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Plan & summary

Brief introduction to classical frustrated magnetism.

2d spin-ice samples and the 16 vertex model.

Exact results for the statics of the 6 and 8 vertex models with inte-

grable systems methods. Very little is known for the dynamics.

Our work :
Phase diagram of the generic model. Monte Carlo and Bethe-Peierls.
Stochastic dissipative dynamics after quenches into the D, AF and
FM phases. Metastability & growth of order in the AF and FM phases
Monte Carlo simulations & dynamic scaling.

Explanation of measurements in as-grown artificial spin ice.



Natural spin-ice

3d : the pyrochlore lattice
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Coordination four lattice of corner linked tetahedra. The rare earth ions

occupy the vertices of the tetrahedra ; e.g. Dy, Tis O

Harris, Bramwell, McMorrow, Zeiske & Godfrey 97



Single unit

Water-ice and spin-ice
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Water-ice : coordination four lattice. Bernal & Fowler rules, two H near and
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two far away from each O.

Spin-ice : four (Ising) spins on each tetrahedron forced to point along the axes
that join the centers of two neighboring units (Ising anisotropy). Interactions im-

ply the two-in two-out ice rule.



Artificial spin-ice

Bidimensional square lattice of elongated magnets

Bidimensional square lattice
Dipoles on the edges

Long-range interactions

16 possible vertices

Experimental conditions in this fig. :

vertices w/ two-in & two-out arrows

with staggered | AF | order

are much more numerous

AF FM

Wang et al 06, Nisoli et al 10, Morgan et a/ 12



Square lattice artificial spin-ice

Local energy approximation = 2d 16 vertex model

Just the interactions between dipoles attached to a vertex are added.

Dipoles are modeled as two opposite charges.
Each vertex is made of 8 charges, 4 close to the center, 2 away from it. The

energy of a vertex is the electrostatic energy of the eight charge configura-

tion. With a convenient normalization, dependence on the lattice spacing £ :

EAF:€5:€6:(—2\/§—|—1)/€ EFM:€1:--°:E4:—1/€
€c =€ =...€16 =0 €g=¢€r =es = (42 +2) /¢
EAR < €Epp < € < €4 Nisoli et al 10

Energy could be tuned differently by adding fields, vertical off-sets, etc.



The 2d 16 vertex model

with 3-in 1-out vertices : non-integrable system
FM AF 4in or 4out
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3in-1out or 3out-1in

(Un-normalized) statistical weight of a vertex wy = e Pk,
In the model a, b, ¢, d, e are free parameters (usually, c is the scale).
In the experiments ¢;. are fixed and [3 is the control parameter.

The vertex energies ¢, are estimated as explained above.



Static properties

What did we know ?

6 and 8 vertex models.

Integrable systems techniques (transfer matrix + Bethe Ansatz), mappings

to many physical (e.g. quantum spin chains) and mathematical problems.
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Phase diagram
critical exponents
ground state entropy
boundary conditions

efc.

Lieb 67 ; Baxter Exactly solved models in statistical mechanics 82

16 vertex model.

Integrability is lost. Not much interest so far.



Static properties

What did we do ?

Equilibrium simulations with finite-size scaling analysis.
Continuous time Monte Carlo.

e.g. focus on the AF-PM transition ; cfr. experimental data.

AF order parameter : M_ = % (<\mf]> + <!my_’>)

with Y the staggered magnetization along the 2 and 1y axes.

Finite-time relaxation M_(t) ~ =B/ (vze)

Cavity Bethe-Peierls mean-field approximation.

The model is defined on a tree of single vertices or 4-site plaquettes



Equilibrium CTMC

Magnetization across the PM-AF transition

Vertex energies set to the values explained above.
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Solid red line from the Bethe-Peierls calculation.



Equilibrium analytic

Bethe-Peierls or cavity method

........................

......

..........

..........................................................

...........

.................

.........

........................

(b) b
(c) /
()

Join an L-rooted tree from the left ; an U-rooted tree from above ;

an R-rooted tree from the right and a D-rooted tree from below.

Foini, Levis, Tarzia & LFC 12



is it a powerful technique ?

in, e.g., the 6 vertex model

With a tree in which the unit is a vertex we find the PM, FM, and AF phases.

spyv = Inl(a+ b+ c)/(2¢)]

Pauling’s entropy spps = In3/2 ~ 0.405 at the spin-ice pointa = b = c.
Location and 1st order transition between the PM and FM phases.

Location but 7st order PM-AF transition.

no fluctuations in the frozen FM phase.

no fluctuations in the AF phase.

With a four site plaquette as a unit we find the PM, FM, and AF phases.

A more complicated expression for sp s (a, b, ¢) that yields

spy = 0.418 closer to Lieb’s entropy s pjs ~ 0.431 at the spin-ice point.
Location and 1st order transition between the PM and FM phases.

Location but 2nd order (should be BKT) PM-AF transition.
fluctuations in the AF phase and frozen FM phase.



Static properties

Equilibrium phase diagram 16 vertex model

MC simulations & cavity Bethe-Peierls method
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Foini, Levis, Tarzia & LFC 12



Artificial spin-ice

Bidimensional square lattice of elongated magnets

AF

1 um

Bidimensional square lattice
Magnetic material poured on edges
Magnets flip while they are small

& freeze when they reach some size
(analogy w/granular matter)
Magnetic force microscopy

Images : vertex configurations

FM

Morgan et al 12 (UK collaboration)



Vertex density

Across the PM-AF transition — numerical, analytic and exp. data
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PM - AF transition

AF vertices

FM vertices

3in-1out 3out-1in e-vert.

