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Solid: elastic response to a shear deformation
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Max Born (1939):

“The difference between a solid and a
liquid is that the solid has elastic
resistance to a shearing stress while a
liquid does not.”

non-zero shear modulus p:
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Free energy of a deformed system

Consider an N-particle system in a box of volume V; particles interact via
potential V(r). The non-trivial part of the free energy of this system is
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Now, let’s deform the box with shear strain v. Then, one would integrate over
a deformed volume,
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Mathematically, one can change the variables x' = x — vy; ¥ = y; 7/ = z and
then one integrates over the undeformed box:
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Note: the shear strain v appears now in the argument of V.




General formula for shear modulus

Expanding the free energy in the shear strain one gets:

1
F(y)= F(0) + Noy + oNpy* +

o - shear stress - shear modulus
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Squire, Holt and Hoover, Physica 42, 388 (1969)
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General formula for shear modulus

Expanding the free energy in the shear strain one gets:
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@ In the thermodynamic limit the free energy density is
shape-independent:




General formula for shear modulus

Expanding the free energy in the shear strain one gets:

1
F(y)= F0) + Noy + ENIWZ I

o - shear stress - shear modulus
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@ This formula is applicable to both crystals and glasses.

@ Can also be evaluated for fluids; computer simulations showed that for
fluids this formula gives p = 0 (as it should).
@ It can be proved that for systems with short range interactions, the above

formula gives . = 0 unless there are long-range density correlations
(Bavaud et al., J. Stat. Phys. 42, 621 (1986)).
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@ The above formula was a starting point of a calculation of glass shear
modulus by H. Yoshino and M. Mezard (PRL 105, 015504 (2010)); see
also H. Yoshino, JCP 136, 214108 (2012).

@ Goal: investigate the existence of long range density correlations and
derive an alternative formula for the shear modulus.




Goldstone modes and long-range correlations
Broken translational symmetry

In crystalline solids translational symmetry is broken
The average density n(7) is a periodic function of 7:

n(r) = Znéeié'7
G

where G are reciprocal lattice vectors.

Rigid translation: an equivalent but different state

By translating a crystal by a constant vector @ we get an equivalent but
different state of the crystal. This does not cost any energy/does not require
any force.

Under such translation the density field changes:

n(F) — n(¥ — d) = ng — n@e"é'a for G#0

Rigid translations = zero free energy cost excitations (Goldstone modes)

The existence of such zero-free energy excitations is the reflection of a
broken translational symmetry.




Emergence of rigidity: crystals Goldstone modes and long-range correlations

Long-range correlations

Density fluctuations for wavevectors close to G diverge
n(k+ G) = Ze {(E+5) 7 ’ 5n(E+é):n(E+é)—<n(E+é)>
Bogoliubov inequality (|A|*) (|B*) > | (AB) |* =
~ 5\2
(ksT)* |nz|? (77- G
1 5 = 1 B
= {on(E+ O)F) = 5 5 . )
img_ ¢ <| 7 ()-ii)

o (k) - microscopic stress tensor i - an arbitrary unit vector

=0 QL

Small wavevector divergence = long-range correlations in direct space




Emergence of rigidity: crystals Goldstone modes and long-range correlations

Displacement field and its long-range correlations
Slowly varying deformation
Infinitesimal uniform translation: n(7¥) — n(¥) — @ - omn(7)

Infinitesimal deformation with a slowly varying a(7): n(7¥) — n(7) — da(7) - 9:n(7)

v

Microscopic expression for the displacement field
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If n(7) = —a(7) - On(7), then <ﬁ(1€)> = a(k).

