## Discrete Holomorphicity and Quantum Affine Algebras



Robert Weston

Heriot-Watt University, Edinburgh
MSP, Kyoto, Aug 3rd, 2013

## Plan

(1) Introduction
(2) Non-local quantum group currents in vertex models
(3) From vertex models to loop models

4 Interacting boundaries
(5) The continuum limit
(6) Conclusions \& Comments

Ref: Y. Ikhlef, R.W., M. Wheeler, P. Zinn-Justin: Discrete Holomorphicity and Quantized Affine Algebras, J. Phys.A 46 (2013) 265205, arxiv:1302.4649

## What is Discrete Holomorphicity?

- $\Lambda$ a planar graph in $\mathbb{R}^{2}$, embedded in complex plane. Let $f$ be a complex-valued fn defined at midpoint of edges
- $f$ said to be DH if it obeys lattice version of $\oint f(z) d z=0$ around any cycle.

Around elementary plaquette, we use:

$$
f\left(z_{01}\right)\left(z_{1}-z_{0}\right)+f\left(z_{12}\right)\left(z_{2}-z_{1}\right)+f\left(z_{23}\right)\left(z_{3}-z_{2}\right)+f\left(z_{30}\right)\left(z_{0}-z_{3}\right)=0
$$

- Can be written for this cycle as

$$
\frac{f\left(z_{23}\right)-f\left(z_{01}\right)}{z_{2}-z_{1}}=\frac{f\left(z_{12}\right)-f\left(z_{30}\right)}{z_{1}-z_{0}}
$$

## What is use of DH in SM/CFT?

- For review see [S. Smirnov, Proc. ICM 2006, 2010]
- DH observables used in proof of long-standing conjectures on conformal invariance of scaling limit, e.g.,
- planar Ising model [S. Smirnov, C. Hongler, D. Chelkak ..., 2001-]
- percolation on honeycomb lattice - Cardy's crossing formula and reln to SLE(6) [S. Smirnov: 2001]


## Relation to Integrability

- DH seems also to be related to integrability [Riva \& Cardy 07, Cardy \& Ikhlef 09, Ikhlef 12, Alam \& Batchelor 12, de Gier et al13]
- e.g. parafermions of dilute $O(n)$ loop model are DH precisely in the case when loop weights obey a linear relation whose solution corresponds to a solution of Yang-Baxter relation.
- How to interprete linear relation for $R$ implying YB?

Natural to assume that $R \Delta(x)=\Delta(x) R$ for a quantum group is behind this.
i.e. DH observables should be understood in terms of quantum group generators [Bernard \& Fendley have publicly made this point].

## Our Key Results

- Dense/dilute $0(n)$ PFs are essentially non-local quantum group currents for $U_{q}\left(A_{1}^{(1)}\right) / U_{q}\left(A_{2}^{(2)}\right)$
- DH of these currents just comes from $R \Delta(x)=\Delta(x) R$
- Currents of boundary (co-ideal) subalgebra gives rise to observables that have discrete boundary conditions of form

$$
\operatorname{Re}\left(\Psi\left(z_{01}\right)\left(z_{1}-z_{0}\right)+\Psi\left(z_{12}\right)\left(z_{2}-z_{1}\right)\right)=0
$$



## Non-local quantum group currents in vertex models

- Following Bernard and Felder [1991] we consider a set of elements $\left\{J_{a}, \Theta_{a}{ }^{b}, \widehat{\Theta}^{a}{ }_{b}\right\}, a, b=1,2, \ldots, n$, of a Hopf algebra $U$.

Properties: $\quad \Theta_{a}{ }^{b} \hat{\Theta}^{c}{ }_{b}=\delta_{a, c} \quad$ and $\quad \hat{\Theta}^{b}{ }_{a} \Theta_{b}{ }^{c}=\delta_{a, c}$

- Co-product $\Delta$ and antipode $S$ are (with summation convention):

$$
\begin{array}{rlrl}
\Delta\left(J_{a}\right) & =J_{a} \otimes 1+\Theta_{a}{ }^{b} \otimes J_{b} & S\left(J_{a}\right) & =-\widehat{\Theta}^{b}{ }_{a} J_{b} \\
\Delta\left(\Theta_{a}{ }^{b}\right) & =\Theta_{a}{ }^{c} \otimes \Theta_{c}{ }^{b} & S\left(\Theta_{a}{ }^{b}\right) & =\widehat{\Theta}^{b}{ }_{a} \\
\Delta\left(\widehat{\Theta}^{a}{ }_{b}\right) & =\widehat{\Theta}^{a}{ }_{c} \otimes \widehat{\Theta}^{c}{ }_{b} & S\left(\widehat{\Theta}^{a}{ }_{b}\right) & =\Theta_{b}{ }^{a} .
\end{array}
$$

