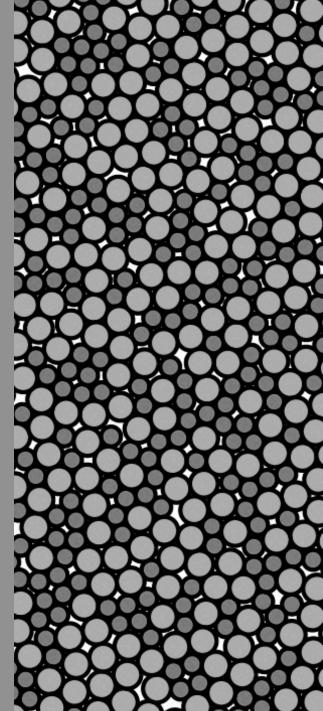
Vibrations in jammed solids: Beyond linear response

Thibault Bertrand¹ Carl F. Schreck¹ Corey S. O'Hern¹ Mark D. Shattuck^{1,2}

¹ Yale University² City College of the City University of New York

Physics of Glassy and Granular Materials *YITP 2013*



Nonlinear Effects in Granular Solids

Nonlinear vibrational properties of granular solids – Vibration dampening, solitary modes, dispersion, deviations from elasticity theory

Non-linear effects in real granular packings:

• Breaking existing and forming new contacts

Non linear interactions (Hertzian)

Sliding and rolling friction

Energy dissipation

See Carl Schreck's poster for details on Hertzian interactions Isolate the effects of fluctuations in the network of contacts!

Absence of Linear Response

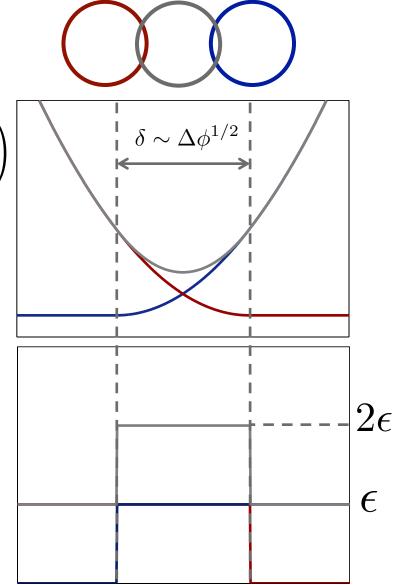
Dynamical Matrix:

$$V(r_{ij}) = \frac{\epsilon}{2} \left(1 - \frac{r_{ij}}{\sigma_{ij}} \right)^2 \Theta \left(1 - \frac{r_{ij}}{\sigma_{ij}} \right)$$
$$M_{\alpha,\beta} = \left(\frac{\partial^2 V}{\partial r_\alpha \partial r_\beta} \right)_{\vec{r} = \vec{r_0}}$$

Diagonalize the dynamical matrix to access eigenfrequencies:

$$\hat{e_i}, i \in \{1, \dots, 2N\}$$

 $\lambda_i = m\omega_i^2$



Absence of Linear Response

Temperature allow particle to explore its surrounding on a distance δ :

$$\frac{1}{2}k\delta^2 = T \qquad \qquad \delta = \sqrt{\frac{2T}{k}}$$

Apparent diameter of a particle:

$$\sigma^{\rm eff} = \sigma - \delta$$

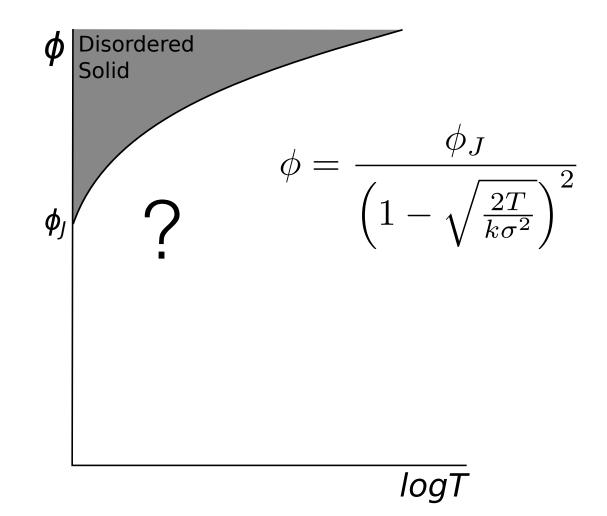
0

$$\phi^{\text{eff}} = \phi \left(1 - \frac{\delta}{\sigma}\right)^2$$

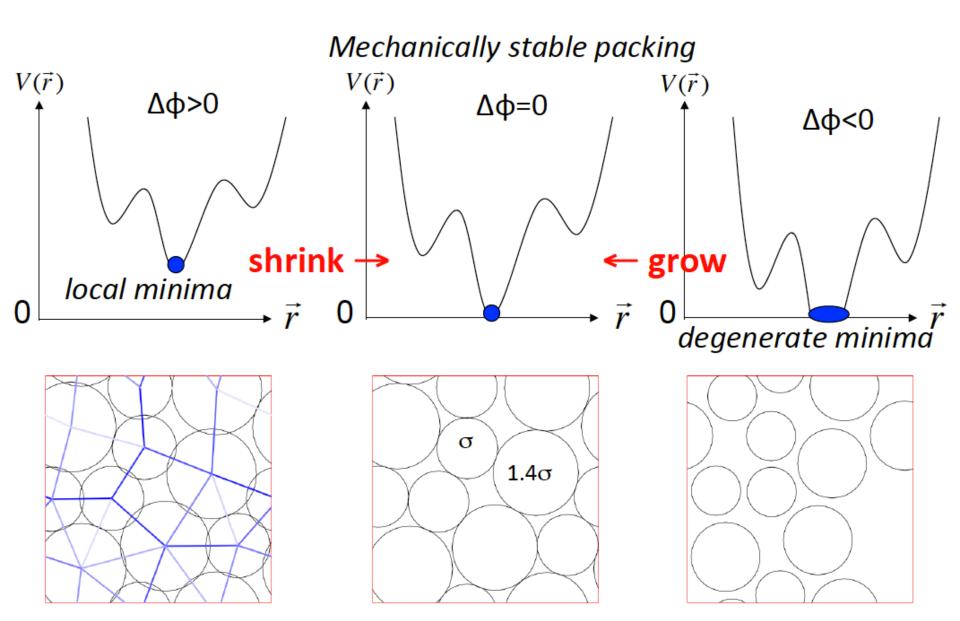
Need to increase the volume fraction to rejam the system at a given T:

$$\phi = \frac{\phi_J}{\left(1 - \sqrt{\frac{2T}{k\sigma^2}}\right)^2}$$

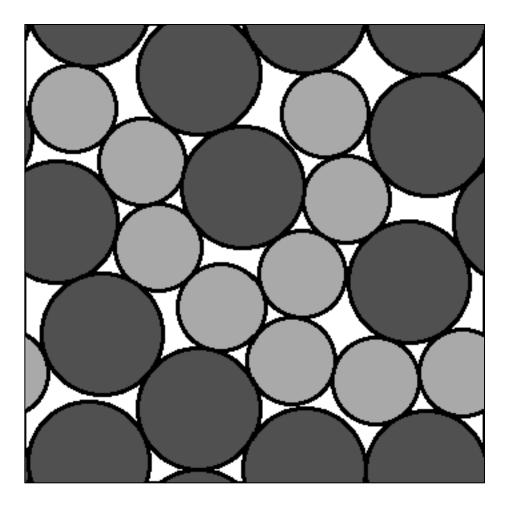
Absence of Linear Response



Generating Jammed Packings



Beyond the Harmonic Approximation...



- Molecular Dynamics Simulation
- Constant energy
- Linear Spring Repulsion
- Frictionless
- No dissipation
- At t=0, add temperature

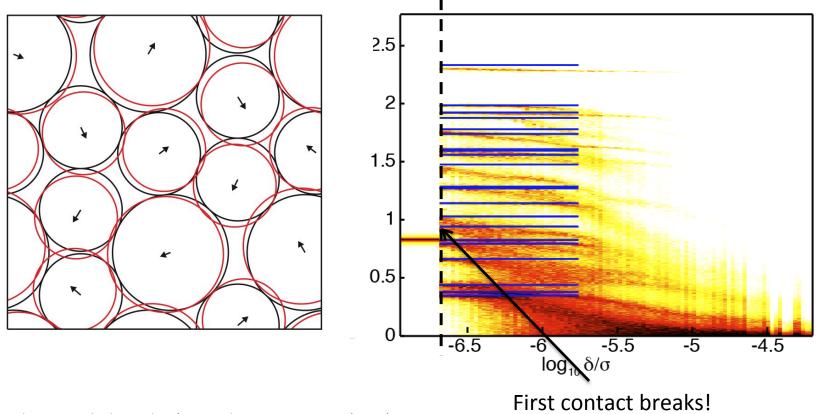
N = 20

Non-harmonicity in Disordered Solids

Protocol:

