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Physics of Perfect Crystals

ASHCROFT MERMIN

SOLID STATE PHYSICS
+ Start with T=0 perfect crystal

- look at vibrational, electronic, etc. properties
- add defects as perturbation (chapter 30)
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Perturbing away from the crystal
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Perturbing away from the crystal

But what about this?
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Perturbing away from the crystal

But what about this?

Is there an opposite pole to the perfect crystal,
corresponding to rigid solid with complete disorder?
If so, we could describe ordinary solids as somewhere in between
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Jamming Transition for "Ideal Spheres”

C.S.O'Hern, S. A. Langer, A. J. Liu and S. R. Nagel, Phys. Rev. Lett. 88, 075507 (2002).
C.S.O'Hern, L. E. Silbert, A. J. Liu, S. R. Nagel, Phys. Rev. E 68, 011306 (2003).

temperature

stress

1/density

*  Study models with smooth transitions

- from G/B=0 (like liquid) Bubble model for foams
. D. J. Durian, PRL 75, 4780
- to  G/B>0 (like crystal) 1505)
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Jamming Transition for "Ideal Spheres”

C.S.O'Hern, S. A. Langer, A. J. Liu and S. R. Nagel, Phys. Rev. Lett. 88, 075507 (2002).
C.S.O'Hern, L. E. Silbert, A. J. Liu, S. R. Nagel, Phys. Rev. E 68, 011306 (2003).
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*  Study models with smooth transitions

- from G/B=0 (like liquid) Bubble model for foams
. D. J. Durian, PRL 75, 4780
- to  G/B>0 (like crystal) (1995)
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Onset of Jamming in Repulsive Sphere Packings
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Z =5.9740.03

,Z_,Zc ~ Zo((P _¢C)0.5j
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-4 -3 -2
log(¢- 0,)

Durian, PRL 75, 4780 (1995).
O'Hern, Langer, Liu, Nagel, PRL 88, 075507 (2002).
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Verified experimentally:
G. Katgert and M. van Hecke, EPL 92,

34002 (2010).



Isostaticity

* What is the minimum number of interparticle contacts
needed for mechanical equilibrium?

* No friction, N repulsive spheres, d dimensions
* Match

- number of constraints (number of interparticle normal
forces)=NZ/2

- number of degrees of freedom =Nd-d

For large N, Z > 2d

James Clerk Maxwell
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Contact Number of Crystal vs. Marginally Jammed Solid

VS

perfect crystal marginally jamed solid

crystal

crystal: Z=12
| marginally jammed solid: Z=Zis,=6

10g (Z — Ziso)

~ p'/2 (harmonic)

log p
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Constraint Counting and G/B

At onset of overlap, &, can constrain

- all soft modes

- compression of the whole system

So B>0 but 6=0 so G/B=0

Durian, PRL 75, 4780 (1995).

O'Hern, Langer, Liu, Nagel, PRL 88, 075507 (2002).

N /ﬂ/
o=2

-4 3
log(o- ¢,)

p. =~ P0(¢ - (pc)a_l |

rY *
a=5/2

G =Gyp-9) "

3 -2

4 ,
log(¢- ¢,)

Above ¢, G/B >0 so ¢ . also marks onset of jamming
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Constraint Counting and G/B

» At onset of overlap, ¢, can constrain
- all soft modes

- compression of the whole system

_ _ Ellenbroek, Somfai, van Hecke, van
So B>0 but 6=0 so 6/B=0 Saarloos, PRL 97, 257801 (2006).
Durian, PRL 75, 4780 (1995). ] ey
O'Hern, Langer, Liu, Nagel, PRL 88, 075507 (2002). ;
4 // G/B} G/B~AZ x
) o=2 : ¢
o s é}(
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| 0=5/2 2
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+ Above ¢, G/B >0 so ¢ also marks onset of jamming
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G/B -> 0 with (¢ -® Y2 or Z-Z. appears unique to jamming

P 2 C K
randomly diluted hexagonal/fcc/... G/B

randomly decorated kagome/....

hexagonal/fcc/ Ze 2

kagome/ .... randomly decorated square G/B
J——> G/B

twisted kagome

X. Mao, A. Souslov, T. C. Lubensky
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Mechanics of crystal vs. marginally jammed solid

VS

perfect crystal marginally jamed solid

crystal

| crystal: G/B ~ 1
jamming |

marginally jammed solid: G/B -> 0

log(G/B)

~ p'/? (harmonic)

logp
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Consequence: Diverging Length Scale
M. Wyart, S.R. Nagel, T.A. Witten, EPL 72, 486 (05)

-For system at ¢, Z=2d

‘Removal of one bond makes entire
sys;rem unstable by adding a soft
mode

-This implies diverging length as ¢-> ¢_ -

For ¢> ¢_, cut bonds at boundary of size L
Count number of soft modes within cluster