- Acting on rep of $U$, we represent as
- Coproducts pictures are:

$$
\begin{aligned}
& \Delta\left(J_{a}\right)=\underset{a}{ }>|+\underset{a}{ }| \\
& J_{a} \otimes 1 \\
& \Theta_{a}{ }^{b} \otimes J_{b} \\
& \Delta\left(\Theta_{a}{ }^{b}\right)=\quad \text { muspmen, } \Delta\left(\widehat{\Theta}^{a}{ }_{b}\right)= \\
& \Theta_{a}{ }^{c} \otimes \Theta_{c}{ }^{b}
\end{aligned}
$$

and obvious extensions to $\Delta^{(N)}(x)$.

- With $R: V_{1} \otimes V_{2} \rightarrow V_{2} \otimes V_{1}$

$R \Delta(x)=\Delta(x) R$ becomes:


$\left(\Theta_{a}^{c} \otimes \Theta_{c}{ }^{b}\right)=\left(\Theta_{a}^{c} \otimes \Theta_{c}^{b}\right) R, \quad R\left(\widehat{\Theta}^{b}{ }_{c} \otimes \hat{\Theta}^{c}{ }_{a}\right) \quad=\left(\hat{\Theta}^{b}{ }_{c} \otimes \hat{\Theta}^{c}{ }_{a}\right) R$
- For monodromy matrix, we have non-local currents

- Gives

$$
j_{a}\left(x-\frac{1}{2}, t\right)-j_{a}\left(x+\frac{1}{2}, t\right)+j_{a}\left(x, t-\frac{1}{2}\right)-j_{a}\left(x, t+\frac{1}{2}\right)=0
$$

when inserted into a correlation function.

## Quantum Affine Algebras

- Consider algebra $U$ gen. by $e_{i}, f_{i}, t_{i}^{ \pm 1}$ with standard relns and

$$
\Delta\left(e_{i}\right)=e_{i} \otimes 1+t_{i} \otimes e_{i}, \quad \Delta\left(t_{i}\right)=t_{i} \otimes t_{i}
$$

- Hence can consider currents:

$$
\begin{aligned}
& e_{i}\left(x, t+\frac{1}{2}\right) \sim \\
& e_{i}\left(x+\frac{1}{2}, t\right) \sim
\end{aligned}
$$



- We consider two cases with $i \in\{0,1\}$ with irreps:
- $U_{q}\left(A_{1}^{(1)}\right): 6$-Vertex Model

$$
e_{0}=z\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), t_{0}=\left(\begin{array}{cc}
q^{-1} & 0 \\
0 & q
\end{array}\right)
$$

- $U_{q}\left(A_{2}^{(2)}\right)$ : 19-Vertex Izergin-Korepin Model

$$
e_{0}=z^{1-\ell}\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & q & 0
\end{array}\right), t_{0}=\left(\begin{array}{ccc}
q^{-2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & q^{2}
\end{array}\right)
$$

## From vertex models to loop models - the $A_{1}^{(1)}$ dense case

- 6 -vertex model $R\left(z=z_{h} / z_{v}\right)=\left(\begin{array}{cccc}A(z) & 0 & 0 & 0 \\ 0 & B(z) & C(z) & 0 \\ 0 & C(z) & B(z) & 0 \\ 0 & 0 & 0 & A(z)\end{array}\right)$ can be written in dressed-loop picture as

plus reversed arrow cases.
- These can be rewriiten as appropriate loop weights $a(z)=q z-q^{-1} z^{-1}, b(z)=z-z^{-1}:$

times additional factor $(-q)^{\frac{\delta}{2 \pi}}$ from directed line turning through angle $\delta$. Acute angle $\alpha$ given by $z=(-q)^{-\frac{\alpha}{\pi}}$.
- Thus $A(z)=a(z), B(z)=b(z)$, $C(z)=a(z)(-q)^{\frac{\alpha}{\pi}}+b(z)(-q)^{\frac{\alpha}{\pi}-1}=q-q^{-1}$.
- Partition fn becomes: $Z=\sum a^{N_{a}} b^{N_{b}}\left(-q-q^{-1}\right)^{N_{\text {loops }}}$
$e_{0}(x, t)$ in the loop picture - the $A_{1}^{(1)}$ dense case
- For $U_{q}\left(A_{1}^{(1)}\right)$, we have $e_{0}=z\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, so sends up arrow to down, or right arrow to left: Simple boundary conditions consistent with $\left\langle e_{0}(a, b)\right\rangle \neq 0$ are below, with a free line passing through $(a, b)$ and attached to boundaries as shown:

$$
\left\langle e_{0}\left(x, t+\frac{1}{2}\right)\right\rangle=\frac{1}{Z} \sum
$$



The tail $\leadsto>\sim$ can be moved through loops on boundary.


