

Goldhirsch, Zanetti 1993, ...

- More dissipation
- Lower Pressure
- etc.

... why ?

dissipation = energy loss (irreversible)

Isotropic stress	$\delta\sigma_{V} = 2B\varepsilon_{V}$
Deviatoric stress	$\delta \tau = A \varepsilon_{_V}$
Anisotropy	$\delta A = 0$

Isotropic|deviatoric strain increment $\varepsilon_{V} | d\gamma$

B... Bulk-, G... Shear-, A... Anisotropy-Modulus

Parameter	Value	Description
N	1000-9261 [-]	Number of particles
$\langle r \rangle$	1 [mm	Average radius
w	1 - 5 [-]	Polydispersity parameter $w = r_{\rm max}/r_{\rm min}$
ρ	2000 [kg/1	n ³] Density
k_n	$10^8 [{ m kg/s}]$	² Stiffness–normal spring
k_t	$2 \times 10^{7} [kg/s]$	² Stiffness-tangential spring
μ	0-100 [-]	Coefficient of friction
γ_n	1 [kg/s]	[] Viscous dissipation–normal direction
γ_t	0.2 [kg/s]	Viscous dissipation-tangential direction
γ_{tr}	0.01 [kg/s]	Background damping–Translation
γ_{rot}	0.002 [kg/s]	Background damping–Rotation
$ au_c$	$0.64 \ [\mu s]$	Duration of a normal collision for an average size particle

Trace of fabric	
$\mathbf{F} = \langle \mathbf{F}^p angle = rac{1}{V} \sum_{p \in V} w_V^p V^p \sum_{c=1}^{C^p} \mathbf{n}^c \otimes \mathbf{n}^c$	$\operatorname{tr}(\mathbf{F}) = (1/V) \sum_{p \in V} V_p C_p$ $= (N/V) \int_{-\infty}^{\infty} dr V_p(r) C(r) f(r)$
$g_3 = \frac{\langle r^3 \rangle_{\Omega}}{\langle r^3 \rangle} = \frac{\int_0^\infty r^3 [f(r)/\Omega(r)] dr}{\langle r^3 \rangle \int_0^\infty [f(r)/\Omega(r)] dr} ,$	$= (1/7) \int_0^\infty dx r_p(r) \mathcal{E}(r) f(r)$ $= g_3 \nu C ,$
$g_3 \approx \frac{1 - B_2 + C_2 + (B_2 - 2C_2) \frac{\langle r^4 \rangle}{\langle r \rangle \langle r^3 \rangle} + C_2 \frac{\langle r^5 \rangle}{\langle r \rangle^2 \langle r^3}}{1 + C_2 \left[\frac{\langle r^2 \rangle}{\langle r \rangle^2} - 1 \right]}$	$a_{2} = \Omega(\langle r \rangle)/(4\pi) = \frac{1}{2} \left(1 - \sqrt{3}/2\right),$ $B_{2} = \sqrt{3}/24a_{2}, \text{ and}$ $C_{2} = B_{2}(B_{2} - 5/6)$

$$\begin{split} \textbf{Constitutive model for Pressure}\\ \textbf{Micromechanical stress tensor for a particle}\\ \sigma_{ij}^{p} &= \frac{1}{V_{p}} \sum_{c=1}^{C_{p}} l_{i}^{pc} f_{j}^{pc}, \qquad P^{pc} = (r_{p} - \delta_{c}/2) \hat{\textbf{n}} & \text{ Branch vector}\\ \textbf{f}^{pc} &= k_{n} \delta_{c} \hat{\textbf{n}} & \text{ Contact force} \\ tr(\boldsymbol{\sigma}^{p}) &= \frac{k_{n}}{V_{p}} \sum_{c=1}^{C_{p}} \delta_{c} \left(r_{p} - \frac{\delta_{c}}{2}\right)\\ tr(\boldsymbol{\sigma}) &= \frac{1}{V} \sum_{p \in V} V_{p} tr(\boldsymbol{\sigma}^{p})\\ &= \frac{k_{n}}{V} \sum_{p=1}^{N} \left(r_{p} \sum_{c=1}^{C_{p}} \delta_{c} - \frac{1}{2} \sum_{c=1}^{C_{p}} \delta_{c}^{2}\right), \end{split}$$

Constitutive model for Pressure

Linking particle overlap and macroscopic deformation

$$d\delta = n_i dl_i = \langle r \rangle n_i u_{i,j} n_j$$
$$d\langle \Delta \rangle_c = D\epsilon_v$$
$$\epsilon_v = tr(\epsilon_{ij})$$
$$\epsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$$

Assumption:

for small overlaps the length of the branch vector is equal to the average particle radius

Off diagonal terms of strain tensor vanish because isotropic deformation and contact distribution

$$\langle \Delta \rangle_c = D \int_{V_0}^{V} \epsilon_{\rm v} = D \varepsilon_{\rm v} = D \ln \left(\frac{\nu_c}{\nu} \right)$$

$$\begin{aligned} \mathbf{Constitutive model for Pressure} \\ p &= p_0 \frac{\nu C}{\nu_c} (-\varepsilon_v) \left[1 - \gamma_p (-\varepsilon_v) \right] \\ B &= -V(\partial p/\partial V) = \partial p/\partial (-\varepsilon_v) = \nu \partial p/\partial \nu \\ B &= \frac{\partial p}{\partial (-\varepsilon_v)} = \frac{p_0 F_V}{g_3 \nu_c} \left[1 - 2\gamma_p (-\varepsilon_v) + (-\varepsilon_v) \left[1 - \gamma_p (-\varepsilon_v) \right] \frac{\partial \ln(F_V)}{\partial (-\varepsilon_v)} \right] \\ F_V &= \operatorname{tr}(\mathbf{F}) = g_3 \nu C \end{aligned}$$

$$\begin{aligned} \mathbf{d}p &= B(-\mathrm{d}\varepsilon_v) \\ \mathrm{d}F_V &= F_V \left(1 + \nu \frac{\partial C}{\partial \nu} \right) (-\mathrm{d}\varepsilon_v) \end{aligned}$$

Constitutive model – isotropic (mode 0)
scalar! (in the biaxial box eigen-system)Isotropic stress $\delta\sigma_v = 2B\varepsilon_v$
Deviatoric stressDeviatoric stress $\delta\tau = A\varepsilon_v$
 $\delta A = 0$ Isotropic deviatoric strain increment $\varepsilon_v \mid d\gamma$ B ... Bulk-, G ... Shear-, A ... Anisotropy-Modulus

	C*	<i>C</i> ₁	α	ν _c
	ISOG	8.0 ± 0.5	0.58 ± 0.05	0.66 ± 0.0
	ISO	8.2720	0.5814	0.6646
	UNI	8.3700	0.5998	0.6625
	D2	7.9219	0.5769	0.6601
	D3	7.9289	0.5764	0.6603
-	ϕ_r	ϕ_c	ϕ_{ν}	
	φ_r	ϕ_c	φ_{v}	
	ISO _G	0.13 ± 0.03	15 ± 2	
	150	0.1216	15.8950	
	UNI	0.1307	15.0833	
	D2	0.1303	14 6919	
-	0.5	0.1027	14.0015	I
-	<i>p</i> *	p_0	Υp	ν _c
	ISO _G	0.04180	0.11000	0.6660
	ISO	0.04172	0.06228	0.6649
	UNI	0.04006	0.03270	0.6619
	D2	0.03886	0.03219	0.6581
_	D3	0.03899	0.02819	0.6583

