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Overview

Overview of the talk

• Dynamics of glassy systems
• Mean Field disordered systems

• Langevin Dynamics
• Supersymmetric approach

• The Potential Method
• The Boltzmann Pseudodynamics
• Application to mean field spin glass systems
• Results in the replicated liquid theory

• Dynamical Ornstein-Zernike equations
• HNC closure

• Conclusions and perspectives
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Dynamics of glassy systems
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Dynamics from statics: first steps

Mean Field models (Caltagirone, Ferrari, Leuzzi, Parisi, Ricci-Tersenghi,
Rizzo, 2011) → schematic mode coupling equations:
Ingredients (Kurchan 1992):

• Langevin Dynamics

• Martin-Siggia-Rose functional

• Supersymmetric formalism

• Dynamical action

• Saddle point equations → schematic mode coupling equation

• ultrafast motion limit ("replicas = supertimes")

λ =
w2

w1

where w1 and w2 are two of the cubic coefficient of a replica field theory
action that can be written from the statics.
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The Potential Method
Consider a system with hamiltonia HJ(σ) where J is an internal quenched
disorder and σ is the configuration of the internal degrees of freedom. Define
the potential (Franz Parisi 1995)

V (q) = − lim
N→∞

1
Nβ

EJ

∑
τ

e−βHJ [τ ]

ZJ
logZJ [q, τ ]

where

ZJ [q, τ ] =
∑
σ

e−βHJ [σ]δ (q − q(σ, τ)) ZJ =

∫
dqZJ [q, τ ]

0 0.2 0.4 0.6 0.8 1q
0

0.005

0.01

0.015

0.02

V(q)

T=T
d

T=T
g

T=T
K

P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 5 / 16



The Boltzmann Pseudodynamics

Let us consider a generalization of the Franz-Parisi potential.
We define the potential of a chain of coupled systems of length L the following
way (Franz Parisi, 2012)

V
[
{βk}; {C̃(k − 1, k)}

]
= − lim

N→∞

1
N

EJ

∑
σ1

. . .
∑
σL−1

1
Z

e−β1HJ [σ1]
L−2∏
k=1

M(σk+1|σk)×

× ln
∑
σL

e−βLHJ [σL]δ
(
C̃(L− 1, L)− q(σL−1, σL)

)
and

M(σk |σk−1) =
1

Z(σk−1)
e−βkHJ [σk ]δ

(
C̃(k − 1, k)− q(σk−1, σk)

)
Z(σk−1) =

∑
σk

e−βkHJ [σk ]δ
(
C̃(k − 1, k)− q(σk−1, σk)

)
.

We considered the most general case where the temperature of each system is
different one from another. The kernel M(σk |σk−1) defines the Boltzmann
Pseudodynamics Markov Chain.
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Schematic models - p-spin (1)

Let us consider the p-spin spherical model.

The replica method can be employed to treat the logarithm and the factors
Z(σk−1)

−1.
In this way we have a replicated chain. For each system we have a certain
number of replicas that eventually will be sent to zero.
By averaging over the disorder, the potential becomes a function of the overlap

Qab(t, s) =
1
N

N∑
i=1

σ
(a)
i (t)σ

(b)
i (s)

and the action for the potential becomes

S(Q) =
β2

4

L∑
t,s=1

nt∑
a=1

ns∑
b=1

Qab(t, s)
p +

1
2
ln detQ

We must choose a parametrization for the overlap matrix that is compatible
with the constraints.
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Schematic models - p-spin (2)

Replica symmetric parametrization for the overlap matrix

Qab(t, s) = C(t, s) + δabδsu∆C(s, s) +Θ>(s − t)δa1∆C(t, s)+

+Θ>(t − s)δa1∆C(s, t)

∆C(t, s) = C̃(t, s)− C(t, s)

We want to optimize over the free parameter of the overlap matrix. However,
as in the standard potential method, we will search for a stationary point of the
potential with respect to all the constraints. In this way we will optimize over
all the parameters of Q. The saddle point equations are