To express purely in terms of loop configuration $C$, consider angle turns of $\longrightarrow$ and $\longrightarrow$ and effects of $\leadsto \rightarrow \sim$

- Both $\rightarrow$ and $\rightarrow$ have same angle turn $\theta(C)=\pi k(C)$, where $k(C) \in \mathbb{Z}$, equals 2 in example. Weight $=(-q)^{k(C)}$.
- No. down - no. up crossing of $\leadsto \rightarrow \sim$ also $k(C)$. Weight $=q^{k(C)}$.

Hence $\left\langle e_{0}\left(x, t+\frac{1}{2}\right)\right\rangle=\frac{z_{V}}{Z} \sum_{C \left\lvert\,\left(x+\frac{1}{2}, t\right) \in \gamma\right.} W(C)\left(-q^{2}\right)^{\theta(C) / \pi}$.

- Similarly

$$
\left\langle e_{0}\left(x+\frac{1}{2}, t\right)\right\rangle=\frac{1}{Z} \sum
$$


$=\frac{z_{h}}{Z} q^{\alpha / \pi} \sum W(C)\left(-q^{2}\right)^{\theta(C) / \pi}=\frac{z_{v}}{Z} e^{-i \alpha} \sum W(C)\left(-q^{2}\right)^{\theta(C)}$ $C \left\lvert\,\left(x, t+\frac{1}{2}\right) \in \gamma\right.$
$C \left\lvert\,\left(x, t+\frac{1}{2}\right) \in \gamma\right.$

- Defining non-local operator $\phi_{0}$ on edges, by

$$
\begin{aligned}
& \phi_{0}\left(x, t+\frac{1}{2}\right)=z_{v}^{-1} e_{0}\left(x, t+\frac{1}{2}\right), \quad \phi_{0}\left(x+\frac{1}{2}, t\right)=z_{v}^{-1} e^{i \alpha} e_{0}\left(x+\frac{1}{2}, t\right) . \\
& \text { we have }\left\langle\phi_{0}(a, b)\right\rangle=\frac{1}{Z} \sum_{C \mid(a, b) \in \gamma} W(C)\left(-q^{2}\right)^{\theta(C) / \pi} \text { and } \\
& e_{0}(x-1 / 2, t)+e_{0}(x, t-1 / 2)-e_{0}(x+1 / 2, t)-e_{0}(x, t+1 / 2)=0 .
\end{aligned}
$$

becomes
$\phi_{0}(x, t-1 / 2)+e^{i(\pi-\alpha)} \phi_{0}(x+1 / 2, t)-\phi_{0}(x, t+1 / 2)-e^{i(\pi-\alpha)} \phi_{0}(x-1 / 2, t)=0$

- $\phi_{0}$ is the known parafermionic operator with DH around plaquette [Riva \&Cardy 06, Smirnov 06]:

| ( $x, t+1 / 2$ ) |  |
| :---: | :---: |
| $\begin{array}{c:c}  & \alpha \\ (x-1 / 2, t) \bullet & \bullet(x+1 / 2, t) \end{array}$ | $(x, t) \in \mathbb{Z}^{2}$. |
| $\begin{gathered} \pi-\alpha \\ (x, t-1 / 2) \end{gathered}$ |  |

## $e_{1}(x, t)$ in the loop picture - dense case

- A similar argument works for $e_{1}(x, t)$, but leads to a simpler DH variable. Defining a non-local operator $\phi_{1}$ on edges, by

$$
\phi_{1}\left(x+\frac{1}{2}, t\right)=z_{v}^{-1} e_{1}\left(x+\frac{1}{2}, t\right), \quad \phi_{1}\left(x, t+\frac{1}{2}\right)=z_{v}^{-1} e^{i \alpha} e_{1}\left(x, t+\frac{1}{2}\right) .
$$

we have $\left\langle\phi_{1}(a, b)\right\rangle=\frac{1}{Z} \sum_{C \mid(a, b) \in \gamma} W(C) e^{-i \theta(C)}$ which is DH as above.

