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What is Discrete Holomorphicity?

Λ a planar graph in R2, embedded in complex plane.
Let f be a complex-valued fn defined at midpoint of edges

f said to be DH if it obeys lattice version of
∮
f (z)dz = 0 around any

cycle.

Around elementary plaquette, we use:
f (z01)(z1−z0) + f (z12)(z2−z1) + f (z23)(z3−z2) + f (z30)(z0−z3) = 0

z0 z1

z2z3

zij = (zi + zj)/2

Can be written for this cycle as

f (z23)− f (z01)

z2 − z1
=

f (z12)− f (z30)

z1 − z0
, a discrete Cauchy-Riemann reln
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What is use of DH in SM/CFT?

For review see [S. Smirnov, Proc. ICM 2006, 2010]

DH observables used in proof of long-standing conjectures on
conformal invariance of scaling limit, e.g.,

planar Ising model [S. Smirnov, C. Hongler, D. Chelkak . . . , 2001-]

percolation on honeycomb lattice - Cardy’s crossing formula and reln to
SLE(6) [S. Smirnov: 2001]
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Relation to Integrability

DH seems also to be related to integrability [Riva & Cardy 07, Cardy
& Ikhlef 09, Ikhlef 12, Alam & Batchelor 12, de Gier et al13]

e.g. parafermions of dilute O(n) loop model are DH precisely in the
case when loop weights obey a linear relation whose solution
corresponds to a solution of Yang-Baxter relation.

How to interprete linear relation for R implying YB?

Natural to assume that R∆(x) = ∆(x)R for a quantum group is
behind this.

i.e. DH observables should be understood in terms of quantum group
generators [Bernard & Fendley have publicly made this point].
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Our Key Results

Dense/dilute 0(n) PFs are essentially non-local quantum group

currents for Uq(A
(1)
1 )/Uq(A

(2)
2 )

DH of these currents just comes from R∆(x) = ∆(x)R

Currents of boundary (co-ideal) subalgebra gives rise to observables
that have discrete boundary conditions of form

Re
(
Ψ(z01)(z1 − z0) + Ψ(z12)(z2 − z1)

)
= 0

z0

z1

z2
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Non-local quantum group currents in vertex models

Following Bernard and Felder [1991] we consider a set of elements
{Ja,Θa

b, Θ̂a
b}, a, b = 1, 2, . . . , n, of a Hopf algebra U.

Properties: Θa
bΘ̂c

b = δa,c and Θ̂b
aΘb

c = δa,c

Co-product ∆ and antipode S are (with summation convention):

∆(Ja) = Ja ⊗ 1 + Θa
b ⊗ Jb S(Ja) = −Θ̂b

aJb

∆(Θa
b) = Θa

c ⊗Θc
b S(Θa

b) = Θ̂b
a

∆(Θ̂a
b) = Θ̂a

c ⊗ Θ̂c
b S(Θ̂a

b) = Θb
a.

Acting on rep of U, we represent as

Ja =
a

, Θa
b =

a b
, Θ̂a

b =
ba
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Coproducts pictures are:

∆(Ja) =

Ja ⊗ 1

a
+

Θa
b ⊗ Jb

a

∆(Θa
b) =

Θa
c ⊗Θc

b

a b
, ∆(Θ̂a

b) =

Θ̂a
c ⊗ Θ̂c

b

ba

and obvious extensions to ∆(N)(x).

With R : V1 ⊗ V2 → V2 ⊗ V1

2

1
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R∆(x) = ∆(x)R becomes:

R(Ja ⊗ 1) +

a
+

R(Θa
b ⊗ Jb) =

a
=

(Ja ⊗ 1)R +

a
+

(Θa
b ⊗ Jb)R

a

R(Θa
c ⊗Θc

b) =

a

b

=

(Θa
c ⊗Θc

b)R,

a

b

,

R(Θ̂b
c ⊗ Θ̂c

a) =

a

b
=

(Θ̂b
c ⊗ Θ̂c

a)R

a

b
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For monodromy matrix, we have non-local currents

a
+

a

=
a

+
a

Gives

ja(x − 1

2
, t)− ja(x +

1

2
, t) + ja(x , t − 1

2
)− ja(x , t +

1

2
) = 0

when inserted into a correlation function.
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Quantum Affine Algebras

Consider algebra U gen. by ei , fi , t
±1
i with standard relns and

∆(ei ) = ei ⊗ 1 + ti ⊗ ei , ∆(ti ) = ti ⊗ ti

Hence can consider currents:

ei (x , t +
1

2
) ∼

i

ei (x +
1

2
, t) ∼

i
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We consider two cases with i ∈ {0, 1} with irreps:

Uq(A
(1)
1 ): 6-Vertex Model

e0 = z

(
0 0
1 0

)
, t0 =

(
q−1 0

0 q

)
Uq(A

(2)
2 ): 19-Vertex Izergin-Korepin Model

e0 = z1−`

0 0 0
1 0 0
0 q 0

 , t0 =

q−2 0 0
0 1 0
0 0 q2
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From vertex models to loop models - the A
(1)
1 dense case

6-vertex model R(z = zh/zv ) =


A(z) 0 0 0

0 B(z) C (z) 0
0 C (z) B(z) 0
0 0 0 A(z)

 can be

written in dressed-loop picture as

A(z) = , B(z) = , C (z) = +

plus reversed arrow cases.
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These can be rewriiten as appropriate loop weights
a(z) = qz − q−1z−1, b(z) = z − z−1:

a(z) b(z)

times additional factor (−q)
δ

2π from directed line turning through
angle δ. Acute angle α given by z = (−q)−

α
π .