- Perturb along eigenmode by δ
- Let the system evolve at constant energy
- Study the FT of the particle motion

N = 12 $\Delta \phi = 10^{-5}$ mode = 6



Schreck, Bertrand, Shattuck, O'Hern, Phys. Rev. Lett. 107 (2011) 078301

Beyond the Harmonic Approximation...

Under *harmonic approximation*:

$$\mathbf{M} = k_B T \mathbf{C}^{-1}$$

$$\mathbf{V} = \frac{1}{N} \langle v v^{\mathrm{T}} \rangle \qquad \mathbf{V} = k_B T \mathbb{I}$$

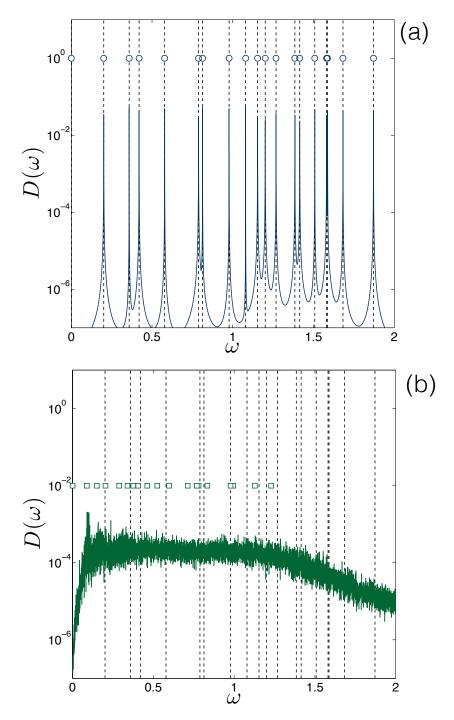
Solution 1: probing the correlation of particles displacements via

$$\mathbf{M} = \mathbf{V}\mathbf{C}^{-1}$$

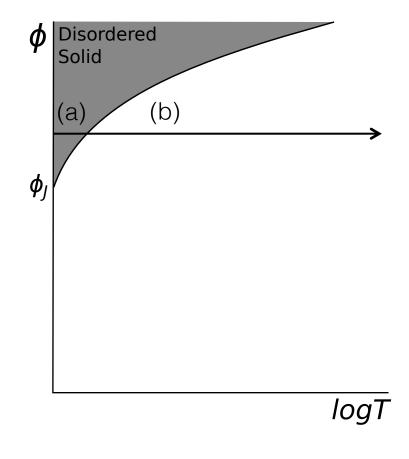
Solution 2: looking for vibrational frequencies emerging in the Fourier Transform of the velocity autocorrelation function via

$$d(t) = \frac{\sum_{i=1}^{N} \langle \mathbf{v}_i(t) \cdot \mathbf{v}_i(0) \rangle_0}{\sum_{i=1}^{N} \langle \mathbf{v}_i(0) \cdot \mathbf{v}_i(0) \rangle_0}$$

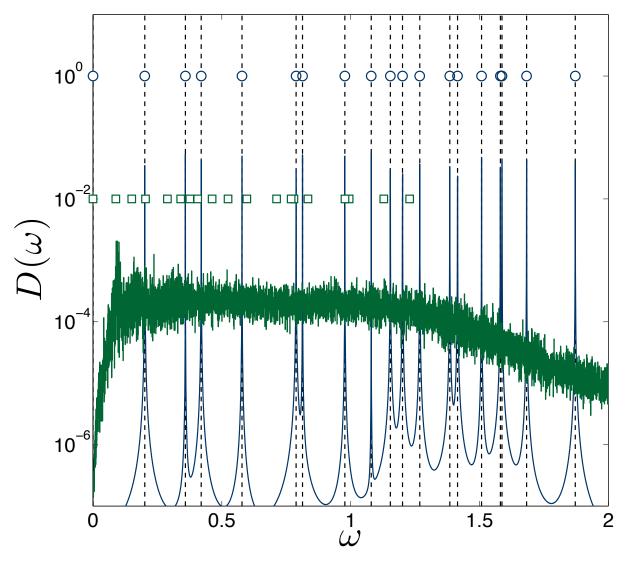
$$\tilde{d}(\omega) = \mathcal{F}[d(t)]$$



