The high energy GRBs: lessons learned from Fermi

Elena Moretti
KTH and OKC
Stockholm
On behalf of the Fermi GBM and LAT teams
Photospheric emission in BATSE bursts

CGRO BATSE ERA (1994-2000)

Spectra from temporally resolved pulses observed by BATSE over the energy range 20-2000 keV.

Spectral fit: Black body combined with a power law

\[N_E(E, t) = A(t) \frac{E^2}{\exp[E/kT(t)] - 1} + B(t) E^s \]

Photosphere (Planck function)

Additional non-thermal emission

Band only

BB+pl

EGRET TASC peak at \(E_p = 1600 \) keV

Ryde 2004 (see also Ghirlanda et al. 2003

Ryde 2005
High-Energy Emissions from GRB (Past)

- 5 EGRET bursts with >50 MeV observations in 7 years
- EGRET observed:
 - delayed HE gamma-ray emissions;
 - spectral extra component;

Gonzalez, Nature 2003 424, 749

Hurley et al. 1994

Two $\gamma >$GeV @~T_0
18 GeV γ @~T_0+75 min
... and the X-ray Afterglow

- Discovered by BeppoSax (‘97)
 - Measurements of the distance
- Swift (2004-*):
 - Connection to the “Prompt” emission
 - X-Ray Flashes in the afterglow
 - Steep-Shallow-Steep decay
 - Also short bursts have an afterglow!
 - Fading to lower frequencies
The GBM detects ~250 GRBs/year
~18% short
~50% in the LAT FoV
The LAT detects ~10 GRBs/year

NaI: 8 keV - 1 MeV
BGO: 200 keV - 40 MeV
LAT: 30 MeV – 300 GeV

Typical Prompt GRB Spectrum

\[E^{-2} N(E) \text{ (erg cm}^{-2} \text{ s}^{-1}) \]

- **GBM**
- **LAT**

Photon Energy (MeV)
Si Tracker
pitch = 228 μm
8.8 \times 10^5 channels
18 planes

CsI Calorimeter
hodoscopic array (8 layers)
6.1 \times 10^3 channels

LAT: 4 x 4 modular array
3000 kg, 650 W
20 MeV – 300 GeV

ACD
segmented scintillator tiles
GBM GRBs

Fermi GRBs as of 120921

1000 GBM GRBs
In Field-of-view of LAT (514)
Out of Field-of-view of LAT (486)
The prompt spectrum

- Band model is favorite only for a subset of bursts, while COMPT and PL are the most favorite;

Additional “Black Body” component over a Band function improves the residuals of the fit.

Goldstein et al., 2012

Table 1

<table>
<thead>
<tr>
<th></th>
<th>PL</th>
<th>SBPL</th>
<th>BAND</th>
<th>COMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluence spectra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112 (23%)</td>
<td>68 (14%)</td>
<td>75 (15%)</td>
<td>232 (48%)</td>
<td></td>
</tr>
<tr>
<td>Peak flux spectra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213 (44%)</td>
<td>51 (10%)</td>
<td>69 (14%)</td>
<td>154 (32%)</td>
<td></td>
</tr>
</tbody>
</table>
Extra HE spectral component

GRB 090510 (short)

First extra component by Fermi At > 5 sigma level

GRB 090902B (long)

T0+4.6s to T0+9.6s

First time a low-energy extension of the PL component has been seen

6 LAT GRBs show clear extra PL component
Cut-off on HE spectral component

GRB 090926A (long)

- Extra component shows at $>5\,\sigma$
- Spectral break at $\sim1.4\,\text{GeV}$
- First direct measurement of $\Gamma \sim 630$ (if cutoff due to γ-γ absorption)
Joint LAT GBM spectral analysis

- GRB spectrum in several cases is NOT a simple “Band” function
- Deviation from the Band function at low energy;
- Additional power-law observed at high energy;
- High energy cut-off measured in the spectrum;

