Discrete Holomorphicity and Quantum Affine Algebras

Robert Weston

Heriot-Watt University, Edinburgh
MSP, Kyoto, Aug 3rd, 2013

Robert Weston (Heriot-Watt) Disc. Hol. & QAA MSP, Kyoto, Aug 3rd, 2013 1/27



@ Introduction

© Non-local quantum group currents in vertex models
© From vertex models to loop models

@ Interacting boundaries

© The continuum limit

@ Conclusions & Comments

Ref: Y. Ikhlef, RW., M. Wheeler, P. Zinn-Justin: Discrete Holomorphicity and
Quantized Affine Algebras, J. Phys.A 46 (2013) 265205, arxiv:1302.4649

Robert Weston (Heriot-Watt) Disc. Hol. & QAA MSP, Kyoto, Aug 3rd, 2013

2/ 27



Introduction

What is Discrete Holomorphicity?

@ A a planar graph in R?, embedded in complex plane.
Let f be a complex-valued fn defined at midpoint of edges

o f said to be DH if it obeys lattice version of § f(z)dz = 0 around any
cycle.

Around elementary plaquette, we use:

f(Z()l)(Zl —Zo) -+ f(Zlg)(ZQ — Zl) + f(223)(23 — 22) =+ f(Z30)(ZO — 23) =0
z3 Z

zj = (zi + z)/2
20 Z1

@ Can be written for this cycle as

f —f f —f
(223) (201) = (212) (230), a discrete Cauchy-Riemann reln
Zo — 71 Z1 — 2o
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Introduction

What is use of DH in SM/CFT?

@ For review see [S. Smirnov, Proc. ICM 2006, 2010]

@ DH observables used in proof of long-standing conjectures on
conformal invariance of scaling limit, e.g.,

o planar Ising model [S. Smirnov, C. Hongler, D. Chelkak ..., 2001-]

e percolation on honeycomb lattice - Cardy’s crossing formula and reln to
SLE(6) [S. Smirnov: 2001]
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Introduction

Relation to Integrability

@ DH seems also to be related to integrability [Riva & Cardy 07, Cardy
& lkhlef 09, Ikhlef 12, Alam & Batchelor 12, de Gier et all3]

e e.g. parafermions of dilute O(n) loop model are DH precisely in the
case when loop weights obey a linear relation whose solution
corresponds to a solution of Yang-Baxter relation.

@ How to interprete linear relation for R implying YB?

Natural to assume that RA(x) = A(x)R for a quantum group is
behind this.

i.e. DH observables should be understood in terms of quantum group
generators [Bernard & Fendley have publicly made this point].
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Introduction

Our Key Results

@ Dense/dilute 0(n) PFs are essentially non-local quantum group
currents for Uq(A(ll))/Uq(Agz))

@ DH of these currents just comes from RA(x) = A(x)R

@ Currents of boundary (co-ideal) subalgebra gives rise to observables
that have discrete boundary conditions of form

Re(\ll(zm)(zl — Zo) + W(212)(22 — 21)) =0

22
21

20
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Currents in vertex models

Non-local quantum group currents in vertex models

o Following Bernard and Felder [1991] we consider a set of elements
{J,,0,2,0%,}, a,b=1,2,...,n, of a Hopf algebra U.

Properties: @abécb = 0,c and éba@bc = 0ac

o Co-product A and antipode S are (with summation convention):

AL =4 014+0L® J, S(Js) = —6°,4,
A(O.2) =0, 206.° S(0.%) = 6°b,
A(©%) = 0. ® ¢, S(8%,) = O,°.

@ Acting on rep of U, we represent as

Cef oty vt
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Currents in vertex models

@ Coproducts pictures are:

A(s) = +

L
L

A, = A(©%) =

@ac ® er éac ® écb
and obvious extensions to AM)(x).

o WithR: Vi@V, = Vo V4 1
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Currents in vertex models

= A(x)R becomes:

(;ﬁ” R

R, ®1)  + _
a b b
b a a
(e °® e — (@ac ® ecb)R7 R(ébc ® éca) — (ébc ® éca)R
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Currents in vertex models

@ For monodromy matrix, we have non-local currents

a vz +aL>» 2/-

2% |
_ a - +aA+ﬁ vz

@ Gives
. 1 . 1 . 1 . 1
Ja(X T t) _Ja(X+ 2 t) +JB(X’ t— 5) _./a(Xv t+ 5) =0

when inserted into a correlation function.
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Currents in vertex models

Quantum Affine Algebras

o Consider algebra U gen. by ¢, f;, t,-jEl with standard relns and
Ale)=e@1+ti®e, A(t)=tQt

@ Hence can consider currents:

1 I \/\/)—/\/\/\/\i
ei(x, t+ 5) ~
1 I >N
ei(X+§’t) ~ \‘
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Currents in vertex models

@ We consider two cases with i € {0, 1} with irreps:

o Ug(AM): 6-Vertex Model

o=z2(2 %) &= g0

° Uq(Agz)): 19-Vertex lzergin-Korepin Model

0 00 0
e=z""*|10 0],60=| 0 1
0 g 0 0
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Vertex to loops

From vertex models to loop models - the Agl) dense case

plus reversed arrow cases.

