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Strong and Fragile Glasses

‘Super-Arrhenius’ behaviour

For some supercooled liquids, the temperature

dependence of relaxation times or transport

properties such as the diffusion constant,D, is

stronger than predicted by the Arrhenius law.

Arrhenius Super-Arrhenius

Temperature dependence Arrhenius Law VTF equation

η = η0 exp[A/T ] η = η0 exp[A/(T − T0)]

Angell’s classification Strong Fragile
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The Loch Ness Monster
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The Loch Ness Monster
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The Loch Ness Monster
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Potential Energy Landscapes

Potential Energy Landscape (PEL): the potential energy

as a function of all the relevant particle coordinates.

Any structure can be minimised to find its

inherent structure, a minimum on the PEL.

Discretisation and simplification of

configuration space.

minimum

minimum

transition state

Dynamics requires information about transition states, the highest point on the

lowest-energy pathway between two minima.
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Visualising the Landscape - Crystal Landscapes

Disconnectivity Graphs
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Calvo, Bogdan, de Souza and Wales, JCP 127, 044508 (2007)
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Visualising the Landscape - Glassy Landscapes

Disconnectivity Graphs
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de Souza and Wales, JCP 129, 164507 (2008)

Glassy Dynamics in the Potential Energy Landscape – p. 7/23



Overview

Introduction
Strong and Fragile Glasses

Potential Energy Landscape

Visualising the Potential Energy Landscape

Glassy Dynamics
Coarse-graining the Landscape - Metabasins

Cage-breaking

Reversed and Productive Cagebreaks

Calculating Diffusion Constants

Cage-break Metabasins
Random Walk

Metabasins vs. Cagebreaks

Glassy Dynamics in the Potential Energy Landscape – p. 8/23



Coarse-graining the landscape

Transitions between metabasins

follow a random walk

Metabasins are

well-characterised by an energy

and waiting time

Diffusion constants can be

calculated

Doliwa and Heuer, PRE (2003)
Problems with this approach:

How but not Why.

No information about microscopic mechanisms, within metabasins or for

transitions between metabasins.

Identify minima by total system energy, the method cannot bescaled for

larger system sizes, restricted to around 65 atoms.
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Fitting to Super-Arrhenius Behaviour

lnDerg(T ) = −
(

m
T

)n
− c

T
+ lnD0

Arrhenius component:− c
T
+ lnD0

Correction: −
(

m
T

)n

de Souza and Wales

PRB 74, 134202 (2006)

PRL 96, 057802 (2006)
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Levels of Coarse-Graining
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Negative correlation in Minima-to-Minima Transitions

⇓

Negatively correlatedDiffusive Processes

⇓

Random Walk between Metabasins
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Mean square displacement → Diffusion

Einstein relation:D = limt→∞

1
6t
〈∆r2(t)〉

〈r
2
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Diffusive behaviour

Ballistic motion
〈r2(t)〉 ∝ t2

〈r2(t)〉 ∝ t
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Nearest Neighbours
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Cage-Breaking Criteria

Nearest neighbours are within a distance of1.25 for an AA interaction.

For the loss of a neighbour, relative distance changes by more than0.561,

which corresponds to half the equilibrium pair separation.

A cage-break occurs with the loss/gain of at least two neighbours.

Sequence ofminimum – transition state – minimumfor a cagebreak.

de Souza and Wales, JCP 129, 164507 (2008)
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Reversed Cage-Breaks

Identified when the net displacement squared is less than10−5.

Chains of repeatedly reversed cage-breaks are found.

Determine cage-breaks which areProductivetowards long-term diffusion:

The cage-break is not followed by the reverse event.

The cage-break is not part of a reversal chain

OR

ends a chain with an even number of reversals.

1

2

3
space

here

3 cage-breaks

2 reversals

Last cage-break is Productive
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Diffusion from Productive Cage-Breaks

Productive Cage-breaks follow a random walk,〈r2(t)〉 =
M
∑

j=1

L2
j
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60-atom binary Lennard-Jones at number densities of1.3and1.1
Landscape-influenced regime(1/T ): 0.78and1.78

Landscape-dominanced regime(1/T ): 1.56and3.56
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Accounting for correlation

The following simplifications are suggested by our studies of diffusion using

Molecular Dynamics trajectories:

The displacements of cage-breaks are similar and can be represented by a

constant,L.

Correlation arises from direct return events.

We can account for correlation effects using a count of reversal chains of

lengthz, n(z).

〈r2(t)〉 = ML2

(

1 + 2
−n(1) + n(2)− n(3) + · · ·

M

)

space

here

Reversal chain, z=2.

Two reversal chains, z=1.

n(1) = 2 andn(2) = 1
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Diffusion from All Cage-Breaks

〈r2(t)〉 =

M
∑

j=1

L2
j ×

(

1 + 2
−n(1) + n(2)− n(3) + · · ·

M

)

All

Cage-Breaks
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Levels of Coarse-Graining
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Levels of Coarse-Graining
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Metabasins vs. Cagebreaks

Transitions between metabasins

follow a random walk

Metabasins are

well-characterised by an energy

and waiting time

Diffusion constants can be

calculated

de Souza, Rehwald and Heuer, in preparation

(2013)
Advantages of this method:

How and Why.

Information about microscopic mechanisms, within metabasins and for

transitions between metabasins.

Method can be scaled for larger system sizes.
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Conclusions

The Potential Energy Landscape for glass-forming systems is extremely

complex.

The landscape can be coarse-grained intometabasins

Important transitions such ascagebreakscan be identified

We have reconciled the two approaches, providing a microscopic

description for metabasins within the PEL in the form of productive

cagebreaks.

Microscopic mechanisms <–> Macroscopic properties

Glassy Dynamics in the Potential Energy Landscape – p. 22/23



The Loch Ness Monster
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