4in or 4out d-vertices

Each set of vertical points, 5F (/) value, corresponds to a different sample

(varying lattice spacing ¢ or the compound). 1/6 Is the working temperature.

Levis, LFC, Foini & Tarzia 13 ; Experimental data courtesy of Morgan et al. 12



Artificial spin-ice

As-grown samples : in equilibrium at J or not ?

Magnetic force microscopy Simulations

20 40 60 80 100 1 20 40 60 80 100
T T T T T T T T T T T

<120 20+

Out of equilibrium In equilibrium

A statistical and geometric analysis of domain walls should be done to

conclude, especially for samples close to the transition.

Research project with F. Roma



Quench dynamics

Setting

Take an initial condition in equilibrium at ag, by, ¢, dy, €g.

We used ag = by = cy = dy = €9 =1 that correspondsto |7y — o0

We evolve it with a set of parameters a, b, ¢, d, e in the phases PM,

FM, AF : an infinitely rapid quench at ¢ = 0.

We use stochastic dynamics.
We update the vertices with the usual heat-bath rule,
we implement a continuous time MC algorithm to reach long time
scales.
Relevant dynamics experimentally (contrary to loop updates used to study

equilibrium in the 8 vertex model)
Levis & LFC 11, 13



Dynamics in the PM phase

MeDensity of defects, 1, = #defects/#vertices

e

1074 ' ' ' ' ' ' ' '
102 102 10®° 10" 10102 10®° 10° 10" 10"
t (MCs) t (MCs)
Relevant experimental sizes L =50 L =100

a=b=c, d/c=e¢/c=10"11072,...,10° from left to right.

Fore = d g 10~ *¢ the density of defects reaches its equilibrium value.

Fore = d ~ 10 %c the density of defects gets blocked at 14 ~ 10/L2.

It eventually approaches the final value n; ~ 2/L2 indep. of bc; rough esti-

mate for 7., from reaction-diffusion arguments.



Dynamics in the AF phase

Snapshots
Color code. Orange background : AF order of two kinds ; green FM vertices,
red-blue defects.

Initial state coarsening state equilibrium state

40 60 80 100 1 20 40 60 80 100 1 20 40 60 80 100
T T T T T T T T T T T T T T T T

L L L L L L L L L L L L L L L L
40 60 80 100 1 20 40 60 80 100 1 20 40 60 80 100

Isotropic growth of AF order for this choice of parameters

c > a = 0| AF vertices are energetically preferred ;

there is no imposed anisotropy.



Dynamics in the AF phase

Snapshots, correlation functions & growing length

Scaling of correlation functions

along the || and | directions

L(t) ~ t1/?




Dynamics in the FM phase

Snapshots

Growth of stripes

Quench to a large a value : black & white vertices energetically favored.



Dynamics in the FM phase

Dynamic scaling and growing lengths
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G (r,t), Gl(r,t) = Fj L (r/L(t))

Stretched exponential () = e~ (/)" with v ~ vy ~0.15and # w) |

the same growing length Ly(t), Ly(t) ~ />

until a band crosses the sample, then a different mechanism.



Summary

Classical frustrated magnetism ; spin-ice in two dimensions.

The 2d 16 vertex model : a problem with analytic, numeric and
experimental interest. Cfr. artificial spin-ice

Beyond integrable systems’ methods to describe the static properties.

Some results of the Bethe-Peierls approximation are exact, others

are at least extremely accurate. Analytic challenge

Slow coarsening (or near critical in PM) dynamics.

Stripes of growing ferromagnetic order in the FM phase, isotropic AF
growth for a = b, with the same growing length and scaling functions
but different parameters ;

LiM(t) o LTM(t) = LAY (t) ~ t1/? Analytically ?

Dynamics blocked in striped states later.



Equilibrium : the tree vs 2d

16 vertex model

The cavity method can deal with the generic vertex model.
More complicated recursion relations, more cases to be considered, but no

further difficulties.

The transition lines do not get parallelly translated with respect to the
ones of the 6-vertex model.
They are all of 2nd order.
They are remarkably close to the numerical values in 2d.
The exponents : on the tree they are mean-field, in 2d ¢ In progress.

MF expression for A4 In 2d

The quantum Ising chain for the 16 vertex model should include new

terms. In progress.
Foini, Levis, Tarzia & LFC 12



Finite time relaxation

Magnetization across the PM-AF transition
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Fluctuations

Sketch

The probability of such fluctuations can be estimated with the Bethe-

Peierls calculation on a tree of four-site plaquettes !



Dynamics in the AF phase

Density of defects & growing length (d = ¢ here)
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Isotropic growth of AF order with L(t) ~ t1/2




Dynamics in the FM phase

Density of defects (d = ¢ here)
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Dynamics in the FM phase

Some elementary moves




Dynamics in the D phase

Density of defects
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Short-time decay ¢ V- "®
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Diff from MF imati
iterent from MF approximation Scaling below the plateau.

to reaction - diffusion model 7 *.