Robert Weston (Heriot-Watt) Disc. Hol. & QAA MSP, Kyoto, Aug 3rd, 2013 13 /27



Vertex to loops

@ These can be rewriiten as appropriate loop weights
az)=qgz—q 1zt b(z)=z—z71:

a(2) be)

times additional factor (—q)% from directed line turning through
angle 0. Acute angle « given by z = (—q)fﬁ.

e Thus A(z) = a(z)& B(z) = b(z)&
C(z)=a(z)(-a)" + b(2)(—q)= " =q—q "

o Partition fn becomes: Z =" aNepNo(—q — g=1)Nieors
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Vertex to loops

eo(x, t) in the loop picture - the Agl) dense case

0
1 0) so sends up arrow to down, or
right arrow to left: Simple boundary conditions consistent with
(eo(a, b)) # 0 are below, with a free line passing through (a, b) and

attached to boundaries as shown:

e For Uq(Agl)), we have ey = z

The tail ~~3»~~~ can be moved through loops:on boundary.
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Vertex to loops

To express purely in terms of loop configuration C, consider angle turns of
and and effects of ~p~n-

@ Both -—— and —— have same angle turn 6(C) = 7k(C), where
k(C) € Z, equals 2 in example. Weight = (—q)*(©).
@ No. down - no. up crossing of ~~- also k(C). Weight =g*(©).
Hence (eo(x,t +3)) =% 5  W(C)(—¢?)" /.
Cl(x+3,t)ey
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Vertex to loops

o Similarly

_%h _a/xn 20(C)/m _ 2v _—ia 246(C
=247 > W(O)(=a*)" V= Zem y T W(C)(—¢*)"
Cl(x,t+3)ey Cl(x,t+3)ey
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Vertex to loops

@ Defining non-local operator ¢g on edges, by

1 1 1 . 1
do(x, t+ =) = z;leo(x, t+=), ¢olx+=,t)= z;le’aeo(x + =, t).

2 2 2 2
we have (¢o(a,b)) = = > W(C)(—q?)(©)/™ and
Cl(a,b)ey
eo(x —1/2,t) + eo(x,t —1/2) —eg(x +1/2,t) — eg(x,t +1/2) =0.
becomes

do(x, t—1/2)+ €17 go(x+1/2, £)—o(x, t-+1/2)— ™ Dy(x—1/2, £) = 0
@ ¢ is the known parafermionic operator with DH around plaquette
[Riva &Cardy 06, Smirnov 06]:
(x,t+1/2)
Ja® 2
3 (x,t) e Z°.
(x—1/2,t) ® o (x+1/2,t)
\77 —. « B
(x,t—1/2)
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Vertex to loops

e1(x, t) in the loop picture - dense case

@ A similar argument works for e;(x, t), but leads to a simpler DH
variable. Defining a non-local operator ¢ on edges, by
1 1 1

1
¢1(X+*7t)zz;lel(x+§7t)v ¢1(X’t+7):ZV7

i 1
5 5 e'“e(x, t+ =).

2

we have (¢1(a,b)) =1 3 W(C)e () which is DH as above.
C|(a,b)ey

o Note, if we define & = t;f;, then we have A(&) =& ®1+t;® & and
the above argument can be repeated. We find corresponding
anti-holomorphic observables.
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Boundaries

Interacting Boundaries

@ To obtain integrable interacting boundary conditions, identify co-ideal
subalgebra B C U, A(B) = B ® U, and use Sklyanin formalism.

o For our V(z) reps earlier, we have K/ (z) : V(z7!) — V(z) and
Ki(z)x = x Ki(x), x € B.
o If J,, ©,2 € B, we have

z z
a
a ~y
z71 z71
V4 a 4
b = b
a z71 7zl
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Boundaries

Towards the loop picture

@ To make the change to the loop picture, we start from double row
transfer matrix on diagonal (light-cone) lattice:

@ Then consider loop picture on dual lattice:
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Boundaries