Thus A(z) = a(z), B(z) = b(z),
C (z) = a(z)(−q)

α
π + b(z)(−q)

α
π
−1 = q − q−1.

Partition fn becomes: Z =
∑

aNabNb(−q − q−1)Nloops
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e0(x , t) in the loop picture - the A
(1)
1 dense case

For Uq(A
(1)
1 ), we have e0 = z

(
0 0
1 0

)
, so sends up arrow to down, or

right arrow to left: Simple boundary conditions consistent with
〈e0(a, b)〉 6= 0 are below, with a free line passing through (a, b) and
attached to boundaries as shown:

〈e0(x , t + 1
2 )〉 = 1

Z

∑

The tail can be moved through loops on boundary.
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To express purely in terms of loop configuration C , consider angle turns of
and and effects of

Both and have same angle turn θ(C ) = πk(C ), where
k(C ) ∈ Z, equals 2 in example. Weight = (−q)k(C).

No. down - no. up crossing of also k(C ). Weight =qk(C).

Hence 〈e0(x , t + 1
2 )〉 = zv

Z

∑
C |(x+ 1

2
,t)∈γ

W (C )(−q2)θ(C)/π.
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Similarly

〈e0(x +
1

2
, t)〉 =

1

Z

∑

=
zh
Z
qα/π

∑
C |(x ,t+ 1

2
)∈γ

W (C )(−q2)θ(C)/π =
zv
Z
e−iα

∑
C |(x ,t+ 1

2
)∈γ

W (C )(−q2)θ(C)
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Defining non-local operator φ0 on edges, by

φ0(x , t +
1

2
) = z−1

v e0(x , t +
1

2
), φ0(x +

1

2
, t) = z−1

v e iαe0(x +
1

2
, t).

we have 〈φ0(a, b)〉 = 1
Z

∑
C |(a,b)∈γ

W (C )(−q2)θ(C)/π and

e0(x − 1/2, t) + e0(x , t − 1/2)− e0(x + 1/2, t)− e0(x , t + 1/2) = 0 .

becomes

φ0(x , t−1/2)+e i(π−α)φ0(x+1/2, t)−φ0(x , t+1/2)−e i(π−α)φ0(x−1/2, t) = 0

φ0 is the known parafermionic operator with DH around plaquette
[Riva &Cardy 06, Smirnov 06]:

π − α

α

(x ,t−1/2)

(x+1/2,t)

(x ,t+1/2)

(x−1/2,t)
(x , t) ∈ Z2 .
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e1(x , t) in the loop picture - dense case

A similar argument works for e1(x , t), but leads to a simpler DH
variable. Defining a non-local operator φ1 on edges, by

φ1(x +
1

2
, t) = z−1

v e1(x +
1

2
, t), φ1(x , t +

1

2
) = z−1

v e iαe1(x , t +
1

2
).

we have 〈φ1(a, b)〉 = 1
Z

∑
C |(a,b)∈γ

W (C )e−iθ(C) which is DH as above.

Note, if we define ēi = ti fi , then we have ∆(ēi ) = ēi ⊗ 1 + ti ⊗ ēi and
the above argument can be repeated. We find corresponding
anti-holomorphic observables.
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Interacting Boundaries

To obtain integrable interacting boundary conditions, identify co-ideal
subalgebra B ⊂ U, ∆(B) = B ⊗ U, and use Sklyanin formalism.

For our V (z) reps earlier, we have KL(z) : V (z−1)→ V (z) and
KL(z) x = x KL(x), x ∈ B.

If Ja, Θa
b ∈ B, we have

z−1

z

a
=

z−1

z
a

z−1

z

a

b =

z−1

za

b
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Towards the loop picture

To make the change to the loop picture, we start from double row
transfer matrix on diagonal (light-cone) lattice:

Then consider loop picture on dual lattice:

R =

z z−1

=
α

K =

z−1

z

=
α

etc
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The A
(1)
1 case

Co-ideal sub-algebra B generated by

{T0 ,T1 ,Q := e1 + r ē0 , Q̄ := ē1 + re0} ,

where r is a real parameter.

KL(z)x = xKL(z) gives:

KL(z) =

(
z + rz−1 0

0 z−1 + rz

)
In loop picture, becomes:

∼ (−q)∓(α−β)/2π

where β is a deficit angle - given by (−q)−(α−β)/π = z+rz−1

z−1+rz
.

