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Dynamics of glassy systems
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Dynamics from statics: first steps

Mean Field models (Caltagirone, Ferrari, Leuzzi, Parisi, Ricci-Tersenghi,
Rizzo, 2011) — schematic mode coupling equations:
Ingredients (Kurchan 1992):

e Langevin Dynamics

Martin-Siggia-Rose functional

e Supersymmetric formalism

e Dynamical action
e Saddle point equations — schematic mode coupling equation
e ultrafast motion limit ("replicas = supertimes")

A=22

w1

where wy and wy are two of the cubic coefficient of a replica field theory
action that can be written from the statics.
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The Potential Method
Consider a system with hamiltonia H;(g) where J is an internal quenched
disorder and ¢ is the configuration of the internal degrees of freedom. Define
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the potential?Franz Parisi 1995)
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The Boltzmann Pseudodynamics

Let us consider a generalization of the Franz-Parisi potential.
We define the potential of a chain of coupled systems of length L the following
way (Franz Parisi, 2012)
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_ 1
Z(Qk71)

Z(gy_4) = Zeiﬁkm[ﬁk]‘s (C(k —1,k) q(gkfhgk)) :
s

M(ovlox 1) = o PHIEs (E(k— 1K) — (g, 1.2,

We considered the most general case where the temperature of each system is
different one from another. The kernel M(o|ok—1) defines the Boltzmann
Pseudodynamics Markov Chain.
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Schematic models - p-spin (1)

Let us consider the p-spin spherical model.

The replica method can be employed to treat the logarithm and the factors
Z(gy_0) "

In this way we have a replicated chain. For each system we have a certain
number of replicas that eventually will be sent to zero.

By averaging over the disorder, the potential becomes a function of the overlap

Qus(t,s) = NZU ()" (s)

and the action for the potential becomes
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We must choose a parametrization for the overlap matrix that is compatible
with the constraints.
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Schematic models - p-spin (2)

Replica symmetric parametrization for the overlap matrix
Qan(t,s) = C(t,s) + da0su AC(s,s) + Os (s — t)01 AC(t,s)+
+ O5(t —5)01AC(s, t)
AC(t,s) = C(t,s) — C(t,s)
We want to optimize over the free parameter of the overlap matrix. However,
as in the standard potential method, we will search for a stationary point of the

potential with respect to all the constraints. In this way we will optimize over
all the parameters of Q. The saddle point equations are

2 L
PSS 1Quelk, 2P Qus(z.) + Fubse — v Qus(k, ) = 0
z=1 c=1

In the limit in which the chain becomes infinitely long we put the crucial ansatz
1
BR(U, s)ds = Os(u—s)AC(s,u)

that can be justified by an explicit computation of the response function within
the Boltzmann pseudodynamics process.
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Schematic models - p-spin (3)

The crucial result is that

i 530 Qulk AP Q) = [ dcar o)

}_>O =1 c=1
The resulting equations are

v(t)C(t,u) = B

+% /Ou dz Cpfl(t, z)R(u,z) + % /0 dz CP73(t,2)R(t, z)C(z, u)}

P 1cP=2(t, u)AC(u, u) + AGy-1(t, t)C(t, u) + C°~(t,0)C(u, 0)+

; v(t)R(t,u) = sz {BAC,, 1(t, t)R(t, u)+%CP‘2(t, u)R(t, ) AC(u, u)+
”6*21/ dz CP~2(t, 2)R(t, 2)R(z, u)}

v(t)AC(t, t) = @AC AC
)= p—1(t, t)AC(u,u) + 1.

By imposing AC(t,t) =1 — g4 we recover the dynamical equation in the «
regime.
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The Boltzmann Pseudodynamics for structural glasses-(1)

Consider a replicated system of particles so that we can define the fields

pa(x) = (O 6(x — 1)) pan(x:y) = (3 8(x — x)aly — x))
i=1 [if]
_ pa(x,y)
) = )

And the replicated Ornstein-Zernike equations that defines the direct
correlation function

un(x.7) = hus(x.y) = O [ 42 b 2)pe(2)calz,)

We will consider solutions such that p.(x) = p. Note that in the OZ equation
there is the product between the matrix h and the matrix c.
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The Boltzmann Pseudodynamics for structural glasses-(2)

Put now the pseudodynamics ansatz

hap(x) = h(s, u; x) + 0a60su Ah(s, s; x) + Os (u — 5)da1 Ah(s, u; x)+

+ O5(s — u)dp1 Ah(s, u; x)
1
B

and the analogous expression for the direct correlation function. The OZ
equations become

Riu(g; u; s)ds = O~ (u — s)Ah(q; s, u)

h(g; s, u) = c(q;s,u) + p[h(q;s,0)c(q; 0, u) + h(q; s, u) Ac(q; u, u)+
+Ah(q;s,s)c(q; s, u) + % /0u dzh(q; s, z)Rc(q; u,z) + % /Os dzRn(q; s, z)c(q; z, u)

Ah(q;s,s) = Ac(q;s,s) + pAh(q; s, s)Ac(q; s, s)
Ri(q; u,s) = Re(q; u,s) + p[Ru(q; u, s)Ac(q; u, u) + Ah(g; s, s)Re(q; u, s)+

+% /Su dzRw(q; z,s)R:(q; u,z)} .