- Note, if we define $\bar{e}_{i}=t_{i} f_{i}$, then we have $\Delta\left(\bar{e}_{i}\right)=\bar{e}_{i} \otimes 1+t_{i} \otimes \bar{e}_{i}$ and the above argument can be repeated. We find corresponding anti-holomorphic observables.


## Interacting Boundaries

- To obtain integrable interacting boundary conditions, identify co-ideal subalgebra $B \subset U, \Delta(B)=B \otimes U$, and use Sklyanin formalism.
- For our $V(z)$ reps earlier, we have $K_{L}(z): V\left(z^{-1}\right) \rightarrow V(z)$ and $K_{L}(z) x=x K_{L}(x), x \in B$.
- If $J_{a}, \Theta_{a}{ }^{b} \in B$, we have



## Towards the loop picture

- To make the change to the loop picture, we start from double row transfer matrix on diagonal (light-cone) lattice:

- Then consider loop picture on dual lattice:

$$
R=z_{z}=z_{z^{-1}}=
$$

## The $A_{1}^{(1)}$ case

- Co-ideal sub-algebra $B$ generated by

$$
\left\{T_{0}, T_{1}, Q:=e_{1}+r \bar{e}_{0}, \bar{Q}:=\bar{e}_{1}+r e_{0}\right\}
$$

where $r$ is a real parameter.

- $K_{L}(z) x=x K_{L}(z)$ gives:

$$
K_{L}(z)=\left(\begin{array}{cc}
z+r z^{-1} & 0 \\
0 & z^{-1}+r z
\end{array}\right)
$$

- In loop picture, becomes:

$$
\oint \quad \sim(-q)^{\mp(\alpha-\beta) / 2 \pi}
$$

where $\beta$ is a deficit angle - given by $(-q)^{-(\alpha-\beta) / \pi}=\frac{z+r z^{-1}}{z^{-1}+r z}$.

- For boundary conditions compatible with $\left\langle e_{0}(x, t)\right\rangle \neq 0$, can use:

- Then find (with $x+t=0 \bmod (2))$ :

$$
\begin{aligned}
\left\langle e_{0}(x+1, t)\right\rangle & =\frac{z^{-1}(-q)^{-\frac{1}{2}}}{Z} \sum_{C \mid(x+1, t) \in \gamma} W(C)\left(-q^{2}\right)^{\theta(C) / \pi}(-q)^{n \beta / 2 \pi} \\
\left\langle e_{0}(x, t)\right\rangle & =\frac{z^{-1}(-q)^{-\frac{1}{2}} e^{-i \alpha}}{Z} \sum_{C \mid(x, t) \in \gamma} W(C)\left(-q^{2}\right)^{\theta(C) / \pi}(-q)^{n \beta / 2}
\end{aligned}
$$

$n=$ no. times left path touches boundary minus no. times right path touches boundary

- Bulk comm relns for modified:

$$
\left\langle\phi_{0}(a, b)\right\rangle=\frac{1}{Z} \sum_{C \mid(a, b) \in \gamma} W(C)\left(-q^{2}\right)^{\theta(C) / \pi}(-q)^{n \beta / 2 \pi}
$$

are

$$
\phi_{0}(x, t)+e^{i \alpha} \phi_{0}(x+1, t)-\phi_{0}(x+1, t+1)-e^{i \alpha} \phi_{0}(x, t+1)=0
$$

- This is DH on light-cone lattice

$$
\begin{array}{cc}
(x, t+1) \bullet & \bullet(x+1, t+1) \\
\ddots & (\alpha \alpha \\
(x, t) \bullet & \bullet(x+1, t)
\end{array}
$$

## Relation at the left boundary

- $Q=e_{1}+r \bar{e}_{0}$ is conserved at left boundary:
$e_{1}(1, t)+r \bar{e}_{0}(1, t)=e_{1}(1, t+1)+r \bar{e}_{0}(1, t+1), \quad t=0(\bmod 2)$
- which can be translated into
$z^{-1} \phi_{1}(1, t)+r z \bar{\phi}_{0}(1, t)=e^{-i \alpha} z^{-1} \phi_{1}(1, t+1)+e^{i \alpha} r z \bar{\phi}_{0}(1, t+1)$ plus conjugate relns from $\bar{Q}$.
- Defining $\psi:=z^{-1}\left(\phi_{1}+r \phi_{0}\right)$, we find

$$
\operatorname{Re}\left[\psi(1, t)+e^{i(\pi-\alpha)} \psi(1, t+1)\right]=0
$$

- $(1, t+1)$
- $(1, t)$
which is BC around plaquette linked to integrability by [lkhlef 12; de Gier, Lee, Rasmussen 13].