Assessing the Vibrational Frequencies

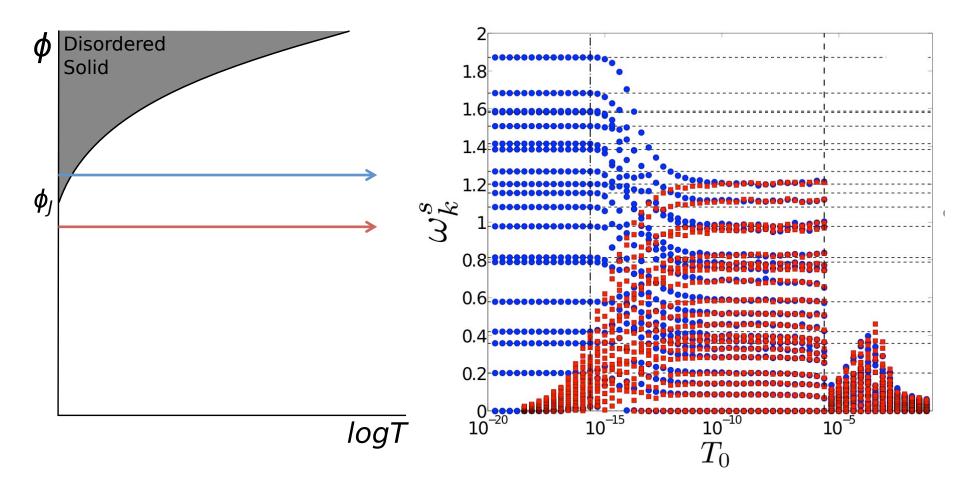


Assessing the Vibrational Frequencies



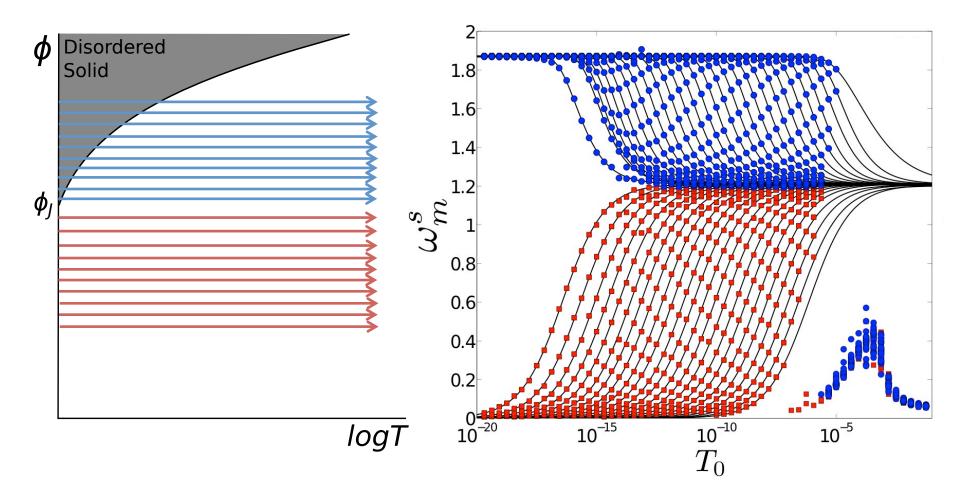
Non trivial evolution of the covariance matrix prediction and Fourier transform of Velocity autocorrelation function w/ T

Temperature Dependence of the Frequencies

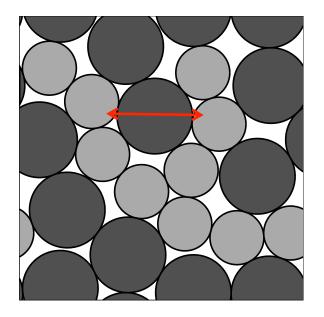


$$\omega_k(T) = \omega_k^d + \frac{\omega_k^* - \omega_k^d}{\left(1 + l_c(\Delta\phi)/\sqrt{T}\right)^{\nu}}$$