P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 11 /16



The Boltzmann Pseudodynamics for structural glasses-(3)

We have to choose a closure for the OZ equations. We choose HNC.

ln[hab(va) + 1] + ﬂ¢ab(X7y) = hab(xvy) - Cab(Xa.V)

Putting the BPD ansatz in the equation we get

In[h(x;s,u) + 1] = h(x;,s, u) — c(x; s, u)
h(x; s, u)

Reloxis,u) = Ralxi s )20 0y

and moreover that Ah(q,s,s) and Ac(q, s, s) are actually s independent. We
can now analyze the full set of equations. First we go to the equilibrium regime
and we see that the equations admits a solution that satisfies TTI + FDT

dh(x;s —u
_pdhlxismu) o
ds
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The Boltzmann Pseudodynamics for structural glasses-(4)
The final equation is

0= Wyl - p / “h(q.2)[c(d,s — 2) - c(q:9)]

Wqlh] = c(q;s) — h(q: s) + p[h(q; s)Aco(q) + c(q;s)Aho(q) + c(q;0)h(q; s)—
—(h(q,s) — h(q,0))c(q,s)]

where

In[h(x; s, u) + 1] = h(x; s, u) — c(x; s, u)
This is a particular MCT equation where the kernel is defined through the
direct correlation function A non trivial solution exist if

1
det | (21)°3(a ~ (2 Ac(a) - *Ac(@) - TF. (575 ) (a0 =0
This operator is the equivalent of the replicon eigenvalue for the schematic
models. Moreover using this MCT equation we can compute the exponent
parameter A

de gz X)
~ 20 [ (@)1 - pAc(q))?
that is in agreement we the static calculation based on the relation A = wa/wy
obtained in Franz Jaquin Parisi Urbani Zamponi 2012
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The Boltzmann Pseudodynamics for structural glasses-(5)

Moreover we can study the aging regime.
h(q;s,u) = c(q;s,u) + p[h(q; s, u)Ac(q) + Ah(q)c(q; s, u)+
+l/ dzR:(q; u,z)h(q; s, z) + l/ dzRn(q; s, z)c(q; z, u)]
B Jo B Jo
Ri(a,s,u) = Re(a; s, u) + p[Ru(q; s, u)Ac(q) + Ah(q)Re(a; s, u)+
+%/ dzRw(q; z, u)Rc(q; s,z)} .
Following (Cugliandolo Kurchan 1993) we search for a solution of the type
u 1 u
h(q; s, u) —h(q. ;) Rn(g;s,u) = SR (qv ;)
and that satisfies Quasi-FDT
Ra(@: \) = Bx-Sh(q: )
nq; - dr— q;

Here the FDT ratio is independent on g in agreement with (Latz 2001).
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The Boltzmann Pseudodynamics for structural glasses-(6)

The value of FDT ratio x can be computed by looking at the equations in the
limit A — 1.

What can be easily seen by inspections is that in that limit the aging equations
reduce to the standard replicated HNC equations within a replica symmetric
ansatz but with a number of replicas m = x.

The value of x is fixed by the equation for the response function in the limit
A — 1 that gives rise to the marginal stability condition

1
det |(27)P6(q — k)(2pAc(q) — p*Ac*(q)) — T.F. <%> (g— k)} =0
This is equivalent to replicon instability in mean field schematic models and as
in the p-spin spherical model the marginal stability condition does not depend
on m.

All the picture follows the Cugliandolo-Kurchan theory of aging.
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Conclusions and perspectives

We have discussed a static construction for the whole dynamics of glassy
systems in the « regime. The new insight and advantages from this
construction are

® |t gives an interpretation of glassy dynamics in terms of quasi-equilibrium
exploration of phase space.

® |t is a static construction so that approximation methods and techniques
can be employed

e Standard MCT and the Szamel's closure scheme (Szamel 2010)
The future work to do is
e Use different (possibly better) approximation schemes than HNC

e Understand how to incorporate the full-RSB effects in the
quasi-equilibrium construction

e Study dynamical fluctuations in the « regime. In the 3 regime it has been
discovered that the fluctuations can be described by a cubic field theory
in a random field. Is it true also in the long time regime?
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