<table>
<thead>
<tr>
<th>GRB ID</th>
<th>Fluence (10^{-7} erg/cm^2)</th>
<th>Best model</th>
</tr>
</thead>
<tbody>
<tr>
<td>100724B</td>
<td>4665^{+76}_{-78}</td>
<td>Band with exponential cutoff 48.9</td>
</tr>
<tr>
<td>000902B</td>
<td>4058^{+24}_{-25}</td>
<td>Comptonized + Power law 50.8</td>
</tr>
<tr>
<td>000926A</td>
<td>2225^{+50}_{-48}</td>
<td>Band + Power law with exponential cutoff 48.1</td>
</tr>
<tr>
<td>000916C</td>
<td>1795^{+39}_{-41}</td>
<td>Band + Power law 48.8</td>
</tr>
<tr>
<td>000323</td>
<td>1528^{+44}_{-44}</td>
<td>Band 57.2</td>
</tr>
<tr>
<td>100728A</td>
<td>1293^{+26}_{-28}</td>
<td>Comptonized 59.9</td>
</tr>
<tr>
<td>100414A</td>
<td>1098^{+35}_{-36}</td>
<td>Comptonized + Power law 69.0</td>
</tr>
<tr>
<td>000628</td>
<td>927^{+13}_{-16}</td>
<td>Logarithmic parabola 18.3</td>
</tr>
<tr>
<td>110721A</td>
<td>876^{+28}_{-33}</td>
<td>Logarithmic parabola 40.3</td>
</tr>
<tr>
<td>000328</td>
<td>817^{+34}_{-34}</td>
<td>Band 64.6</td>
</tr>
<tr>
<td>100116A</td>
<td>638^{+26}_{-26}</td>
<td>Band 26.6</td>
</tr>
<tr>
<td>110709A</td>
<td>518^{+28}_{-29}</td>
<td>Band 53.4</td>
</tr>
<tr>
<td>000825C</td>
<td>517^{+21}_{-21}</td>
<td>Band 60.3</td>
</tr>
<tr>
<td>000927</td>
<td>512^{+13}_{-14}</td>
<td>Band 34.5</td>
</tr>
<tr>
<td>091003</td>
<td>461^{+15}_{-15}</td>
<td>Band 21.3</td>
</tr>
<tr>
<td>110120A</td>
<td>422^{+23}_{-22}</td>
<td>Band 13.6</td>
</tr>
<tr>
<td>110328B</td>
<td>417^{+47}_{-47}</td>
<td>Comptonized 31.7</td>
</tr>
<tr>
<td>110731A</td>
<td>379^{+21}_{-20}</td>
<td>Band + Power law 3.4</td>
</tr>
<tr>
<td>000510</td>
<td>360^{+16}_{-16}</td>
<td>Band + Power law 13.6</td>
</tr>
<tr>
<td>091031</td>
<td>288^{+10}_{-10}</td>
<td>Band 23.9</td>
</tr>
<tr>
<td>110428A</td>
<td>255^{+10}_{-11}</td>
<td>Band 34.6</td>
</tr>
<tr>
<td>090720B</td>
<td>185^{+11}_{-11}</td>
<td>Band 56.1</td>
</tr>
<tr>
<td>100225A</td>
<td>101^{+7}_{-7}</td>
<td>Band 55.5</td>
</tr>
<tr>
<td>091208B</td>
<td>93^{+13}_{-13}</td>
<td>Band 56.6</td>
</tr>
<tr>
<td>100620A</td>
<td>84^{+9}_{-9}</td>
<td>Band 24.3</td>
</tr>
<tr>
<td>081006</td>
<td>56^{+10}_{-9}</td>
<td>Band 11</td>
</tr>
<tr>
<td>110529A</td>
<td>46^{+6}_{-6}</td>
<td>Band 30</td>
</tr>
<tr>
<td>100325A</td>
<td>46^{+4}_{-4}</td>
<td>Band 7.1</td>
</tr>
<tr>
<td>090631B</td>
<td>38^{+5}_{-5}</td>
<td>Comptonized 21.9</td>
</tr>
<tr>
<td>081024B</td>
<td>30^{+5}_{-5}</td>
<td>Band 18.7</td>
</tr>
</tbody>
</table>

