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Outline of Talk 

§  Introduction 
§  Granular Hydrodynamics 
§  Nonlinear Stability and Stuart-Landau Eqn 
§  Results: `Bounded’ granular convection 
§ ̀ Semi-bounded’ granular convection  
§  Gradient and Vorticity Banding 
§  Experiments on Vibrated Binary Mixtures 
§  Conclusions 
 



q    Athermal system 
q    Inelastic dissipation             Microscopic Irreversibility 
q    Lack of Scale Separation 
q    Extended Set of Hydrodynamic Fields ? 



Oscillons and Faraday Waves (Swinney etal 1996)  



Oscillons (f/2) 

Subharmonic (f/2, f/4, …) 

Convection 

Leidenfrost 

Vibration Driven 
Granular Matter 

Umbanhower et.al 1996 

Eshuis et al 2005 

Eshuis et al 2007 

Subharmonic + ??? 

Alam & Ansari (2012) 



Order parameter models for granular Faraday patterns 
Patterns can be predicted by the complex Ginzburg-Landau Eqn 
 (Tsimring and Aranson 1997) 

“Phenomenological model”  

Swift-Hohenberg equation describes primary pattern forming bifurcation: 
square, strips and oscillons (Crawford and Riecke 1999)   
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Landau-type order parameter model  

for granular patterns?  



Navier-Stokes-order 
Constitutive Model 

Stress Tensor 

Granular Heat Flux 

Balance Equations 

 Granular Hydrodynamic Equations 
  (Savage, Jenkins, Goldhirsch, …) 

…	  

Dissipation term or sink of energy 



`Bounded’ Convection Reference Scales 
• Length:  
Gap between two walls 
• Number Density:  
Average number density 
• Temperature:  
Base temperature 

Hdn
K

π
2

=Knudsen Number 

2)1(4 −−= KeRHeat Loss Parameter 

Dimensionless Parameters 

Fr = Tbase
mgHFroude Number 

Khain & Meerson 2003 



Steady State + No Flow 
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Base flow:  steady, fully developed flow 

Boundary	  Condi-ons	  
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Thermal lower wall 

Adiabatic upper wall 

Fr =10,R = 0.5
K = 0.02



Linear Stability 
'    where XXX base +=...''
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Boundary	  Condi-ons	  

Fr =10,R ≠ 0

Fr =10,R ≈ 0

Fr =10

Khain & Meerson 2003 

R = 4(1− e)K −2

Fr = Tbase
mgH

New Modes 
(Shukla and Alam 2013) 

Unstable 

Unstable 



Dynamics close to critical situation is dominated by finitely many “critical” modes. 

Nonlinear Stability:  
Center Manifold Reduction (Carr 1981;  Shukla & Alam, PRL 2009) 

Z : complex amplitude of  finite-size perturbation 

ω=+= )0()0()0( ibac

First Landau Coefficient Second Landau Coefficient 

)2()2()2( ibac += )4()4()4( ibac +=

Taking the inner product  of slow mode equation with adjoint eigenfunction  
of the linear problem and separating the  like-power terms in amplitude,  
we get an amplitude equation   

ê 



Cont… 

Represent all non-critical modes 

Slaved Equations 

Distortion of  
mean flow  

Second  
harmonic Adjoint 

Other perturbation methods can be used:  
e.g. Amplitude expansion method (Shukla & Alam, 2011a, JFM) 
       Multiple scale analysis,  (TDGL eqn., Saitoh & Hayakawa 2011) 

Caution: Ignoring `Slaved’ Equations will lead to qualitatively wrong result! 



Equilibrium Amplitude and Bifurcation 
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Cubic Solution 

0=
dt
dA

Real amplitude eqn. 

Phase eqn. 