Long-range correlations of the displacement field
Bogoliubov inequality = <|
v
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This can be used to show that ﬁ(l?; t) is a slow (hydrodynamic) mode
— G. Szamel & M. Ernst, Phys. Rev. B 48, 112 (1993)
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Macroscopic force balance equation

Macroscopic force balance equation

In the long wavelength (k — 0) limit we have the following relation between a

transverse displacement a = ax(ky)?x and the external force (per unit volume)
needed to maintain this displacement:

F = Fo(ky)&, = Ayt (ky ) hyky Awoy = 11 < shear modulus




Microscopic force balance equation
Transverse non-uniform displacement
Infinitesimal transverse deformation with a slowly varying a(7) = d@(k)e .

n(7) — n(7) — a(r) - On(F) = n(7) — @(K)e*” - gn(¥), @ alk

External force needed to maintain deformed density profile

External potential needed to maintain the density profile change:

/ iy ( 5;’;32) )) [~a®)e™% - an()]

External force on the system (per unit volume):

oo 1 : (Wext SN =T T
Fk) = _\_//dfle_’k” 371/‘12( >[ Oz ()] - d(k)e™ ™

ext I
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Emergence of rigidity: crystals Shear modulus

Microscopic force balance equation — shear modulus
Shear modulus

External force on the system (per unit volume):

- -

= ext(z ol
F(k) = —% /d?ldf’ze—ikw (6;;111(;71)) (5;/”(;52)1)) [8;511(72)] .c—l»(k)elk-rz

Long wavelength (k — 0) limit:

F =F.(ky)é, = 0 + 0+ padky)kke, +

no force needed to shift rigidly ~ symmetry

Comparison with macroscopic force balance equation allows us to identify
shear modulus:

by o= "BT / a7, / d7> (y12)? (O (7)) (W) (8n(72))

"BT / a7, / dFs (1)} (B (7)) (71, 72) (Dyn())
(7, ) -

direct correlation function of the crystal




Shear modulus
Shear modulus
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Squire, Holt and Hoover, Physica 42, 388 (1969)
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p="2 [ [ s (50)® @un)) (71, 72) (Bun(F)
¢ (71, 7,) - direct correlation function of the crystal

G. Szamel & M. Ernst, Phys. Rev. B 48, 112 (1993).




Replica approach

Static description of a glass: replica approach

How to “construct” a glass

Franz and Parisi (PRL 79, 2486 (1997)):

An N-particle system 7, ..., 7y coupled to a quenched configuration 79, ..., 7%:

attractive potential = —¢ Y " w(|7; — 7).
i

For low enough temperature or high enough density/volume fraction, as e — 0
the system may remain trapped in a metastable state correlated with the
quenched configuration —- dynamic glass transition.

It is convenient to average over quenched configurations: replicas

Averaging over a distribution of quenched configurations
— rreplicas of the system & r -0 (or m=r+1 & m—1).
quenchLd conf.
System correlated with the quenched configuration
— non-trivial correlations between different replicas.

Appearance of non-trivial inter-replica correlations
— dynamic glass transition (identified with the mode-coupling transition).




OZ equations: a way to implement replica approach

Pair correlation functions: m replicas
hp(r): pair correlation function involving particles in replicas « and

Ornstein-Zernicke (OZ) equations known from equilibrium stat. mech.

has(F1,72) = cap(F1,72) 1) / dP3Can (71, 73) 5 (s, Fa)
K cap: direct correlation function

Replica symmetry: hoo =h & caa=c fora#p: has=h & cap=2¢ J

m — 1 limit

h(r1, ) = c(F, 7)) + n/d73c(?1,73)h(?3,72) standard OZ equation

/d?3(5(r13) — nc(?l, 73))?1(73, ?2) = Z‘(?h ?2)
+n / drsc(7y, 73)h(F, 1) —n / dise(Ry, 73)h(7s, )

Additional relations (closure relations) between #’s and ¢’s needed! )




Goldstone modes & long-range correlations
Symmetry transformation hidden in replica approach

Glass can be moved as a rigid body
Imagine repeating the Franz-Parisi construction with a rigidly shifted system,
7; — 7 + d (with the quenched configuration kept in its original position):

attractive potential = — > w(|7; — 7? — a);

As before: ¢ — 0, metastable state —- repii]ca off-diagonal correlations.
Physically, nothing changes: we get a glass that is shifted rigidly by a.
However: (some) replica off-diagonal correlation functions change.

For a > 0 : hao(F1,72) — hao(F1 — @, 72)
All other pair correlations are unchanged (note: this breaks replica symmetry)

v

Rigid translations = zero energy cost excitations (Goldstone modes)

The transformation hao(?h ?2) — hao(Fl = Ei, ?2); CaO(?l, 72) — Cao(?l = Ei, 72)
leaves Ornstein-Zernicke equations unchanged.