The Agl) case

@ Co-ideal sub-algebra B generated by

{To, T1,Q:=e1+ré,Q =& +re},

where r is a real parameter.
o Ki(z)x = xKL(z) gives:

@ In loop picture, becomes:
< -~ (_q):p(afﬁ)/%'r

z4rz"1
z714rz"

where £ is a deficit angle - given by (—gq)~(@=#)/7 =
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Boundaries

e For boundary conditions compatible with (ey(x, t)) # 0, can use:
SRIT

&) 9 & &
Q OO

@ Then find (with x + t = 0 mod(2)):
—1/  _\—
@ittty = U0 S W)~ (q
C|(x+1,t)ey

7 Y(—q —3e—ia _ i
oo, t)) = =9 W(C)(— )/ (— )

C|(x,t)ey

n = no. times left path touches boundary minus no. times right path
touches boundary
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Boundaries

@ Bulk comm relns for modified:

(¢o(a, b)) Z W(C )9(C)/7T(_q)n,8/27r

Cl(a,p)ey

are
do(x, t) + €“po(x + 1,t) — do(x + 1,t +1) — eo(x,t +1) =0

@ This is DH on light-cone lattice

(x,t+1) @ ‘@ (x+1,t+1)

: ¢ a
(x,t) @ ‘ o (x+1,t)
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Boundaries
Relation at the left boundary

@ = e + rg is conserved at left boundary:
eil(l,t)+re(l,t) =e(l,t+1)+rep(l, t + 1), t =0 (mod 2)

@ which can be translated into
27 p1(1,t) + rzdo(1,t) = e @z g1 (1, t + 1) + e rzdo(1, t + 1)
plus conjugate relns from Q.

o Defining ¢ := z7(¢1 + r¢p), we find

. (Lt41)

Re [1/)(1, £) + e (T ap(1, t + 1)} —0, o
. (1,1)

which is BC around plaquette linked to integrability by [Ikhlef 12; de
Gier, Lee, Rasmussen 13].
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Continuum

The Continuum Limit

@ When |g| = 1, theories have CFT continuum limits.

@ Non-rigorous identification of fields obtained by Coulomb gas
approach of Nienhuis [84] with
c=1— 6(1;g2)’ h o — (r—gS)z—(l—g)z’

r,s 4g g:1_2V

o We find:
Dense case: ¢g ~ (h13,0), 01 ~ (1,0); q=—eiv.
Dilute case: ¢g ~ (h12,0),¢1 ~ (1,0); gt = —e2miv.
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Conclusions

Conclusions & Comments

@ Parafermions come directly from quantum group currents
@ Quantum group invariance leads to DH property

@ Discrete integral boundary conditions understood similarly from
boundary quantum groups

@ Why is underlying connection between quasitriangular Hopf algebras
and discrete calculus?

@ All our results with exception of CFT limit seem to be true for generic
g, including —1 < g < 0 massive regimes.
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Conclusions
Appendix: Non-local operators in lattice models

@ Consider 1D Ising model in terms of transfer matrix:
V=C2% T:V =V, with Z=Tr,(TV).

@ Could also write for lattice A with positions x € {1,2,---, N}:
V(x) =V, VA = @xeaV(x), T(x): V(x) = V(x+1),
B : VA — Vi with B = ®4ep T(x), with Z = Try, (B)

Schematically: / / / / /

@ A local operator 0%(x) : V(x) — V/(x) is then well defined and

(o7 () (m) = 5 Trv, (o7 (n)o(m)B).

Can just be written as (oZ(n)o¥(m)) = 2 Try(o? T™ "g? TN-m+n),
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Conclusions

e Gen. formalism is useful for quasi-local operators in 2D [B&F 91]

o If edge mid-points p € A, points p* € A*:

VA = ®P€/\V(p)7

1 1 1 1
Rx,t) © Vix=35,0)@Vixt=2) =2 Vixt+ 7)o Vix+o,t)

B = ®p*e/\*R(p*) . V/\ — \//\, = TrVA(B)

@ Any operator acts as O : Vo — V) and (O) = %TrVA(OB)
@ Local operator O(p) acts as identity on every edge except the one p.

@ Quasi-local operator O(p) acts as identity except along a string of
edges terminating in p.
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Conclusions

@ Thus we consider a quasi-local operator j,(p) associated with a node
attached to the edge p and a tail labelled by a terminating at a fixed
point on the left boundary.

@ The operator relations

a a ~»
4 4 9

o |
B a +aA+” \2

become ja(X - %7 t) _ja(X + %7 t) +ja(X7 t— %) _ja(X7 t+ %) when
inserted into a correlation function.
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