Robert Weston (Heriot-Watt) Disc. Hol. & QAA MSP, Kyoto, Aug 3rd, 2013 22 / 27



Introduction Currents in vertex models Vertex to loops Boundaries Continuum Conclusions

For boundary conditions compatible with 〈e0(x , t)〉 6= 0, can use:

Then find (with x + t = 0 mod(2)):

〈e0(x + 1, t)〉 =
z−1(−q)−

1
2

Z

∑
C |(x+1,t)∈γ

W (C )(−q2)θ(C)/π(−q)nβ/2π

〈e0(x , t)〉 =
z−1(−q)−

1
2 e−iα

Z

∑
C |(x ,t)∈γ

W (C )(−q2)θ(C)/π(−q)nβ/2π

n = no. times left path touches boundary minus no. times right path
touches boundary
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Bulk comm relns for modified:

〈φ0(a, b)〉 =
1

Z

∑
C |(a,b)∈γ

W (C )(−q2)θ(C)/π(−q)nβ/2π

are

φ0(x , t) + e iαφ0(x + 1, t)− φ0(x + 1, t + 1)− e iαφ0(x , t + 1) = 0

This is DH on light-cone lattice

α
(x+1,t)

(x+1,t+1)

(x ,t)

(x ,t+1)
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Relation at the left boundary

Q = e1 + r ē0 is conserved at left boundary:

e1(1, t) + r ē0(1, t) = e1(1, t + 1) + r ē0(1, t + 1) , t = 0 (mod 2)

which can be translated into

z−1φ1(1, t) + rzφ̄0(1, t) = e−iαz−1φ1(1, t + 1) + e iαrzφ̄0(1, t + 1)

plus conjugate relns from Q̄.

Defining ψ := z−1(φ1 + rφ0), we find

Re
[
ψ(1, t) + e i(π−α)ψ(1, t + 1)

]
= 0,

α
(1,t)

(1,t+1)

which is BC around plaquette linked to integrability by [Ikhlef 12; de
Gier, Lee, Rasmussen 13].
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The Continuum Limit

When |q| = 1, theories have CFT continuum limits.

Non-rigorous identification of fields obtained by Coulomb gas
approach of Nienhuis [84] with

c = 1− 6(1−g2)
g , hr ,s = (r−gs)2−(1−g)2

4g , g = 1− 2ν.

We find:

Dense case: φ0 ∼ (h13, 0), φ1 ∼ (1, 0); q = −e2πiν .

Dilute case: φ0 ∼ (h12, 0), φ1 ∼ (1, 0); q4 = −e2πiν .
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Conclusions & Comments

Parafermions come directly from quantum group currents

Quantum group invariance leads to DH property

Discrete integral boundary conditions understood similarly from
boundary quantum groups

Why is underlying connection between quasitriangular Hopf algebras
and discrete calculus?

All our results with exception of CFT limit seem to be true for generic
q, including −1 < q < 0 massive regimes.
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Appendix: Non-local operators in lattice models

Consider 1D Ising model in terms of transfer matrix:

V = C2, T : V → V , with Z = TrV (TN).

Could also write for lattice Λ with positions x ∈ {1, 2, · · · ,N}:

V (x) ∼= V , VΛ = ⊗x∈ΛV (x), T (x) : V (x)→ V (x + 1),

B : VΛ → VΛ with B = ⊗x∈ΛT (x), with Z = TrVΛ
(B)

Schematically:

A local operator σz(x) : V (x)→ V (x) is then well defined and

〈σz(n)σy (m)〉 =
1

Z
TrVΛ

(σz(n)σz(m)B).

Can just be written as 〈σz(n)σy (m)〉 = 1
Z TrV (σzTm−nσzTN−m+n).
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Gen. formalism is useful for quasi-local operators in 2D [B&F 91]

If edge mid-points p ∈ Λ, points p∗ ∈ Λ∗:

VΛ = ⊗p∈ΛV (p),

R(x , t) : V (x − 1

2
, t)⊗ V (x , t − 1

2
)→ V (x , t +

1

2
)⊗ V (x +

1

2
, t)

B = ⊗p∗∈Λ∗R(p∗) : VΛ → VΛ, Z = TrVΛ
(B)

Any operator acts as O : VΛ → VΛ and 〈O〉 = 1
Z TrVΛ

(OB)

Local operator O(p) acts as identity on every edge except the one p.

Quasi-local operator O(p) acts as identity except along a string of
edges terminating in p.
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Thus we consider a quasi-local operator ja(p) associated with a node
attached to the edge p and a tail labelled by a terminating at a fixed
point on the left boundary.

The operator relations

a
+

a

=
a

+
a

become ja(x − 1
2 , t)− ja(x + 1

2 , t) + ja(x , t − 1
2 )− ja(x , t + 1

2 ) when
inserted into a correlation function.
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