Its existence is the reflection of a broken translational symmetry.




Emergence of rigidity: glasses Goldstone modes & long-range correlations

Displacement field

Slowly varying deformation

Infinitesimal uniform translation: .o (71,72) — hao(71,72) — d - Oz hao (71, 72)
Infinitesimal deformation with a slowly varying a(7):

hao(7P1,72) = hao(71,72) — a(rh) '3?1/1040(71,72))

Displacement field

(k) = — N d?e"’”‘/d ,, Saoli, ) “(;9(:““ N 6 - )8R~ 7Y
i.j

N = /drzl (—ahao rl,r2)>2
8"1

IF Ohao(Fi, 72) = ~a(7) - 05 hao(71,72) then (a(k)) = (k).

microscopic two-replica density




Goldstone modes & long-range correlations
Long-range correlations

Long-range correlations of the displacement field
Bogoliubov inequality =
0 e o = 1 (ksT)*
b (P > g
limg_o % (K- @ (6) - 2)

where 7 is an arbitrary unit vector and o, is the (microscopic) stress tensor in
replica a.
Note: This is identical to the inequality derived for crystalline solids.

Long-range density correlations

1 e
Ll @)
v<'" ia ()|
Lo Ohao(71,72) o Ohao(73,74) o o o
VJ\f2 /drl .drym - o n- o na07a0(r1;r27r37r4)e

Replica off-diagonal four-point correlation function nqo,q0 is long-ranged.

—ik-713
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Macroscopic force balance equation

Macroscopic force balance equation

For an isotropic solid, in the long wavelength (k — 0) limit we have the
following relation between a transverse displacement @ = a,(k,)e, and the
external force (per unit volume) needed to maintain this displacement:

F = Fo(ky)&, = Ayt (ky)hyky . Awoy = 11 < shear modulus




Shear modulus
Microscopic force balance equation

Transverse displacement d@(7) — change of inter-replica correlations
Infinitesimal deformation with a slowly varying a(7):

hao(71,72) = hao(F1,72) — d(ry) '3?1}1&0(71’72))

Inter-replica force needed to maintain these correlations
Inter-replica potential needed to maintain these correlations:

Z/dmdm ((W“O rl’r2)> [=a(7s) - Orhgo(rss)]

I Shgo(7s,74)

Force (per unit volume) on replica «:

= = n? OV (7 L,
Fo(k)=— V/dn dr4e7’k "3 (07 hao(r12) Z ((5h5(()) ) (Orhpo(rss)) - d(k)
ﬁ n

v




Emergence of rigidity: glasses Shear modulus

Microscopic force balance equation — shear modulus
Shear modulus

Force (per unit volume) on replica a:

2

o ik Vao(71, 72) e
Fo(k)=— Fi...dise "7 (95 h, =) (Onh ~d(k
B =" [ @7 Onhan(r1) > (Grazesl) @shmtra) -ath
Long wavelength (k — 0) limit:
F = F(k)é, = 0 + 0+ pa(k)k ke, +

no force needed to shift rigidly ~ symmetry

Comparison with macroscopic force balance equation allows us to identify
shear modulus:

2 = =
kBT 8h10(r1, rz)
dr dr., _—
I / .. / 74 (y13) ( =

x<<5<;f£z‘;§?>;?”)n Comtr),) (M5) |




Emergence of rigidity: glasses Numerical results

Shear modulus: numerical results
Needed: a theory to calculate replicated correlation functions
Cardenas, Franz and Parisi (JCP 110, 1726 (1999)) used replicated

hyper-netted chain (HNC) integral equation approach (a.k.a. HNC closure).

For hard-sphere interaction replica off-diagonal correlation functions  appear

discontinuously at the dynamic transition ¢, = 0.619.

v

Non-ergodicity parameter f(q)

05k

04

03

replica approach: f(q) =

mode-coupling theory:

lim F(g;1)/S(q) = (a)
F(g;1): intermediate scattering function
S(q): static structure factor

Comparison with simulations
= f(q) is too small.




Emergence of rigidity: glasses Numerical results

Shear modulus: numerical results
Needed: a theory to calculate replicated correlation functions

Cardenas, Franz and Parisi (JCP 110, 1726 (1999)) used replicated
hyper-netted chain (HNC) integral equation approach (a.k.a. HNC closure).

