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α-(BEDT-TTF)2I3

• Multilayered system with conducting layers of BEDT-TTF 
molecules and insulating layers of I3 anions.

A. Kobayashi et al., (2004) 
S. Katayama, A. Kobayashi, Y. Suzumura, (2006)  

N. Tajima, (RIKEN) 

Tajima et al., 2000, 2006• Dirac fermion system under high pressure
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Motivation
• α-(BEDT-TTF)2I3 has unique interlayer magnetoresistance

• Experimental result : Tmax = C B − gµBB

Tmax = C B

→ Peak temperature is shifted by the Zeeman energy.

• Previous theoretical research : 

• The interlayer tunneling should be related to spin-flip processes.

T. Morinari and T. Tohyama, (2010)

Recently, Osada gave an analytical formula for inter-
layer magnetoresistance in a multilayer Dirac fermion
system as follows:

!zz ¼
A

jBzj exp½# 1
2
ec2ðB2

xþB2
yÞ@jBzj ' þ B0

; (1)

where A ¼ "@3=2Ct2cce3 is a parameter that is considered
to be independent of the magnetic field if the system is
clean. B0 is a fitting parameter, C is defined by C ¼R
!0ðEÞð#df=dEÞdE using the spectral density of the

zero-mode Landau level, and !0ðEÞ satisfies
R
!0ðEÞdE ¼

1 [22]. Note that only lattice constant c is a material
parameter.

Except for narrow regions around # ¼ 0( and 180(, this
formula can be simplified to !zz ¼ A=ðjBzjþ B0Þ. Using
this formula and assuming B0 ¼ 0:7 T, we tried to fit the
curves in Fig. 1. This simple formula reproduces well both
the magnetic field dependence and the angle dependence of
the magnetoresistance at magnetic fields above 0.5 T as
shown by solid lines in Figs. 1(a) and 1(b), which eviden-
ces the existence of zero-mode Landau carriers in
$-ðBEDT-TTFÞ2I3 at high pressures.

Here we briefly mention the origin of positive magneto-
resistance around # ¼ 0( or 180(. In the magnetic field in
these directions, the Lorentz force works to bend the carrier
trajectory to the direction parallel to the 2D plane. It
reduces the tunneling of carriers between neighboring
layers so that the positive magnetoresistance is observed.
Note that the formula (1) for # ¼ 0( or 180( does not
correctly evaluate the effect of the Lorentz force and, thus,
loses its validity. The value of the resistance peak depends
weakly on the azimuthal angle. At 3 T, for example, the
ratio of the maximum value to the minimum value is less
than 1.3. According to the calculation of interlayer mag-
netoresistance by Morinari, Mimura, and Tohyama, the
effect of Dirac cones with highly anisotropic Fermi veloc-
ity is averaged and gives rise to this small difference [25].

An apparent discrepancy of the data from the formula
(1) is also seen at both low and high magnetic fields normal
to the 2D plane, because the model is oversimplified.
Equation (1) was derived based on the quantum limit
picture in which only the zero-mode Landau level is con-
sidered. In fact, each Landau level has a finite width due to
scattering. At a sufficiently low magnetic field, the zero-
mode Landau level overlaps with other Landau levels. In
such a region, the formula (1) loses its validity. We can
recognize this region in Fig. 1 below 0.2 T, where positive
magnetoresistance is observed. This critical magnetic field
shifts to a lower field with decreasing temperature, as
shown in Fig. 2(a).

The deviation of data in the high field region is much
more serious. In this region, the resistance increases ex-
ponentially with increasing field. This phenomenon is
understood as follows.

In the above discussion, we did not consider the Zeeman
effect. The Zeeman effect, however, should be taken into

consideration because it has a significant influence on the
transport phenomena at low temperatures. In the presence
of a magnetic field, each Landau level is split into two
levels with energies EnLL ) !E, where !E ¼ %BB is the
Zeeman energy. This change in the energy structure gives
rise to a change in the carrier density in Landau levels. In
particular, the influence on the zero-mode carrier density is
the strongest, because the energy level is shifted from the
position of the Fermi energy. The value of the Fermi
distribution function varies from fðEFÞ ¼ 1=2 to fð!EÞ ¼
1=½expð!E=kBTÞ þ 1'. At low temperatures where kBT <
!E, this effect becomes important. It works to reduce the
density of zero-mode carriers and, thus, increases the
resistance.
The Zeeman energy when B ¼ 1 T is about 1 K.

Therefore, in the experiment performed at 1 K, the devia-
tion of experimental results from Eq. (1) is expected to start
around 1 T. This is confirmed in Fig. 2(a). At 1.8 K, for
example, the deviation is prominent in fields above 2 T.
This critical field shifts to about 0.3 T at 0.06 K.
A definite evidence showing that the anomalous increase

in the resistance at high field in Fig. 2(a) is due to the
Zeeman effect is given by examining the slopes of the
curves at high fields. In this region, the magnetic field
dependence of resistance is expressed as Rzz /
expðB=B1Þ, where B1 is a parameter that depends on tem-
perature. B1 for T ¼ 1:8 K is estimated to be about 2.7 T.
At 0.06 K, it decreases down to about 1.1 T. In Fig. 2(b), we
plot the temperature dependence of B1. Above 1 K, the T
vs B1 curve is close to a line B1 ¼ kBT=%B. This is strong
evidence that the Zeeman splitting of zero-mode Landau
levels is the origin of the resistance that obeys the expo-
nential law as Rzz / expð2%BB=2kBTÞ. In contrast, the
behavior of B1 below 1 K is understood in terms of the
width of Landau levels. According to the theory of Osada,
%BB=ð@=&Þ * 1 at the magnetoresistance minimum [22].

