

Vibrated granular experiments: Probing the vicinity of Jamming

Olivier Dauchot,

Corentin Coulais, Raphael Candelier,

Frederic Lechenault, Antoine Seguin

<u>Coll.</u>: Giulio Biroli, Jean Philippe Bouchaud Ludovic Berthier, Hajime Yoshino

2013, Kyoto

Overview

- Vibrated granular experiments : probing the jamming critical regime
 - Two distinct signatures of criticality at finite vibration
 - Approaching the zero vibration limit
- Yielding close to jamming in hard discs
 - Yield stress of "vibration" origin below jamming

Probing elasticity

- Inflating an intruder : experimental set up and the linear elastic framework
- Integrated vs Local measurements
- Discussion : the interplay between shear and dilatancy

Vibrating soft photo-elastic discs

Heterogeneous Dynamics of the contacts

Two distinct signatures crossovers

Decreasing the vibration

ParisTech

Hence two crossover lines : Widom lines

How far from the critical point?

Comparison with thermal soft spheres...

Discussion: in the light of the street-lamp

Conclusion of the first part

- They can constrain existing theories
- Theories have something to say about the real world...
- One cannot exclude effects of friction at the quantitative level

- => One step further (in the dark...)
 - Yielding close to jamming
 - A first attempt to probe elasticity close to jamming

Yielding close to jamming : the motion of an intruder ...

Evidence of a fluidization transition

Indeed two very different rheological behaviors

ParisTech

Probing elasticity : set up

- Prepare the system at large packing fraction under vibration
- Inflate an intruder in the center (the vibration is stopped)
- Decrease the packing fraction while vibrating

iterate

Probing elasticity : the linear elastic framework

$$A = \frac{R_0^2}{\left(R_1^2 - R_0^2\right)}; B = \frac{R_1^2}{\left(R_1^2 - R_0^2\right)}; B = \frac{R_1^2}{\left(R_1^2 - R_0^2\right)}$$

- Nota Bene
 - In the limit of large R₁, A->0, B->1 : this is a shear test!
 - G and K are simply obtained by the ratio of the stress and strain tensor invariants

For each packing fraction and each a/R₀

Salient features :

Overall dilatant behaviour in the region close to the intruder

Non linear constitutive law

? Pressure stiffening = > Dilatancy => Shear weakening ?

Conclusion

- Vibrated granular media are suitable tools for probing the vicinity of jamming, (in particular low enough T_eff)
- Two distinct crossovers (one dynamical, one structural) converge toward J-point in the limit of low vibration
- Pulling an intruder in vibrated hard discs has allowed us to probe the yield stress of "thermal origin" => Suggest to try in the soft photo-elastic discs to capture the yield stress of "jamming origin"
- Inflating an intruder in soft photo-elastic discs => First indications of intricate interplay between dilatancy and non linear shear law.
- **Further readings**: **Europhysics Letters**, 83, 46003, (2008).
 - Soft Matter, 6 (13), 3059–3064, (2010).
 - Phys Rev Lett 103 12800 (2009).
 - Europhysics Letters, 100, 44005 (2012).
 - Soft Matter (2013) to appear.

Integrated quantities vs. control parameter a/R₀

Compressive part

Linear with a/R₀

Nota Bene : $Tr(\varepsilon)>0 => Overall dilatant behaviour.$

Integrated quantities vs. control parameter a/R₀

Shear part Shear Strain Shear Stress Shear Work 0.2 0.2 0.025 0.02 0.15 0.15 0.015 0.1 0.1 0.01 0.05 0.05 0.005 0 Ω 0.05 0.1 0.05 0.1 0.005 0.01 0 0 a/R0 a/R0 $(a/R0)^{2}$

Non linear behaviour of shear strain => a/R0 does not strictly control strain

- Both shear strain and shear stress are responses and non linear
- The shear work however is quadratic in a/R0 as prescribed by linear elasticity

Radial profiles (azimuthally averaged)

Compressive part

- Dilatancy strongly localized close to inflating intruder
- Pressure decreases exponentially

Gulliver

Radial profiles (azimuthally averaged)

Deviation from the 1/r² law, expected from linear elasticity

Some dependence with the packing fraction

Parametric plot shear stress vs. shear strain

- In both case, clear evidence for **non linear constitutive law**.
- **G_**eff increases with the packing fraction, however shear weakening
 - => Suggest rather complex non linear interplay between shear and dilatancy