For hard-sphere interaction replica off-diagonal correlation functions  appear
discontinuously at the dynamic transition ¢, = 0.619.

v

Non-ergodicity parameter f(q)

T T

replica approach

— =062 ] 08 4
MCT

f(a)

) o 2 30 0 50 60 70 80 0 - 10 - 20 * 30
4D q




An alternative closure (G. Szamel, Europhys. Lett. 91, 56004 (2010))

Metastable state = state with vanishing currents

pair distribution: n,s = n*(has + 1) Brownian Dynamics, Dy = 1, kgT =1
0 = Onap(Fi, 7ait) = =05  Ju,5(F1, P2it) — On, - g2, 713 t)

Assumption: currents vanish (« # ) =

-

V=7, ol ) = =l ) = / P

0 =jp.0a(Fi, 2, 3) = —0nnaas(Fi, 12, Fs) + /d74ﬁ(734)naa5ﬁ(71,72,73774)

v

B B T ) = Bk Bl o) = / i F (o) / T ol o o )

v

i, s - One-particle irreducible part of nqas:
Or O n*e(F1, 75) = / disF (72) / ARy F (Faa)ni g (F1, 7o, 73, Fa)




Numerical results
Equation for the non-ergodicity parameter

Closure: expressing ¢ in terms of 1 = S(¢)f(q)/n

A factorization approximation for ng;am inspired by an earlier analysis of
similar equilibrium correlations results in the following equation for ¢:

c(0) = 50z | LG~ (- [Dclan) + dac)]) Sl (e

v

Self-consistent equation for non-ergodicity parameter f(q)

Using this closure in the replica off-diagonal OZ equation gives an equation
for f(g) identical to that derived using mode-coupling theory:

9 D) [ 048506 G- ) (i lclar) + daca)])

x8(q1)S(q2)f (q1)f (q2)

I-flg) 24

v

Mode-coupling theory’s equation for f(g) is re-derived using a static approach.
This version of replica approach is consistent with mode-coupling theory.




Numerical results
Shear modulus: numerical results

- (=BV10(71,72)) (=BVi(71,72))
Needed: a theory to calculate (W)n and ( 51120((;*3}4)2 )

@ An approximate relation between replica off-diagonal potentials and the
change of the direct correlation functions:
n*0ca0 (71, 7) = —nao(Fi, /) B8Vao(Fi, )

@ Direct correlation functions can be expressed in terms of replica
off-diagonal correlations through Ornstein-Zernicke equations.




Emergence of rigidity: glasses Numerical results

Shear modulus: numerical results

Results - shear modulus

100

ol
|_CD
o7

o™
o 4

20r

n 1
0.0514 0.516 0.518

¢

0.52

Hard sphere potential; static structure
calculated using Percus-Yevick structure factor.

Discontinuous appearance of the shear
modulus at the dynamic glass transition.

G. Szamel & E. Flenner, PRL 107, 105505 (2011)
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Summary

@ Crystalline solid: broken translational symmetry
— Goldstone modes, long-range correlations & elasticity

@ An alternative expression for the shear modulus

@ Glassy (amorphous) solid:

randomly broken translational symmetry
— Goldstone modes, long-range correlations & elasticity

@ An alternative expression for the shear modulus of glasses

@ Discontinuous appearance of the shear modulus at the dynamic glass
transition
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Origin of rigidity in solids:
broken translational symmetry

Crystals

G. Szamel & M. H. Ernst,
“Slow modes in crystals: A method to study elastic constants”,
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Phys. Rev. B 81, 134110 (2010)

C. Walz, G. Szamel & M. Fuchs,
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Glasses

G. Szamel & E. Flenner,

“Emergence of Long-Range Correlations and Rigidity at
the Dynamic Glass Transition",

Phys. Rev. Lett. 107, 105505 (2011)




	Statistical mechanical expression for the shear modulus
	Emergence of rigidity: crystals
	Goldstone modes and long-range correlations
	Shear modulus

	Replica approach
	Emergence of rigidity: glasses
	Goldstone modes & long-range correlations
	Shear modulus
	Numerical results

	Summary
	Appendix