0,0 )2()0( <> aaSupercritical Bifurcation 

0,0 )2()0( >< aaSubcritical Bifurcation 

0)0( =b 0)0( ≠b
Pitchfork (stationary) bifurcation Hopf (oscillatory) bifurcation 

θiAeZ =Cubic Landau Eqn 



Results: Nonlinear Convection (Shukla  and Alam, 2013) 

Supercritical 

R =1.0,Fr =10 2=xk

R =1
Fr =10Unstable 

R = 4(1− e)K −2

Fr = Tbase
mgH



Elastic and quasi-elastic collisions  )0( ≈R

“Subcritical” and “supercritical” bifurcations in “elastic” limit  
è Classical Rayleigh-Benard Convection   

Fr =10,R ≈ 0

R = 4(1− e)K −2

Fr = Tbase
mgH



Convection 

Leidenfrost 

(Eshuis et al 2005) 

(Eshuis et al 2007) 

``Leidenfrost State’’ to 
``Convection’’ 



Experiment 

Nonlinear Solution 

Comparison of density patterns from Experiment, Simulation and  
Nonlinear  Theory   

Particle Simulation 

17.0,170,6 === xkSF

Experiment 

Shukla, van der Meer, Lohse and Alam,  
        (2013, Preprint) 
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Phase diagram: Linear Stability 

Convection rolls are subcritical  
or supercritical? 

(Eshuis et al 2010) 



Conclusions   

    
§  ``Double’’ roll  (subcritical solution) convection 
         (needs verification from simulation) 
 
§  New solutions in the quasi-elastic limit  
         (related to classical Rayleigh-Benard convection) 
 
§ For semibounded convection, theory agrees with experiment  
   and simulation (qualitatively)  

References  
Shukla & Alam (2013) Preprint 
Shukla , van der Meer, Lohse & Alam (2013), Preprint 

Thank you 
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•  Shear-Banding? 

•  Granular Hydrodynamic Equations 

•  Sturat-Landau Equation 

•  Results for Gradient Banding 

•  Results for Vorticity Banding 

•  Summary 



Shear-banding: A misnomer? 
Homogeneous/uniform shear flow is unstable above some critical applied  

shear-rate or shear stress (Hoffman 1972, Olmsted 2008). 
 
 
Flow becomes inhomogeneous/non-uniform characterized by coexisting-bands of 

different shear-rate or shear stress (rheological properties).   

Vorticity Banding  Gradient Banding  

low shear-rate  

high shear-rate  

low shear stress  

high shear stress  



Shear-Cell Experiments 
Shear-Banding in `Dense’ Granular Flow  
(Savage &  Sayed  1984; Mueth et.al. 2000 ) 
 
Ø Granular material does not flow homogeneously  
   like a fluid, but usually forms  solid-regions    
   that are separated by ``narrow’’ bands  
   where material yields and flow. 
 
Ø Shear-bands are narrow  and localized  
   near moving  boundary.    

Fast particles (yellow) near the inner wall appear to move 
smoothly while the orange and red particles display 
more irregular and intermittent motion  

Couette cell 
Particle tracking  

Mueth et al. 2000 

1γ

2γ

Velocity profile of  
shear-banded state 

Two different shear rates 



Rheological Signature of Banded States  
•  Multiple(*) Branches of flow-curve 

•  Gradient Banding : 

Negative Slope 
Steady shear stress decreases 
(homogeneous flow is unstable) 

Low shear  
rate band 
 “AB” 

High shear rate  
band “ FG” 

Unstable “CE”   

Stress 

Shear-  
rate 

Selected  
shear stress   

Non-monotonic  
flow-curve 

* Banding also occurs for monotonic flow-curves (Olmsted 2008) 

Shear-rate > critical shear-rate 



shear stress  > critical shear stress Vorticity Banding  

γSelected shear-rate  

Stress 

Shear- 
rate 

selγ

Negative Slope 
(Steady shear rate decreases  
with increasing shear stress) 

Homogeneous flow is unstable 

High shear stress band “ FG” 

A 

B 
C 

D 

E 

F 
G 

Low shear stress band  “AB” 

Unstable “CE”   

Rheological Signature…. 