Note: We exclude from this table all GRBs outside the nominal LAT FOV (with $\theta > 70^\circ$) and GRB 101014A, which was detected too close to the Earth limb.
Non-detected LAT GRB

Bright GBM/BGO GRBs, non detected in the LAT:

⇒ the flux “expected” (extrapolated) exceeds the LAT flux UL;

Non-detected LAT GRB

Bright GBM/BGO GRBs, non detected in the LAT:

- the flux “expected” (extrapolated) exceeds the LAT flux UL;
- an intrinsic spectral cut off is required to reconcile the GBM and LAT data.
Non-detected LAT GRB

Bright GBM/BGO GRBs, non detected in the LAT:

- the flux “expected” (extrapolated) exceeds the LAT flux UL;
- an intrinsic spectral cut off is required to reconcile the GBM and LAT data.

Non-detected LAT GRB

Bright GBM/BGO GRBs, non detected in the LAT:

➔ It is possible to estimate the bulk Lorentz factor if the cut off is due to $\gamma\gamma$ absorption.

Delayed Onset

Almost all GRBs show a delayed onset of the HE component!!!
Prompt and temporally extended emission

GRB 090926A (long)

- Clear onset of the high energy
- Spectral evolution in the prompt phase
 - Spectral index stable at later times
- Highest event not coincident with lower energy pulses
- Time extended emission clearly visible

Ackermann et. al. 2013, ApJS 209, 11A
Prompt and temporally extended emission

- The Spectral index is stable at later times and has very similar value in many GRBs of ~ -2.

Three time windows:
- GBM;
- LAT;
- EXT;

Ackermann et. al. 2013, ApJS 209, 11A
High-energy emission (observed by the LAT) starts later and lasts longer than the low-energy emission (observed by the GBM).

- “Delayed onset” and “Temporally extended” emission
- In three cases a significant (3σ) break is measured in the Light curve