N, =L"'—-(Z-Z)L
Define length scale at which soft modes just appear

1 1
KL

z-7Z EEN(qb_q)") |
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More precisely

Define ¢ * as size of smallest macroscopic rigid cluster for

system with a free boundary of any shape or size

small no MACroscopic
clusters clusters clusters
—_—}

L— I

10

Z-2d

+ ¢ * diverges at Point J as expected from scaling argument
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More precisely

Define ¢ * as size of smallest macroscopic rigid cluster for

system with a free boundary of any shape or size

small no MACroscopic

clusters clusters clusters
—_—t - : >
’.
10° :
102 _
10' F
0
10
10°

+ ¢ * diverges at Point J as expected from scaling argument
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Vibrations in Disordered Sphere Packings

+ Crystals are all alike at low T or low w
- density of vibrational states D(w)~w! in d dimensions

- heat capacity C(T)~T¢
- Why?
Low-frequency excitations are sound modes. At long
length scales all solids look elastic
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Vibrations in Disordered Sphere Packings

+ Crystals are all alike at low T or low w
- density of vibrational states D(w)~w! in d dimensions

- heat capacity C(T)~T¢
- Why?
Low-frequency excitations are sound modes. At long
length scales all solids look elastic

BUT near at Point J, there is a
diverging length scale ¢ |

So what happens?
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Vibrations in Sphere Packings

L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 098301 ('05)
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* New class of excitations originates from soft modes at
Point J M. Wyart, SR. Nagel, T.A. Witten, EPL 72, 486 (05)

* Generic consequence of diverging length scale: ¢ | =c,w*
¢ r=ct/w”
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Vibrations in Sphere Packings

L. E. Silbert, A. J. Liu, S. R. Nagel, PRL 95, 098301 ('05)
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Vibrations of crystal vs. marginally jammed solid

VS

perfect crystal marginally jammed solid
FCC Crystal
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Vibrations of crystal vs. marginally jammed solid

VS
perfect crystal marginally jammed solid
FCC Crystal

1.2

0.8 =
3 2
a a

0.4 |

no plane waves even at
° 0 3 w=0
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Back to extreme limits

How do we connect physics of jamming and physics of
crystals? What happens in between?
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Back to extreme limits

How do we connect physics of jamming and physics of
crystals? What happens in between?

1. start with a perfect FCC crystal 2d illustration
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Back to extreme limits

How do we connect physics of jamming and physics of
crystals? What happens in between?

1. start with a perfect FCC crystal 2d illustration

2. introduce 1 vacancy-interstitial pair
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Back to extreme limits

How do we connect physics of jamming and physics of
crystals? What happens in between?

1. start with a perfect FCC crystal 2d illustration

2. introduce 1 vacancy-interstitial pair

3. minimize the energy
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Back to extreme limits

How do we connect physics of jamming and physics of
crystals? What happens in between?

1. start with a perfect FCC crystal 2d illustration

2. introduce 2 vacancy-interstitial pairs

3. minimize the energy
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Back to extreme limits

How do we connect physics of jamming and physics of
crystals? What happens in between?

1. start with a perfect FCC crystal 2d illustration

2. introduce 3 vacancy-interstitial pairs

3. minimize the energy
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Back to extreme limits

How do we connect physics of jamming and physics of
crystals? What happens in between?

1. start with a perfect FCC crystal 2d illustration

2. introduce M vacancy-interstitial pairs

3. minimize the energy
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Back to extreme limits

How do we connect physics of jamming and physics of
crystals? What happens in between?

t1%

2d 1llustration

1. start with a perfect FCC crystal
2. introduce N vacancy-interstitial pairs

3. minimize the energy
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Order Parameter

Bond-orientational order | f4(;) = fraction

Qim (1) = Z Yim (%) of highly correlated
j neighbors (large Sg)

Si(t,7) = Z Qi (1) - g, (j) Auerand Frenkel. J. Chem. Phys., 120(6):3015, 2004

Russo and Tanaka. arXiv, cond-mat.soft, 2012.
m

fe =1 — crystal
fe = 0 — disordered
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"Coexistence” of ordered and disordered regions

D(fe)

SO = DD W &~ O O
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Connecting jamming and crystal physics

Observed states

crystal

jamming |

log (Z — Ziso)

~ p'/? (harmonic)

log p
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Connecting jamming and crystal physics

Observed states

crystal | 10" crystal
T —— e
N :
| : . N 10°
' jamming | . .
Q) N jamming
iOD ~ p'/? (harmonic) 0"
log p 10°  10*  10° 102 107

COp1/2 S 4 — Ziso S 6 i

Wyart, et al. PRE 72 051306 (2005)
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Elasticity

log (Z — Ziso)