Non-monotonic  
flow curve 

Multiple Branches in flow curve 



Particle Simulations 
Gradient banding 
in 2-dimensional  

granular shear flow at 
low density 

Vorticity banding 
in 3-dimensional 

granular shear flows at 
low density 

x 

y 

05.00 =φ

Tan & Goldhirsch 1997 

05.00 =φ

Conway & Glasser 2004 



Order-Parameter Description  
Of gradient-banding? 

8.0=φ
3.0=φ

05.0=φ
(Tan & Goldhirsch 1997) 

Plane 
Couette  
Flow 

Gradient Banding in Granular Shear Flow 

(Alam 2003) (Alam 2003) 



Order-parameter description of gradient-banding? 
Shukla & Alam (2009, 2011, 2012) 



Uniform Shear Solution 
Ø uniform flow : Steady, Fully developed. 
Ø boundary condition No-slip, zero heat flux 

Uniform Shear Flow (homogeneous state) 

Control Parameters 
d : diameter 



Linear Stability Analysis 
Finite-size Perturbation (X’) 

+ = totalX

If the disturbances are infinitesimal 
 ‘nonlinear terms’ of the perturbation 
eqns. can be ‘neglected’. 

Gradient Banding 

Vorticity Banding 



Linear stability theory fails in `dilute’ limit! 
Linear Theory 

Tan &
 G

oldhirsch 1997 Phys. Fluids, 9 

05.00 =φ

Particle Simulation 

STABLE 

UNSTABLE 

Density segregated 
solutions are not  possible 

in dilute limit 

Flow is  ‘non-uniform’  in 
dilute limit    

Density Segregated  
solutions are  possible in 

dilute limit 

Flow remains  
‘uniform’  in dilute limit    



Dynamics close to critical situation is dominated by finitely many “critical” modes. 

Nonlinear  Analysis:  
Center Manifold Reduction (Carr 1981;  Shukla & Alam, PRL 2009) 

Z(t) : complex amplitude of  
         finite-size  perturbation 

ω=+= )0()0()0( ibac

First Landau Coefficient Second Landau Coefficient 

)2()2()2( ibac += )4()4()4( ibac +=

Taking the inner product  of slow mode equation with adjoint eigenfunction  
of the linear problem and separating the  like-power terms in amplitude,  
we get an amplitude equation   



Analytical Method  
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Expression for first Landau coefficient 

Analytical solution exists at any order! 

]1;1[)0(]1;1[ XcLX =Linear Problem  

Second Harmonic 

Distortion to mean flow 
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Analytically solvable 

We have developed  a spectral based numerical code to  
calculate Landau coefficients.   

Shukla & Alam, J. Fluid Mech. (2011a)    



Equilibrium Amplitude and Bifurcation 
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Cubic Solution 

0=
dt
dA

Real amplitude eqn. 

Phase eqn. 

0,0 )2()0( <> aaSupercritical Bifurcation 

0,0 )2()0( >< aaSubcritical Bifurcation 

0)0( =b 0)0( ≠b
Pitchfork (stationary) bifurcation Hopf (oscillatory) bifurcation 

θiAeZ =Cubic Landau Eqn 



Subcritical -> supercritical Supercritical-> subcritical 
Subcritical -> supercritical 196.0 467.0

559.0

Shukla & Alam, J. Fluid Mech. (2011a)    Phase Diagram 
Nonlinear Stability theory and MD simulations both supports  

gradient banding in 2D-GPCF     (PRL 2009) 

“Density Segregation 
             and  
Shear Localization” 
in dilute flows too ! 
(Tan & Goldhirsch 1997) 



Paradigm of  Pitchfork 
Bifurcations 
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Supercritical 

Subcritical 

Supercritical 

Subcritical 

Bifurcation from infinity 

Khain, PRE, 2007  

Tan & Goldhirsch1997 

Shukla & Alam, J. Fluid Mech. (2011a)    



Conclusions from nonlinear gradient banding  
Ø  Problem is analytically solvable 
 
Ø Landau coefficients suggest that there is a “sub-critical”  (bifurcation from infinity) 
finite amplitude instability for “dilute’’  flows even though the dilute flow is stable 
according to linear theory. 
 
