Glassy dynamics
in kinetically constrained models
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What are kinetically constrained
models ?

[Fredrickson,Anderson,PRL,1984] P, .
Square lattice y

k =2

If the number of ‘ at nearest neighbors of site i is more than k,
the change of states at site i is forbidden. _ .
[Ritort,Sollich,AdvPhys,2001]
This might be a toy model for glassy dynamics such as cage effects
that the dynamics of a particle is suppressed by the neighbor particles.
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The same thing
by more formal expressions

‘ =1 =0 o; € {0,1} On the square lattice
Master equation
Z [B(o" = o)P(0’,t) — R(o — o")P(o, )] Spin flipping operator
Transition rate (Fio); = (1 — 0:)dij + o;(1 — 655).
R(o — o) 25 r(oc — o')Ci(o)

Cz(a') = () If deB 03‘23

If we change this function,
Other behaviors can happen.

For example, we can choose T-0 p,=1
H(U) = Z g; r(c = o') = min {l,exp (H(a) ;H(a"))} 1 — 0
ieEA Y —
p,=0

In this case, there is no equilibrium phase transitions in the model.



3/11

Status of KCMs
in the studies of glass?

Some experimental studies have attempted to understand the relationship
between KCMs and realistic glass-forming materials.

[Candelier, Dauchot, Biroli, EPL, 2010]
-> Negative evidence
[Keys et al,PRX, 2011]

-> Positive evidence

Anyway, the properties of KCMs themselves have not been understood sufficiently,
In particular, we need to understand phase transitions on finite dimensions.
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An oriented KCM

_ [Toninelli, Biroli,
Spiral model Fisher, PRL 2006]
[Toninelli, Biroli,

‘ EPJB 2008]

Forb&en
® ")

Square lattice

Cz(O') = 0. If thereis at least one ‘ in both boxes

or in both boxes
The change of the state at site i is forbidden.

we consider the initial condition where blue particles are put at each site
with probability p.
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Freezing transition

There is a set of constrained particles
by only constrained particles,
which we call “frozen” particles.

(The state at frozen sites never change.)

0 P 1 »p
= the transition point

of the directed site percolation
in a cellular automton (Domany-Kinzel model)

Other models (Knight model by Toninelli, Biroli, Fisher PRL 2006,

Force-balance model by Jeng,Schwarz PRE 2010 ) also belong to the same universality class.
(We call it “TBF class”.)
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The purpose of our study

??) From a theoretical point of view,

one might ask how robust is the results in the oriented models?
Specifically, it is reasonable to think

“is the orientation a necessary condition for the freezing transition?”

??) From the experimental point of view,
One might argue that this mechanism cannot occur in realistic glassy systems
because the model is already oriented, which is not true in realistic systems.

Our work can answer to these questions in the way that
The orientation is not necessary, therefore, we cannot still exclude possible relations
between the realistic glassy systems and KCMs only because of the above reason.
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Unoriented Model

o; € {0,1} On the square lattice

I\/Iaster equation
Z [R(c¢’ = o)P(¢’,t) — R(o — o')P(0,1)]

Transition rate (Filled boundary

R(o — o) 25 r(o — o')Ci(o) - condition)
Spin flipping operator

(Fio); = (1 — 0i)di; + o;(1 — bi3).

Cz(O') =0
It ZjEBi o-j. > 3
Or

D jcB; T =2 and Z 6(f;,2) <1

where f; = Z 4(o;,0) [H 6(05,0)]
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Examples of some configurations

Forbidden
N |

Forbidden

:

The change of If there is at least one parti/

the state at site i is forbidden. at the sites marked with
UL

the star symbol, the change. of %
the state at site i is forbiddN
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Results

Initially, particles are located with probability p.

~ ™.

Low density High density

Result) we can prove that

there is a freezing transition at p_ where O<p,=p_ =p <1. .

p,=0.984...

(p=1/24) Relaxation time 1,
when 2.0, becomes 0.
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numerical experiments
near the transition point

Red: The sequence of frozen sites
Yellow: unfrozen particles

: filled boundary

ﬁ ........
pl“‘ .“‘

Numerical experiments are quite hard Numerical experiments are not so hard

In a sense that we might need the time of exp(L). In a sense that the difficulty is the same as

the ones in usual percolation problems.

pcépdp

If there are frozen particles in the modified system,
We can find frozen particles in the original system.
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Conjecture

The modified system

L
—>

M=Lz!

We expect that p <&py, (M->L,L->infinite)

z1~0 > 71=1

'+

Pes

0.724

0.723

0.722

0.721

0.72
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T
=
1

ThE universality class in our model

Is fiﬁerent from TBF class.

|

06 065 07 075 08 085 08 085 1

pdp

Pc

Z-‘I

ASpiraI model should behave like

0.63 21



Possible next problems

1) Theoretical determination of universality class (mathematics)
2) The dependence of the geometry of lattices (statistical physics)
3) What happen if we do the “similar” experiments for realistic glassy systems?

although it is not trivial to set up the experimental conditions,
which are “similar” to that of KCMs. (experiments)

Thanks for your attentions!
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This also indicates that
the dynamical exponent is not the same as z=1/0.63
which is that of the standard directed percolation.
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Numerics

These suggest that there are several
directed percolations with different
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Appendix2 Rough sketch for the prrof
Existence of freezing transition

<lowerbound> " p. nrohability that there are frozen particles at the initial condition.

Q: probability that a “specially” connected sequence of the particles from
a boundary to a another faced boundary in the initial condition.

P<Q Q< (24p)V/3 P - 0 (in the thermodynamic limit M—eo)

If p<1/24
<Upper bound>

We map the present problem to
a directed bond percolation problem by the auxiliary variable B.*,B;
which locates at each site with probability { where p = 1- (1-7)2.

With using the transition point p, (=0.644...)of the directed bond percolation
on the square lattice, We can get the relation p,= 1- (1-0)* where {3=p,