Contact Number

crystal

jamming |

~ p'/? (harmonic)

log p

\ Elasticity \

log(G/B)

crystal

jamming |

~ p'/? (harmonic)

log p

What about systems with intermediate order?
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Elasticity

fcc
CI’ySt al fcc+vac/int

/ \ fcc+vacancies

lo &
>B
T
/%G —— jamming
=
AN
? lo
5 ) gp
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Elasticity

fcc
fcec+vac/int
fcc+vacancies
bcec+vacancies
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Elasticity

fcc
fcc+vac/int
fcc+vacancies
bcec+vacancies

log (Z — Ziso)
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Exclude crystalline states

* Include only states where disordered "phase” percolates
in all 3 directions
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Exclude crystalline states

* Include only states where disordered "phase” percolates
in all 3 directions
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Exclude crystalline states

* Include only states where disordered "phase” percolates
in all 3 directions
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Exclude crystalline states

* Include only states where disordered "phase” percolates
in all 3 directions
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States with
intermediate
to low order
fall on
" jamming
surface”

Jammed
state is not
only extreme
limit but also
very robust



How much does jamming scenario apply to real world?

- What have we left out? ALMOST EVERYTHING

- friction

K. Shundyak, et al. PRE 75 010301 (2007); E. Somfai, et al. PRE 75 020301 (2007); S.
Henkes, et al. EPL 90 14003 (2010).

- long-ranged interactions/attractions
N. Xu, et al. PRL 98 175502 (2007).

- non-spherical particle shape
Z. Zeravcic, et al, EPL, 87, 26001 (2009); M. Mailman, et al, PRL 102, 255501 (2009)

- Temperature

C. Schreck, et al. PRL 107, 078301 (2011); A. Tkeda, et al. J. Chem. Phys. 138, 12A507
(2013); L. Wang and N. Xu, Soft Matt. 9, 2475 (2013); T. Bertrand, et al. arXiv:1307.0440.
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Real, Thermal Colloidal Glasses

Ke Chen, Wouter Ellenbroek, Arjun Yodh Video microscopy of 2D jammed packing of
colloids

P * NIPA microgel particles = tune packing fraction

1.7 i\;@\\ * Track particles over ~30000 frames = r;(t)
E 1.6: k é
1 \
- — 1 D ‘-‘_. \ﬁ\ —
S 151 o= ERE
S 14 é{;
(m] ! \[?\

13- B

| mjicroscope
Temperature ('C) ()bJQCTi e

Extract instantaneous displacements from
average position

u;(t) = ri(t) — (ri(t));
and the displacement correlation matrix
Cij = (wi(t)u; (1))

Chen et al., PRL 105, 025501 (2010)
Ghosh et al., Soft Mat 6, 3082 (2010)
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Colloids are damped, atoms/molecules are not

BUT displacement correlation is an equilibrium property,
independent of dynamics

Cij = (wi(t)u;(t))e
» Can use it to obtain vibrational modes of shadow system
with same configuration & interactions but without damping

: ) ) 1
* In harmonic approximation V = EuTKu
. Partition function Z= j duexp(-BV)
- Correlation matrix is inverse of stiffness matrix K

C = <uu> =K'

Ghosh, Chikkadi, Schall, Kurchan, Bonn, Soft Mat 6, 3082 (2010)
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Boson Peak

(a) 0.07-. ' '80' o -O'SO_nlEﬁggsﬂ'equency
_006f\ T —
2 00500\ ST Toees

0.04 ol s e -o,ge 3 o :3:328

0.03 ey

002 0.812

0.01

200 400 600 800
w (kHz)

Chen et al., PRL 105, 025501 (2010)
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Boson Peak

-6
1x10 —————— e — I
<R _ oson peak frequency
S 7 1o
c\cl\g 8x10 % 10
© =
p) 7 0.8t =
~ 6X1O B LOE 06- .
8 -) T [
= 4x107 — 0.4} .
X = i
0882 084 086 088 090
———0.885 o
———0.879 :
——0.872 10
———0.866

w (rad/s)

Chen et al., PRL 105, 025501 (2010)
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Dispersion relation and elastic constants

500 . ] ] ]
1264 °C .
100 #= 0.8834 o ® |
—~— 1 €,=324.3 mm/s /
‘Tw 1 ¢,=204.8 mm/s {f 12534 B
& 300 Al ettt o .
© : ,EF} ) {' " o
= 200- {.# Pl e ]
o 1 F; @] o
o - e
e | & o
~ 100+ ‘}i ¥ x = L G -
: .-.,g.’y.’f--.@.- - |
~ - p 100 ’ 4
‘/ - 17084 086 088 i
0 ?7 ° ¢ - | 0 T Y 1 Y 1
00 05 10 15 20 25 084 086  0.88

qo ¢

+ From dispersion relation extract sound velocities
- From sound velocities extract elastic constants
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G/B behavior

* Recall that 6/B does not depend on potential
* For frictionless particles,

G/B ~ 0.23Az(1 — 0.14Az%)
where Az =2z — 2 =3.3(¢p — ¢?)