Ø This result agrees with previous MD-simulation of  granular plane Couette flow  
  
Ø GCF serves as a paradigm of  pitchfork bifurcations. 
 
Ø Gradient banding corresponds to shear localization and density segregation 
 
Ø  Origin of gradient banding is tied to lower dynamic friction ( 𝜇∕𝑝 ) 
 
 



Vorticity Banding 

Alam & Shukla, J. Fluid Mech. (2013a) vol 716 
Shukla & Alam, J. Fluid Mech. (2013b) vol 718 

Conway & Glasser, 2004, Phys. Fluids 



Vorticity banding instability (linear) 

Density 0φ

Gradient-banding modes    stationary modes in all the flow density  
                                               regime. 
 
Vorticity banding modes      stationary in dilute density limits & 
                                                traveling in moderately dense density limit.  
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Vorticity…. (nonlinear) 

Shear Stress Localization 

Lower  
branch 

Upper  
branch 

supercritical pitchfork subcritical pitchfork Dilute limit 
1.00 ≈≤ vbφφ
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Vorticity Banding in Dense 3D Granular Flow 
(Grebenkov, Ciamarra, Nicodemi, Coniglio, PRL  2008, vol 100) 

Disordered Ordered 

Time 

vshear
608.0=φ

Length  (x) 

Width (z) 

Depth  (y) 



Vorticity Banding in Dense 3D Granular Flow 
(Grebenkov, Ciamarra, Nicodemi, Coniglio, PRL  2008, vol 100) 

Ordered state 
   
 
`Lower’ viscosity 

Disordered Ordered 

Disordered 
Ordered 

Metastable 

V
is

co
si

ty
 

1−φ

Time 

vshear
608.0=φ

Disordered state 
   
 
`Higher’ viscosity 



Bifurcation Scenario in vorticity and 
gradient banding 

Oscillatory Hopf bifurcation occurs  
for pure vorticity (spanwise) modes  
for  1.00 ≈≥ vbφφ

• Stationary pitchfork  
 bifurcation for all 
 densities 
• Two bicritical points 
 exist for gradient  
 banding  

Shukla & Alam, J. Fluid Mech. (2013b)  



Conclusions from nonlinear vorticity banding  

•  Quintic-order Landau Equation is derived for vorticity banding instability   
•  Analytical solutions for first and second Landau coefficients  have been obtained. 
•  Bistable nature of nonlinear vorticity banding (stationary & oscillatory) states  
  has  been confirmed.    
•  Localization of shear stress (viscosity) and pressure along the spanwise direction.  

Ø Hydrodynamic justification for gradient and vorticity banding 
in a sheared granular fluid using nonlinear stability theory. 
Ø Unified description of gradient and vorticity banding in terms of 
shear and viscosity localization, respectively. 

Overall Conclusions   

References:  
Alam & Shukla (2013a),  J. Fluid Mech., vol. 716, 131-180  
Shukla & Alam  (2013b), J. Fluid Mech., vol. 718, 349-413 
Shukla & Alam  (2011a), J. Fluid Mech., vol . 666,  204-253 
Shukla  & Alam  (2009) Phys. Rev. Letts , vol. 103 , 068001. 
Shukla & Alam (2013c) Phys Fluid (submitted) 
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Outline	  of	  talk	  

	  
	  

•  Introduc-on	  

•  Experimental	  Setup	  and	  Procedure	  

•  Par-cle	  Image	  Velocimetry	  	  
	  
•  Phase	  Diagram	  and	  Pa5erns	  

•  Conclusions	  and	  Outlook	  
	  



Details	  of	  Experimental	  Setup	  

Sketch	  of	  experimental	  setup.	  
Experimental	  Setup	  

𝐷~5𝑑 

𝐿~100  𝑑 Quasi-two dimensional box                         



Experimental	  Procedure	  

Dimensionless Control Parameters: 

§  Shaking accelaration:   Γ= 𝐴𝜔↑2 /𝑔  
Ø   𝐴 is the shaking amplitude  
Ø   𝜔=2𝜋/𝜏  , where 𝜏 is the time period. 
Ø    𝑔 is the acceleration due to gravity. 
 