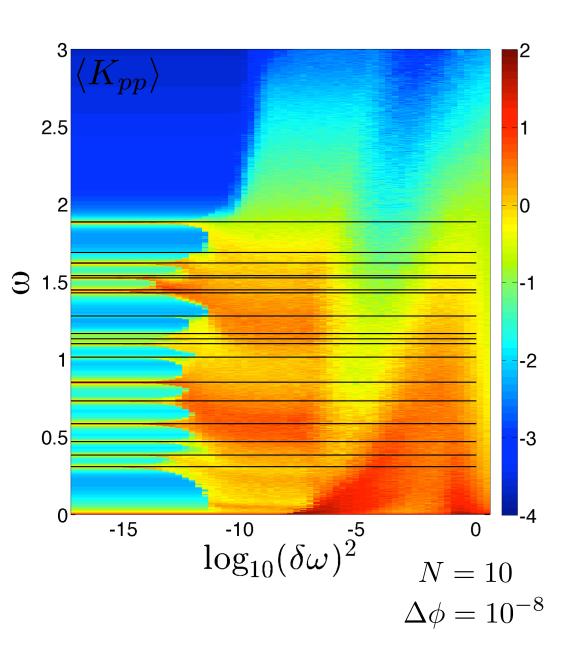
Temperature Dependence of the Frequencies