FIG. 2. (a) Magnetic field dependence of interlayer resistance
for the magnetic field normal to the 2D plane at several tem-
peratures from 0.06 to 9.6 K. (b) Temperature dependence of B1

when resistance is assumed to be Rzz / expðB=B1Þ.
(c) Temperature dependence of the width of Landau levels
(2@=&).
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decrease at lower temperatures, since the thermal overlaps of
the levels decreases. The scattering between the n ¼ 0 and
"1 still remains down to around T ¼ Tmax. The inter Landau
level scattering is well suppressed to the quantum limit
below Tmax. Instead, the highly degenerated n ¼ 0 level
contributes to the conduction to cause the negative MR.
Such a crossover makes the peak of the positive MR at Tmax.

Figure 4 shows a field dependence of Tmax determined
from Fig. 3. Tmax rapidly rises from 0T, however, seems to
saturate under strong fields. This reminds us of the field
dependence of the energy separation between the n ¼ 0 and
"1 Landau levels, !E01 ¼ v

ffiffiffiffiffiffiffiffiffiffi
2eh"B

p
. Let us analyze the

behavior of Tmax on the basis of the above scheme, that is,
kBTmax is assumed to be comparable to !E01 at the peak. We
write the field dependence of Tmax as,

kBTmax ¼ c!Enet

¼ cðv
ffiffiffiffiffiffiffiffiffiffi
2eh"B

p
$ g!BB$ " Þ

¼ cveff
ffiffiffiffiffiffiffiffiffiffi
2eh"B

p
$ cg!BB; ð1Þ

where veff ¼ vð1$ #Þ is modified effective Fermi velocity, g
is the g-factor, and c is a dimensionless coefficient of order
of unity. Here, veff ð< vÞ is used to take account of the
fact that the Landau levels have offset width " due to the
carrier scattering by charged defects. According to the self-
consistent Born approximation,16) " ¼ #v

ffiffiffiffiffiffiffiffiffiffi
2eh"B

p
, where

# ¼ niu
2=ð2$v2h" 2Þ < 1, ni is the impurity density per unit

area, and u is the strength of the impurity potential per unit
area. The Zeeman effect is taken into account by the last
term in eq. (1). Similarly to our previous study,11) we set
g ¼ 2 here. The Zeeman (spin) splitting of the Landau levels
also reduces the inter-level separation. The least squares fit
to Tmax ¼ c!Enet=kB is shown by the solid curve in Fig. 4.
The reproducibility of the data is satisfactory. We obtain,
c ¼ 0:93 and veff ¼ 2:4& 104 m/s from the fitting. To check
the validity of the analysis, we compare the results with
those for the field dependence.11) From the behavior of the
peak field Bp, a parameter C ¼ TB$1=2

p ' 10KT$1=2 has
been estimated from the experimental data for #-(BEDT-
TTF)2I3.15) In our analysis, C ¼ cveff

ffiffiffiffiffiffiffi
2eh"

p
=kB, which is

calculated to be 9.3 KT$1=2. These values of C well agree
with each other. The temperature and field dependence of
the MR peak is thus consistently analyzed, so that our
present scheme in terms of the Landau quantization is
justified from the experimental viewpoint. The level sepa-
ration parameter, !E01, for the present data is also obtained
as a function of B, i.e.,!E01=kB ¼ C

ffiffiffi
B

p
. The peculiar n ¼ 0

and "1 Landau level structure is thus revealed for the first
time for #-(BEDT-TTF)2I3 by its temperature dependence of
MR.

In the present data, the effect of the scattering due to
charged defects is not negligible. In fact, we obtain # ¼ 0:76
using the averaged Fermi velocity v ¼ 1& 105 m/s obtained
from the Hall coefficient,4) so that we have veff ¼ 0:24v.
It is possible to estimate the offset width at an appropriate
field by the relation, " ¼ #v

ffiffiffiffiffiffiffiffiffiffi
2eh"B

p
. For Bp ( 0:2T at low

temperatures, "=kB ( 14K is obtained. This value is larger
than "=kB ( 3K15) estimated for our previous measure-
ments on a different sample. For this material, insufficient
pressure remains charge ordered defects. Strong anisotropy
in v% may be relevant for this discrepancy. We have used the
v value obtained from the in-plane Hall measurements,4)

which may be overestimated for the average v value to give
Landau quantization. If a smaller value, v ¼ 0:5& 105 m/s,
for example, is assumed for the level separation, rather than
that used above, a more appropriate estimation "=kB (
3:5K is obtained. Another possibility is that the inter-layer
transfers accompanied by inter-level transfers also broaden
the Landau levels, which may contribute to the offset width
" . Even if these factors are taken account of, the discrep-
ancy is so large that the defect scattering is significant in the
present case. For more detailed discussion on the sizable
difference between veff and v, sample and pressure depend-
ence should be examined. It is not easy to derive relevant
information from the height of the MR peak, because the
height is determined by the balance between the positive and
negative contributions.

Fig. 4. The peak temperature Tmax as a function of magnetic field and
its least squares fit. The solid curve is the fit to Tmax ¼ c!Enet=kB ¼
ðcveff

ffiffiffiffiffiffiffiffiffiffi
2eh"B

p
$ cg!BBÞ=kB. c ¼ 0:93 and veff ¼ 2:4& 104 m/s are ob-

tained from this fitting.

Fig. 3. (Color online) Temperature dependence of MR at various mag-
netic fields ranged from B ¼ 0:25 to 7 T.
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Results
• The opposite spin mean field arise from the interlayer 
Coulomb interaction 

• The opposite spin mean field leads 
the interlayer spin-flip tunneling

• The peak temperature of the 
interlayer magnetoresistance is 
shifted by the Zeeman energy.
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