed point is not hyperbolic, but picture remains true.

quad21



Susceptibility

On the stable manifold (choose z0, ν0 depending on g0,m
2), (VN ,KN) is bounded, and

ZN(ϕ) = e
−VN (ϕ)

+ KN(ϕ) ≈ e
−VN (ϕ)

.

Thus, with Cf = m−2 (constant),

χ̂ =
1

m2
+ lim

N→∞

1

|ΛN |
D

2
ZN(0;Cf,Cf)

=
1

m2
+ lim

N→∞

1

|ΛN |
D

2
e
−VN(0;Cf,Cf)

=
1

m2
− lim

N→∞
2νN

1

m4

=
1

m2
,

since νN = L−2NµN → 0.

quad22



Logarithmic correction to susceptibility

Study derivative with respect to ν0 along stable flow:

∂χ̂

∂ν0

= lim
N→∞

1

|ΛN |
∂

∂ν0

D
2
e
−VN (ϕ)

(0;Cf,Cf) = −2
1

m4
lim

N→∞
L

−2N∂µN

∂ν0

.

Use in particular that

gj+1 = gj − βjg
2
j + · · ·

µj+1 = L
2

(
1 −

1

4
βjgj

)
µj + · · · ,

with
∑

j βj = 8Bm2 to conclude that

gN → const
1

Bm2
,

∂µN

∂ν0

∼ L
2N

g
1/4
N

and hence the desired result:

∂χ̂

∂ν0

∼ −const
1

m4

(
1

Bm2

)1/4

∼ −const
1

m4

(
1

− logm2

)1/4

.

quad23



Outlook

Some other problems that could be attempted with this method:

1. Similar results for WSAW with nearest-neighbour attraction.

(In preparation Bauerschmidt–Brydges–Slade.)

2. Logarithmic correction for two mutually interacting continuous-time 4-d WSAWs.

(In preparation Bauerschmidt–Tomberg–Slade: 2-watermelon and 2-star.)

3. Logarithmic correction to correlation length for d = 4.

4. Logarithmic corrections to fixed-T quantities (mean-square displacement) for d = 4.

Solved on 4-d hierarchical lattice by Brydges–Imbrie 2003.

5. Similar results for the particular model of discrete-time strictly SAW on Z4 with

arbitrary steps (x, y) with weight (−1
ε∆ + 1)−1

xy and ε ≪ 1.

6. 4-d N -component ϕ4 field theory. Solved for N = 1 by Gawȩdzki–Kupiainen and

Hara–Tasaki 1980’s.

quad24