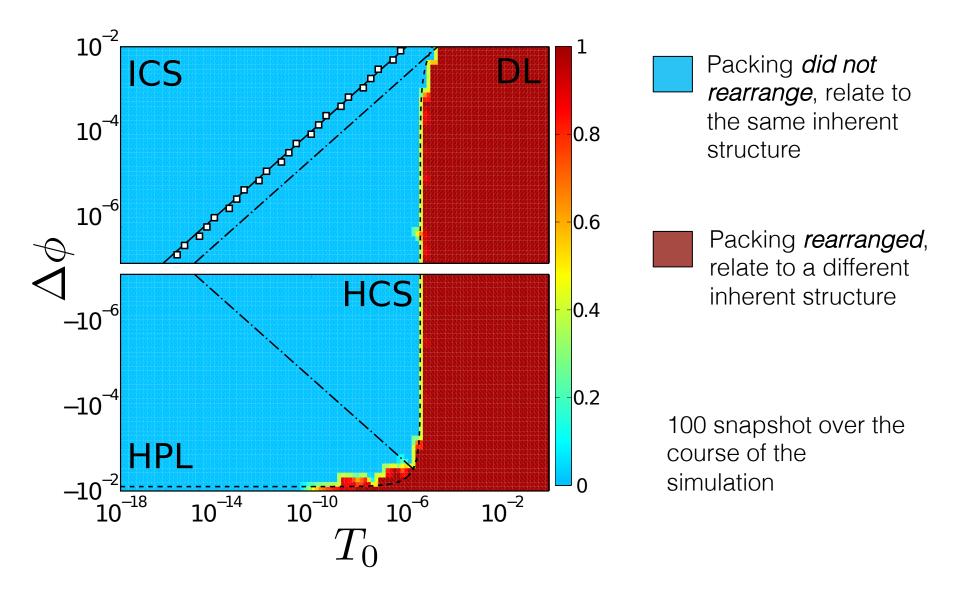
Testing Resonance in the Modes



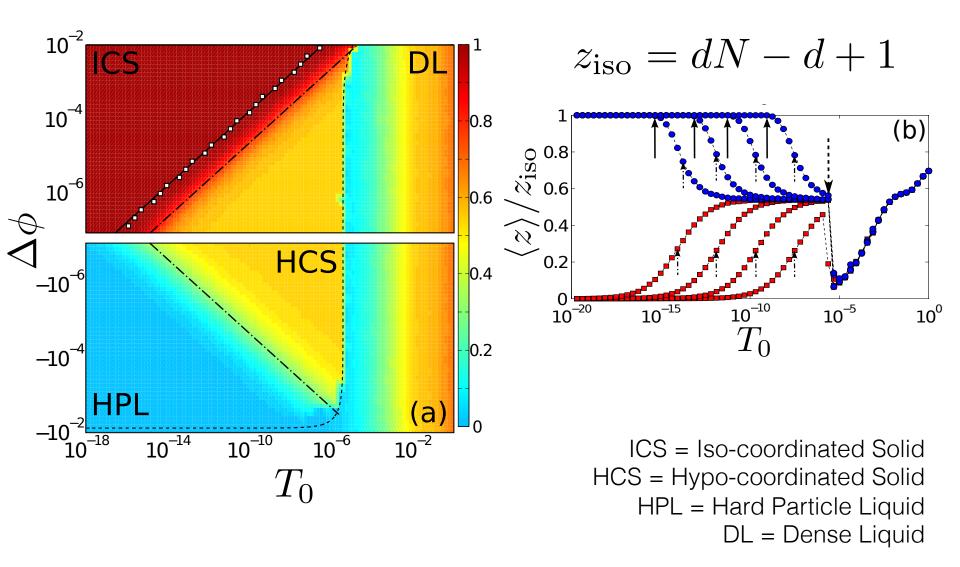
- Drive one particle
- Record average kinetic energy per particle in steady state



Rearrangement probability



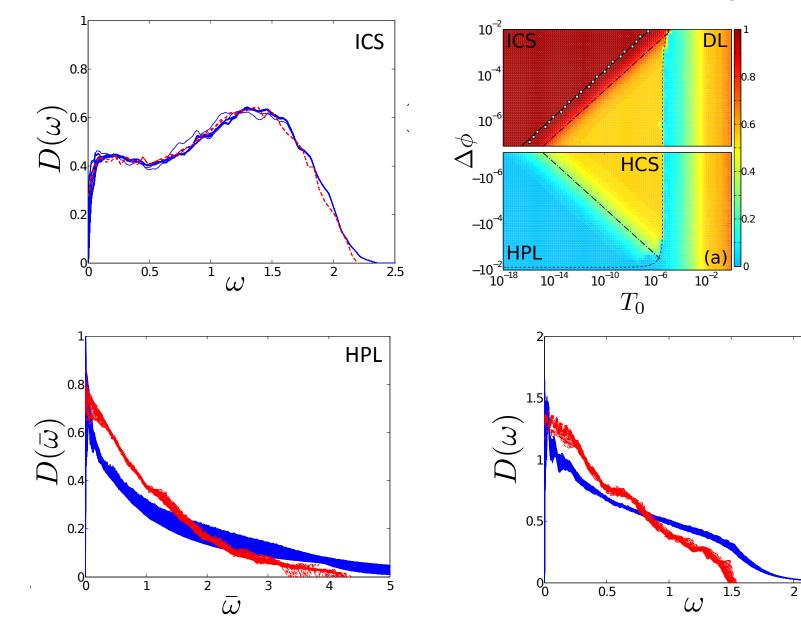
Introducing a new Phase Diagram



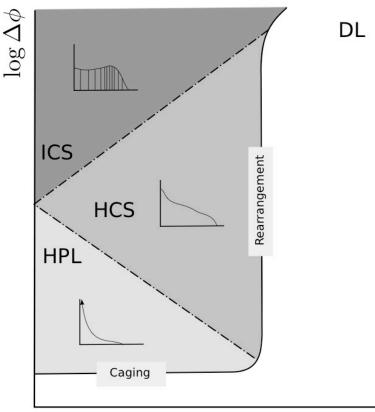
Density of States

HCS

2.5



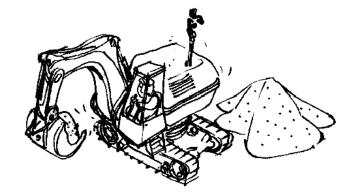
Conclusions & Future directions



- No linear response for a wide range of parameters
- Need of a new description for the vibrational dynamics of jammed packings
- Transition from resonant to nonresonant modes
- Investigating effect of friction, particle shape and order

 $\log T$

"Vibrations in jammed solids: Beyond linear response", T.Bertrand, C.F.Schreck, C.S.O'Hern and M.D.Shattuck, submitted to PRL (arXiv:1307.0440)



Acknowledgements

- Corey O'Hern
- Mark Shattuck
- Carl Schreck
- The O'Hern Group
- Yale High Performance Computing

Grants: DTRA Grant No. 1-10-1-0021 NSF MRSEC DMR-1119826

Thank you!