\[\alpha \sim 1.7-2.7 \]
Ground telescope possible catches

<table>
<thead>
<tr>
<th>GRB NAME</th>
<th>Number of events (P>0.9)</th>
<th>Energy GeV</th>
<th>Arrival time s</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRB080825C</td>
<td>10</td>
<td>0.57</td>
<td>28.29</td>
<td>0.997</td>
</tr>
<tr>
<td>GRB080916C</td>
<td>181</td>
<td>13.22</td>
<td>16.54</td>
<td>1.000</td>
</tr>
<tr>
<td>GRB081006</td>
<td>10</td>
<td>0.79</td>
<td>12.08</td>
<td>0.955</td>
</tr>
<tr>
<td>GRB081024B</td>
<td>11</td>
<td>3.07</td>
<td>0.49</td>
<td>1.000</td>
</tr>
<tr>
<td>GRB090217</td>
<td>16</td>
<td>1.23</td>
<td>179.08</td>
<td>0.907</td>
</tr>
<tr>
<td>GRB090323</td>
<td>28</td>
<td>7.50</td>
<td>195.42</td>
<td>1.000</td>
</tr>
<tr>
<td>GRB090328</td>
<td>23</td>
<td>5.32</td>
<td>697.80</td>
<td>0.926</td>
</tr>
<tr>
<td>GRB090510</td>
<td>186</td>
<td>31.31</td>
<td>0.83</td>
<td>1.000</td>
</tr>
<tr>
<td>GRB090626</td>
<td>15</td>
<td>2.09</td>
<td>111.63</td>
<td>0.999</td>
</tr>
<tr>
<td>GRB090720B</td>
<td>2</td>
<td>1.45</td>
<td>0.22</td>
<td>0.997</td>
</tr>
<tr>
<td>GRB090902B</td>
<td>276</td>
<td>33.39</td>
<td>81.75</td>
<td>0.949</td>
</tr>
<tr>
<td>GRB090926A</td>
<td>239</td>
<td>19.56</td>
<td>24.83</td>
<td>1.000</td>
</tr>
<tr>
<td>GRB091003</td>
<td>20</td>
<td>2.83</td>
<td>6.47</td>
<td>1.000</td>
</tr>
<tr>
<td>GRB091031</td>
<td>7</td>
<td>1.19</td>
<td>79.75</td>
<td>0.999</td>
</tr>
<tr>
<td>GRB091208B</td>
<td>4</td>
<td>1.18</td>
<td>3.41</td>
<td>0.956</td>
</tr>
<tr>
<td>GRB100116A</td>
<td>14</td>
<td>13.12</td>
<td>296.43</td>
<td>0.993</td>
</tr>
<tr>
<td>GRB100325A</td>
<td>5</td>
<td>0.84</td>
<td>0.35</td>
<td>0.990</td>
</tr>
<tr>
<td>GRB100414A</td>
<td>19</td>
<td>4.72</td>
<td>288.26</td>
<td>1.000</td>
</tr>
<tr>
<td>GRB100620A</td>
<td>6</td>
<td>0.27</td>
<td>3.77</td>
<td>0.994</td>
</tr>
<tr>
<td>GRB100724B</td>
<td>16</td>
<td>0.22</td>
<td>61.75</td>
<td>0.988</td>
</tr>
<tr>
<td>GRB100724A</td>
<td>5</td>
<td>13.54</td>
<td>5461.08</td>
<td>0.987</td>
</tr>
<tr>
<td>GRB110120A</td>
<td>6</td>
<td>1.82</td>
<td>72.46</td>
<td>0.999</td>
</tr>
<tr>
<td>GRB110428A</td>
<td>6</td>
<td>2.62</td>
<td>14.79</td>
<td>1.000</td>
</tr>
<tr>
<td>GRB110625A</td>
<td>6</td>
<td>2.42</td>
<td>272.44</td>
<td>0.986</td>
</tr>
<tr>
<td>GRB110709A</td>
<td>5</td>
<td>0.42</td>
<td>41.75</td>
<td>0.921</td>
</tr>
<tr>
<td>GRB110721A</td>
<td>22</td>
<td>1.73</td>
<td>0.74</td>
<td>0.998</td>
</tr>
<tr>
<td>GRB110731A</td>
<td>64</td>
<td>3.39</td>
<td>435.96</td>
<td>0.998</td>
</tr>
</tbody>
</table>

Ackermann et. al. 2013, ApJS 209, 11A
Long lived HE component

GRB 090510 (short GRB)

LAT emission until 200 s
No spectral evolution (photon index -2.1 ± 0.1)

Simultaneous fit of the SED at 5 different times

$E_{-1.38\pm0.07}$

• Forward shock model can reproduce the spectrum from the optical up to GeV energies
• Extensions needed to arrange the temporal properties

Several GRBs have been detected simultaneously from Fermi and Swift
Hyper luminous GRBs

- Brightest GBM bursts, are also the Brightest LAT bursts
- Large dispersion
Class of hyper luminous bursts
- statistical fluctuation?