β2p

2

L∑
z=1

nz∑
c=1

[Qac(k, z)]
p−1 Qcb(z , j) + δkjδac − νkQab(k, j) = 0

In the limit in which the chain becomes infinitely long we put the crucial ansatz

1
β
R(u, s)ds = Θ>(u − s)∆C(s, u)

that can be justified by an explicit computation of the response function within
the Boltzmann pseudodynamics process.
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Schematic models - p-spin (3)

The crucial result is that

lim
{n(t)}→0

L∑
z=1

nz∑
c=1

[Qac(k, z)]
p−1 Qcb(z , j) =

∫
dc Q(a, c)p−1Q(c, b)

The resulting equations are

ν(t)C(t, u) =
β2p

2
[
C p−1(t, u)∆C(u, u) +∆Cp−1(t, t)C(t, u) + C p−1(t, 0)C(u, 0)+

+
1
β

∫ u

0
dz C p−1(t, z)R(u, z) +

p − 1
β

∫ t

0
dz C p−2(t, z)R(t, z)C(z , u)

]
1
β
ν(t)R(t, u) =

β2p

2

[
1
β
∆Cp−1(t, t)R(t, u) +

p − 1
β

C p−2(t, u)R(t, u)∆C(u, u)+

p − 1
β2

∫ t

u

dz C p−2(t, z)R(t, z)R(z , u)

]
ν(t)∆C(t, t) =

β2p

2
∆Cp−1(t, t)∆C(u, u) + 1 .

By imposing ∆C(t, t) = 1− qd we recover the dynamical equation in the α
regime.
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The Boltzmann Pseudodynamics for structural glasses-(1)

Consider a replicated system of particles so that we can define the fields

ρa(x) = 〈
N∑
i=1

δ(x − x
(a)
i )〉 ρab(x ; y) = 〈

∑
[ij]

δ(x − x
(a)
i )δ(y − x

(b)
j )〉

hab(x , y) =
ρab(x , y)

ρa(x)ρb(y)
− 1

And the replicated Ornstein-Zernike equations that defines the direct
correlation function

cab(x , y) = hab(x , y)−
n∑

c=1

∫
dz hac(x , z)ρc(z)ccb(z , y)

We will consider solutions such that ρa(x) = ρ. Note that in the OZ equation
there is the product between the matrix h and the matrix c.
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The Boltzmann Pseudodynamics for structural glasses-(2)

Put now the pseudodynamics ansatz

hab(x) = h(s, u; x) + δabδsu∆h(s, s; x) +Θ>(u − s)δa1∆h(s, u; x)+

+Θ>(s − u)δb1∆h(s, u; x)

1
β
Rh(q; u; s)ds = Θ>(u − s)∆h(q; s, u)

and the analogous expression for the direct correlation function. The OZ
equations become

h(q; s, u) = c(q; s, u) + ρ [h(q; s, 0)c(q; 0, u) + h(q; s, u)∆c(q; u, u)+

+∆h(q; s, s)c(q; s, u) +
1
β

∫ u

0
dzh(q; s, z)Rc(q; u, z) +

1
β

∫ s

0
dzRh(q; s, z)c(q; z , u)

]
∆h(q; s, s) = ∆c(q; s, s) + ρ∆h(q; s, s)∆c(q; s, s)

Rh(q; u, s) = Rc(q; u, s) + ρ [Rh(q; u, s)∆c(q; u, u) +∆h(q; s, s)Rc(q; u, s)+

+
1
β

∫ u

s

dzRh(q; z , s)Rc(q; u, z)

]
.

