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Strong and Fragile Glasses

‘Super-Arrhenius’ behaviour

For some supercooled ligquids, the temperature
dependence of relaxation times or transport
properties such as the diffusion constabt, is
stronger than predicted by the Arrhenius law.

Arrhenius Super-Arrhenius
Temperature dependence Arrhenius Law VTF equation
n = 10 exp[A/T] | 1 = 1o exp[A/(T — To)]
Angell’s classification Strong Fragile
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Strong and Fragile Glasses
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The Loch Ness M onster
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The Loch Ness M onster

Glassy Dynamics in the Potential Energy Landscape — p. 4,



Potential Energy L andscapes

Potential Energy Landscape (PElthe potential energy

as a function of all the relevant particle coordinates. N
transition state

L N minimum
# Any structure can be minimised to find its

Inherent structurea minimum on the PEL. minimum

# Discretisation and simplification of
configuration space.

Dynamics requires information about transition states ftighest point on the
lowest-energy pathway between two minima.

Glassy Dynamics in the Potential Energy Landscape — p. 5,



Visualising the Landscape - Crystal L andscapes

Disconnectivity Graphs

10ean

Calvo, Bogdan, de Souza and Wales, JCP 127, 044508 (2007)
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Visualising the L andscape - Glassy L andscapes

Disconnectivity Graphs
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Coarse-graining the landscape

# Transitions between metabasins

follow a random walk
Metabasins

MB, MB,

® Metabasins are
\... well-characterised by an energy
and waiting time

o Diffusion constants can be
calculated

o

Doliwa and Heuer, PRE (2003)
Problems with this approach:

How but not Why.

No information about microscopic mechanisms, within masats or for
transitions between metabasins.

# ldentify minima by total system energy, the method cannadaded for
larger system sizes, restricted to around 65 atoms.
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Fitting to Super-Arrhenius Behaviour

® InDey(T) =—(2)" — & +1n Dy

T de Souza and Wales

# Arrhenius component:- = + In Dy PRB 74, 134202 (2006)
)n PRL 96, 057802 (2006)

® Correction: — (%

0.5 1.0 1.5 2.0 2.5
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L evels of Coarse-Graining
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Negative correlation in Minima-to-Minima Transitions

4

Negatively correlate®iffusive Processes

4

Random Walk between Metabasins
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M ean sguar e displacement — Diffusion

Einstein relation:D = lim;_, g (Ar?(t))

LT R L LR
: Diffusive behaviour
10" (x2(1)) ox t —-
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2| Ballistic motion |
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Nearest Neighbours
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Nearest Neighbours

AA interaction
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Cage-Breaking Criteria

» Nearest neighbours are within a distancea @b for an AA interaction.

# Forthe loss of a neighbour, relative distance changes bg than(.561,
which corresponds to half the equilibrium pair separation.

# A cage-break occurs with the loss/gain of at least two neaghd

# Sequence afninimum — transition state — minimufor a cagebreak.

de Souza and Wales, JCP 129, 164507 (200
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Rever sed Cage-Breaks

» Identified when the net displacement squared is lessiban
# Chains of repeatedly reversed cage-breaks are found.

o Determine cage-breaks which d@eoductivetowards long-term diffusion:

The cage-break is not followed by the reverse event.
The cage-break is not part of a reversal chain
OR

ends a chain with an even number of reversals.

3 cage-breaks
o J
2 reversals
Last cage-break is Productive

e
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Diffusion from Productive Cage-Breaks

M
Productive Cage-breaks follow a random walé (¢)) = » L3
j=1

3L _
4L
5L
6 L
Q_7L
- L
5 gl
9 L
—10 L
05 10 15 20 25 3.0 35
/T
60-atom binary Lennard-Jones at number densitidsdénd1.1
Landscape-influenced reginie/T)): 0.78and1.78
Landscape-dominanced regirfieg’T): 1.56and3.56
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Accounting for correlation

The following simplifications are suggested by our studiediffusion using
Molecular Dynamics trajectories:

o The displacements of cage-breaks are similar and can beseagied by a
constant,L.

® Correlation arises from direct return events.

o We can account for correlation effects using a count of salarhains of
lengthz, n(z).

(r2(t)) = ML (1 L)+ n% n(3) + - )

Reversal chain, z=2.

e _
C - :> > Two reversal chains, z=1.
- n(1) =2 andn(2) = 1

.|
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Diffusion from All Cage-Breaks

n(l) +n(2) —n(3) + - - ) All
Cage-Breaks

05 1.0 1.5 20 25 3.0 3.5

1/T
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L evels of Coarse-Graining
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Negative correlation in Minima-to-Minima Transitions

4

Negatively correlate®iffusive Processes

4
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L evels of Coarse-Graining
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L evels of Coarse-Graining

10ean

Negative correlation in Minima-to-Minima Transitions

4

Correlated Random Walk of Cage-Breaking events

4

Random Walk of Productive Cage-Breaking events
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Metabasinsvs. Cagebreaks

# Transitions between metabasins
follow a random walk

Metabasins o Metabasins are

MB, MB, \ well-characterised by an energy
[ N X ) - .

and waiting time

o Diffusion constants can be
. X calculated

v

de Souza, Rehwald and Heuer, in preparatio

(2013)
Advantages of this method:

o How and Why.

# Information about microscopic mechanisms, within metaisagnd for
transitions between metabasins.

# Method can be scaled for larger system sizes.
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Conclusions

# The Potential Energy Landscape for glass-forming systemastremely
complex.

o The landscape can be coarse-grained imébabasins
# Important transitions such asgebreaksan be identified

# We have reconciled the two approaches, providing a micpsco
description for metabasins within the PEL in the form of proive
cagebreaks.

# Microscopic mechanisms <—> Macroscopic properties
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The Loch Ness M onster
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