Fermi LAT GRB Catalog (arXiv:1303.2908v1)
Intrinsic energetic

- The brightest GRBs are also the most energetic GRBs (not the closest)
- In the tail of the E_{iso} distribution

Ackermann et. al. 2013, ApJS 209, 11A
Conclusions

- Fermi has made new interesting observations on GRB:
 - Prompt emission observed over a wider energy range:
 - Band model is no longer the best phenomenological model.
 - More complex spectral shapes are needed to reproduce the spectrum
 - High-energy emission not common in GRBs
 - Long lasting-delayed high-energy emission common in LAT detected GRB
Thank you!
LAT detection during X-ray flare activity

GRB100728A:

★ Fermi/GBM: Very bright burst:
 ✴ S (10-1000 keV) \(\sim \) 1.3 x 10\(^{-4}\) erg/cm\(^2\)/s \(\rightarrow \) Fermi ARR

★ Swift/BAT: T90\(\sim\)200 s, faint emission seen up to \(\sim\)750 s

★ Swift/XRT: 8 bright flares (from \(\sim\)150 s to \(\sim\)850 s)

★ Fermi LAT:
 ✴ No detection during the prompt phase (large incident angle \(\sim\) 58\(^\circ\))
 ✴ Significant detection during the flaring activity (TS=32)
 ✴ No significant temporal correlation (which does not mean significant non correlation!)
Simultaneous Swift detections

- 6 GRBs have been simultaneously detected by LAT and Fermi
 - GRB090510 [de Pasquale et al 2010 +...]
 - GRB110731A [Fermi Collaboration (Ackermann et al 2013)]
 - GRB 120624B [GCN]
The “fireball” model

Alternatives exists (electromagnetic model,...)

particles get accelerated as they bounce back and forth across the shock wave
compactness problem: large luminosity + small emitting region = large optical depth (\(\gamma-\gamma \rightarrow e^+e^-\) large)

Possible solution: relativistic motion (\(\Gamma \gg 1\))

\[
\tau_{\gamma\gamma}(E) = \frac{3}{4} \frac{\sigma_T d_L^2}{t_v \Gamma} \frac{m_e^4 c^6}{E^2(1+z)^3} \int_0^\infty \frac{d\epsilon'}{\epsilon'^2} n \left(\frac{\epsilon' \Gamma}{1+z} \right) \sqrt{\epsilon' E(1+z)} \frac{e^{-\epsilon' E(1+z)}}{\Gamma}
\]

\(\Gamma_{\text{min}}\) calculation from highest energy photon

\[
\Gamma_{\text{min}}(E_{\text{max}}) = \left[\frac{4d_L^2 A}{c^2 t_v (1+z)^2 E_{\text{max}}} \frac{m_e^2 c^4}{g \sigma_T} \left[\frac{(\alpha - \beta) E_{\text{pk}}}{(2 + \alpha) 100 \text{ keV}} \right] \right]^{\frac{2}{2-2\beta}} \times \exp \left(\frac{\beta - \alpha}{2 - 2\beta} \right) \left[\frac{2m_e^2 c^4}{E_{\text{max}}(1+z)^2 100 \text{ keV}} \right]^{\frac{2}{2-2\beta}}
\]

for \(\Gamma_{\text{min}} > \sqrt{(1+z)^2 E_{\text{max}} E_{\text{pk}}(\alpha - \beta) / 2m_e^2 c^4 (2 + \alpha)}\)

\(\Gamma_{\text{min}}\sim 1000\) for short and long GRBs
A constraint on the quantum gravity mass (M_{QG}) can be derived by direct measurement of photon arrival time (assuming the emitted time is the same for all photons):

$$\frac{M_{QG,1}}{M_{\text{plank}}} > 1.19$$

This value disfavors quantum gravity models which linearly alters the speed of light ($n=1$).
And then GRB130427A happen...

- The brightest GRB in the LAT ever detected;
- More than 80 circulars delivered to the archive from several observatories:
 - GCN from the “usual suspects” + HAWC + IceCube
- Concept proven! Discoveries rely on the fast delivery of informations (GCN) quick look analysis and possible data sharing.
Extremely bright GRB (close)

- One of the brightest GRBs in gamma rays ever detected!
 - Redshift: $z = 0.34$, Energy released in gamma rays $\sim 10^{54}$ erg
 - The emission saturated GBM detectors!
 - The brightest burst ever detected by the LAT
- LAT detected emission for ~ 20 hours!

95 GeV