P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 11 / 16



The Boltzmann Pseudodynamics for structural glasses-(3)

We have to choose a closure for the OZ equations. We choose HNC.

ln[hab(x , y) + 1] + βφab(x , y) = hab(x , y)− cab(x , y)

Putting the BPD ansatz in the equation we get

ln[h(x ; s, u) + 1] = h(x ; , s, u)− c(x ; s, u)

Rc(x ; s, u) = Rh(x ; s, u)
h(x ; s, u)

1+ h(x ; s, u)
.

and moreover that ∆h(q, s, s) and ∆c(q, s, s) are actually s independent. We
can now analyze the full set of equations. First we go to the equilibrium regime
and we see that the equations admits a solution that satisfies TTI + FDT

−β dh(x ; s − u)

ds
= Rh(x ; s − u)
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The Boltzmann Pseudodynamics for structural glasses-(4)
The final equation is

0 = Wq[h]− ρ
∫ s

0
ḣ(q, z)[c(q, s − z)− c(q; s)]

Wq[h] = c(q; s)− h(q; s) + ρ [h(q; s)∆c0(q) + c(q; s)∆h0(q) + c(q; 0)h(q; s)−
−(h(q, s)− h(q, 0))c(q, s)]

where
ln[h(x ; s, u) + 1] = h(x ; s, u)− c(x ; s, u)

This is a particular MCT equation where the kernel is defined through the
direct correlation function A non trivial solution exist if

det
[
(2π)Dδ(q − k)(2ρ∆c(q)− ρ2∆c2(q))− T.F.

(
1

g̃(x)

)
(q − k)

]
= 0

This operator is the equivalent of the replicon eigenvalue for the schematic
models. Moreover using this MCT equation we can compute the exponent
parameter λ

λ =

∫
dDx

k3
0 (x)

g̃2(x)

2ρ
∫
q
k3
0 (q)(1− ρ∆c(q))3

that is in agreement we the static calculation based on the relation λ = w2/w1

obtained in Franz Jaquin Parisi Urbani Zamponi 2012
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The Boltzmann Pseudodynamics for structural glasses-(5)

Moreover we can study the aging regime.

h(q; s, u) = c(q; s, u) + ρ [h(q; s, u)∆c(q) +∆h(q)c(q; s, u)+

+
1
β

∫ u

0
dzRc(q; u, z)h(q; s, z) +

1
β

∫ s

0
dzRh(q; s, z)c(q; z , u)

]
Rh(q, s, u) = Rc(q; s, u) + ρ [Rh(q; s, u)∆c(q) +∆h(q)Rc(q; s, u)+

+
1
β

∫ s

u

dzRh(q; z , u)Rc(q; s, z)

]
.

Following (Cugliandolo Kurchan 1993) we search for a solution of the type

h(q; s, u) = h
(
q;

u

s

)
Rh(q; s, u) =

1
s
Rh

(
q;

u

s

)
and that satisfies Quasi-FDT

Rh(q;λ) = βx
d
dλ

h(q;λ)

Here the FDT ratio is independent on q in agreement with (Latz 2001).
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The Boltzmann Pseudodynamics for structural glasses-(6)

The value of FDT ratio x can be computed by looking at the equations in the
limit λ→ 1.

What can be easily seen by inspections is that in that limit the aging equations
reduce to the standard replicated HNC equations within a replica symmetric
ansatz but with a number of replicas m = x .

The value of x is fixed by the equation for the response function in the limit
λ→ 1 that gives rise to the marginal stability condition

det
[
(2π)Dδ(q − k)(2ρ∆c(q)− ρ2∆c2(q))− T.F.

(
1

g̃(x)

)
(q − k)

]
= 0

This is equivalent to replicon instability in mean field schematic models and as
in the p-spin spherical model the marginal stability condition does not depend
on m.

All the picture follows the Cugliandolo-Kurchan theory of aging.
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Conclusions and perspectives

We have discussed a static construction for the whole dynamics of glassy
systems in the α regime. The new insight and advantages from this
construction are

• It gives an interpretation of glassy dynamics in terms of quasi-equilibrium
exploration of phase space.

• It is a static construction so that approximation methods and techniques
can be employed

• Standard MCT and the Szamel’s closure scheme (Szamel 2010)

The future work to do is

• Use different (possibly better) approximation schemes than HNC

• Understand how to incorporate the full-RSB effects in the
quasi-equilibrium construction

• Study dynamical fluctuations in the α regime. In the β regime it has been
discovered that the fluctuations can be described by a cubic field theory
in a random field. Is it true also in the long time regime?
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