## The Continuum Limit

- When $|q|=1$, theories have CFT continuum limits.
- Non-rigorous identification of fields obtained by Coulomb gas approach of Nienhuis [84] with
$c=1-\frac{6\left(1-g^{2}\right)}{g}, \quad h_{r, s}=\frac{(r-g s)^{2}-(1-g)^{2}}{4 g}, \quad g=1-2 \nu$.
- We find:

Dense case: $\phi_{0} \sim\left(h_{13}, 0\right), \phi_{1} \sim(1,0) ; \quad q=-e^{2 \pi i \nu}$.
Dilute case: $\phi_{0} \sim\left(h_{12}, 0\right), \phi_{1} \sim(1,0) ; \quad q^{4}=-e^{2 \pi i \nu}$.

## Conclusions \& Comments

- Parafermions come directly from quantum group currents
- Quantum group invariance leads to DH property
- Discrete integral boundary conditions understood similarly from boundary quantum groups
- Why is underlying connection between quasitriangular Hopf algebras and discrete calculus?
- All our results with exception of CFT limit seem to be true for generic $q$, including $-1<q<0$ massive regimes.


## Appendix: Non-local operators in lattice models

- Consider 1D Ising model in terms of transfer matrix: $V=\mathbb{C}^{2}, T: V \rightarrow V$, with $Z=\operatorname{Tr} V\left(T^{N}\right)$.
- Could also write for lattice $\Lambda$ with positions $x \in\{1,2, \cdots, N\}$ :
$V(x) \cong V, V_{\Lambda}=\otimes_{x \in \Lambda} V(x), T(x): V(x) \rightarrow V(x+1)$,
$B: V_{\Lambda} \rightarrow V_{\wedge}$ with $B=\otimes_{x \in \Lambda} T(x)$, with $Z=\operatorname{Tr}_{V_{\Lambda}}(B)$

Schematically:

- A local operator $\sigma^{z}(x): V(x) \rightarrow V(x)$ is then well defined and

$$
\left\langle\sigma^{z}(n) \sigma^{y}(m)\right\rangle=\frac{1}{Z} \operatorname{Tr}_{V_{\wedge}}\left(\sigma^{z}(n) \sigma^{z}(m) B\right)
$$

Can just be written as $\left\langle\sigma^{z}(n) \sigma^{y}(m)\right\rangle=\frac{1}{Z} \operatorname{Tr} v\left(\sigma^{z} T^{m-n} \sigma^{z} T^{N-m+n}\right)$.

- Gen. formalism is useful for quasi-local operators in 2D [B\&F 91]
- If edge mid-points $p \in \Lambda$, points $p^{*} \in \Lambda^{*}$ :

$$
\begin{aligned}
V_{\Lambda} & =\otimes_{p \in \Lambda} V(p) \\
R(x, t) & : V\left(x-\frac{1}{2}, t\right) \otimes V\left(x, t-\frac{1}{2}\right) \rightarrow V\left(x, t+\frac{1}{2}\right) \otimes V\left(x+\frac{1}{2}, t\right) \\
& B=\otimes_{p * \in \Lambda^{*}} R(p *): V_{\Lambda} \rightarrow V_{\Lambda}, \quad Z=\operatorname{Tr}_{V_{\Lambda}}(B)
\end{aligned}
$$

- Any operator acts as $\mathcal{O}: V_{\wedge} \rightarrow V_{\wedge}$ and $\langle\mathcal{O}\rangle=\frac{1}{Z} \operatorname{Tr}_{V_{\wedge}}(\mathcal{O B})$
- Local operator $\mathcal{O}(p)$ acts as identity on every edge except the one $p$.
- Quasi-local operator $\mathcal{O}(p)$ acts as identity except along a string of edges terminating in $p$.
- Thus we consider a quasi-local operator $j_{a}(p)$ associated with a node attached to the edge $p$ and a tail labelled by a terminating at a fixed point on the left boundary.
- The operator relations

become $j_{a}\left(x-\frac{1}{2}, t\right)-j_{a}\left(x+\frac{1}{2}, t\right)+j_{a}\left(x, t-\frac{1}{2}\right)-j_{a}\left(x, t+\frac{1}{2}\right)$ when inserted into a correlation function.