§  Number of particle layers at rest   
𝐹= 𝐹↓𝑔 + 𝐹↓𝑠 = ℎ↓0 /𝑑  
                                                                        
                                 

𝑑=1.0  𝑚𝑚 

𝐹𝜖  (2.5,	  10)	  



 Adaptive PIV (Dantec Dynamics) 

Ø  “Adaptive PIV” iteratively  
      optimizes the size and shape of  
      each interrogation area (IA). 

Ø  Interrogation window is chosen 
      iteratively until desired particle  
      density is reached. 



Undulation Waves  

𝜆 

𝐿=𝑛𝜆/2 ,                       
 𝑛=1,2,3….,   
(mode number) 

𝑛=2  mode ⟹  𝐿=𝜆 

𝑛=5 mode 



Maxima (peak) exchanges with  Minima 
(valley) after each cycle 

Undulation Waves [𝒇/𝟐 Waves]  Waves] 

f/2-waves  

Well-mixed ? 
No Segregation ? 

𝑡=0𝜏  

𝑡=𝜏  

•  𝐹↓𝑔 =2.5,    𝐹↓𝑠 =2.5
•  𝐴⁄𝑑 =3
•  Γ=8.16  (𝑓=26  𝐻𝑧) 
•  𝑛=5 mode 



Undulation Wave (UW) + Gas  

Alam & Ansari (2012) 
(APS DFD Meeting, San Diego, Nov. 2012) 

Synchronous (period-2) + Disordered (gas) states 

Alam & Ansari (2012) 
(APS DFD Meeting, San Diego, Nov. 2012) 



Convection + Leidenfrost  

(Alam & Ansari (2012) 
(APS DFD, San D 

Alam & Ansari (2012) 
(APS DFD Meeting, San Diego, Nov. 2012) 

Alam & Ansari (2012) 
(APS DFD Meeting, San Diego, Nov. 2012) 



Par-cle	  Simula-ons?	  
 
•  Only `qualitative’ agreement with MD simulation 
 
•  All phase-coexisting patterns are found in simulations,  
    but (i) the life-time of `UW+Gas’ from simulations is found to 
    be orders-of-magnitude lower than that from experiments 
   (ii) vertical segregation is not well reproduced by present simulation, 
   (iii) …. 
 
§  Simulation help from Mr. Rivas N. 
 
¶ Simulations (impact model, etc) are currently  being improved 
 
Ansari, Rivas & Alam (June 2013, submitted) 



Conclusions 
Ø We discovered novel phase-coexisting patterns (Alam & Ansari 2012) in 

vibrated binary granular mixtures: 
 

§  Bouncing bed +  Granular gas        Small (F 
§  Undulations + Granular gas 
§  Leidenfrost + Granular gas
§  Leidenfrost  + Convection 
§  Leidenfrost + Horizontal segregation 
§  Bouncing Bed + Vertical Segregation 

Ø  In all phase-coexisting states, steel balls are  in gaseous phase and the glass 
balls are in a Leidenfrost /Bouncing Bed/Undulation state. 

 
Ø  Segregation is  due to non-equipartition of granular energy between heavier 

and lighter particles. 
 
Ø Convection can be controlled in a binary mixture 

Ø Alam & Ansari  (2012, APS’s DFD Meeting, San Diego) 

Ø   Ansari, Rivas & Alam (2013, submitted) 
 
 

Phase Segregation? 

Species Segregation? 

	  	  	  	  	  	  

 all F 

Large Γ>10 



Thank You 