* For frictional particles, E. somfai, et al. PRE 75, 020301 (2007).
G/B ~ 0.98Az(1 — 0.23Az%)

where Az =2z — 22 =3.3(¢ — ¢2°)
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PNIPAM particles are frictional

0.8 _—
0.6 frictional ®.-7"® -
Z - -
i ,'.
@ 0.4- :
o 1 . _
0.2 / frictionless -
0.0 } ! | ! | ! |
0.00 0.02 0.04 0.06
b-¢

one adjustable parameter ¢.°
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G, B

Interaction most consistent with Hertzian (k. Nordstrom, et al. PRL
105, 175701 (2010))

2.0+

1.5
104"

0.5

---------

0.0l

00 02 04 06 08 1.0

Az

Tuesday, July 16, 13

keff

,u"r-tﬁ

fe s (0= 0

kpT/e =3 x 107°

O 6 K. Shundyak, et al. PRE 75,

010301 (2007).



G, B

Interaction most consistent with Hertzian (k. Nordstrom, et al. PRL
105, 175701 (2010))

ST R

051 L 5 two adjustable parameters
1 G/Kett
0'00-6-’.0'2 04 06 0.8 1-0
bz kpT /e =3 x 107°

~ O 6 K. Shundyak, et al. PRE 75,
p~u. 010301 (2007).
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Jamming and temperature

3x10”7
2x107 - finite temperature
critical (Ill)
~
10-7 - O i T_IN
unjammec 1 jammed
scaling (ll) scaling (l)
0 -
063 0.64 1065 0.66 0.67
ﬁ h
¢ (=1/2 P c  —1/2
O ~ |dp|™ 7/~ O ~ |y

A. Ikeda, L. Berthier and 6. Biroli, J. Chem. Phys. 138, 12A507 (2013)

Tuesday, July 16, 13



Effect of Temperature

log /€BT/€A

Tuesday, July 16, 13

log(¢ — @)

ke T™ is temperature at
which T=0 description
breaks down

Bertrand, et al.
kgT* /e ~ C(N)(¢ — ¢c)*/?
where C(N) — 0 as N — oo

Ikeda, et al.
kT /e = 107°(¢ — ¢c)/?

Wang and Xu

kpT™ /e ~ 0.2(¢ — p.)>/?



Effect of Temperature

log IQBT/EA

our expt
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log(¢ — @)

ke T™ is temperature at
which T=0 description
breaks down

Bertrand, et al.
kgT* /e = C(N)(¢ — ¢c)°/”
where C(N) — 0 as N — oo

Ikeda, et al.
kT /e = 107°(¢ — ¢c)/?

Wang and Xu

kpT™ /e ~ 0.2(¢ — p.)>/?



Effect of Temperature

log IQBT/EA

our expt

log(Qb o ch)

Breaks down for what?

Tuesday, July 16, 13

ke T™ is temperature at
which T=0 description
breaks down

Bertrand, et al.
kpT* /e = C(N)(¢ — ¢)°'?
where C(N) — 0 as N — oo

Ikeda, et al.
kT /e = 107°(¢ — ¢c)/?

Wang and Xu

kT /e =~ 0.2(¢ — )2



Quasilocalized modes predict rearrangements above T,

0.020
0.028
0.035
0.043
0.050
0.058
0.065
0.073
0.080

Widmer-Cooper,
Perry, Harrowell,
Reichman, Nat. Phys.
4,711 (2008)

4 - - L] - .
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

- Color contours: Sum (polarization vector magnitudes)? for each
particle over lowest 30 vibrational modes

- white circles: particles that rearranged in relaxation time interval
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Quasilocalized modes predict rearrangements above T,

0.020
0.028
0.035
0.043
0.050
0.058
0.065
0.073
0.080

Widmer-Cooper,
Perry, Harrowell,
Reichman, Nat. Phys.
4,711 (2008)

4 - - L] - .
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

- Color contours: Sum (polarization vector magnitudes)? for each
particle over lowest 30 vibrational modes Why 30? w*

- white circles: particles that rearranged in relaxation time interval
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Summary

The marginally jammed state represents extreme limit at
the opposite pole from the perfect crystal

The behavior of systems over a wide range of order/
disorder follows jamming scaling

So the marginally jammed is a robust extreme limit--more
robust than the perfect crystal

- Jamming scenario provides conceptual basis for commonality
of low temperature/frequency properties of disordered
solids

relevance to glass transition is still an open question
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