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Introduction 

Infalling 
Particle Large BH 

Large black-hole spacetimes are conventionally described by 
classical geometry. 

Inside cannot 
causally influence 
outside.  
Nothing returns 
out of horizon. 



Black holes emit thermal flux due to quantum effect. 
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bhbh GMr 2 Special & General 
Relativity 
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First Thermodynamics Law: 

Black Hole Entropy: 

Black Hole Temperature: 

Area of Event Horizon: 
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 Since the advent of  
Hawking radiation… 

Information Loss Problem of 
Black Hole Evaporation 



Information loss? 
 
Unitarity breaking? 

Thermal 
radiation 

Thermal 
radiation 

Only  
thermal radiation? 

Large 
black hole 

Small  
black  
hole 



thermal̂
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Mixed state 

Composite system in a pure state 

Purification of Hawking Radiation? 

Hawking 
radiation 
system 

Partner 
system 



(1) Nothing, Information Loss  
 
(2) Exotic Remnant (Aharonov, Giddings,…) 
 
(3) Baby Universe (Dyson,..) 

 
(4) Emitted Radiation Itself ←Today’s Talk 
      ○ Black Hole Complementarity (t’ Hooft, Susskind, …)  
      ○ Fuzzi ball, Firewall (Mathur, AMPS, …) 

What is the final entangled partner 
of Hawking radiation? 

(5) Zero-Point Fluctuation in Local Vacuum regions  
     (Wilczek, Hotta-Matsumoto-Funo)  ←Today’s Talk 



○ Black Hole Complementarity   

Hawking-like 
Radiation 

Infalling 
Particle 

Stretched 
Horizon 
Induced by 
Quantum 
Gravity 

From the viewpoint of 
outside observer, 
the stretched horizon 
absorbs and emits 
quantum information 
so as to maintain the 
unitarity.  

Large BH 

In the future, the whole 
radiation is not in a mixed 
state, but  in a pure state. 



○ Black Hole Complementarity   

Infalling 
Particle 

From the viewpoint of free-fall observer, the 
stretched horizon disappears. No drama happens 
across the horizon.  

Large BH 

Classical 
Horizon 



○ Firewall   
From the viewpoint of 
outside observer, 
the stretched horizon absorbs 
and emits quantum 
information so as to maintain 
the unitarity.   
However, 
 FIREWALL on the horizon 
burns out free-fall observers.  
The inside region of BH does 
not exist! 

Free-fall 
observer 

Large BH 

FIREWALL 

Mathur and AMPS derive this 
conclusion  from quantum information 
theoretical point of view.  



In this talk, we argue that the information 
theoretical reason of Mathur and AMPS , which 
derives the existence of firewalls, are wrong. 
They misuse the results of quantum information 
theory. 
 
However, another firewall paradox can be posed 
using quantum measurement theory. 
 
The new paradox is resolved from the viewpoint of 
measurement energy cost.   

M.H., Jiro Matsumoto and Ken Funo, arXiv:1306.5057 



Review: 
Mathur-AMPS Strong Subaddivity Argument 



Preparation for the Argument 
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Penrose Diagram 
Preserving causality relations among events, a spacetime is mapped into a finite region.  

Penrose diagram of 
Minkowski spacetime 
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(Radial) Penrose diagram 
of black hole formation 

Black hole formation 
via gravitational collapse 

Event  
horizon 



Maximal Entanglement 
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Typical states  of  A and B are almost maximally 
entangled when the systems are large.  
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Lubkin,  Lloyd-Pagels, Page  



Let us assume that Hilbert-space dimensions of black holes 
and Hawking radiation become finite due to quantum 
gravity effect.  

Page Strategy for Final State of BH Evaporation: 
Nobody knows exact quantum gravity dynamics.  
So let’s gamble that the final state scrambled by 
quantum gravity is one of TYPICAL pure states of 
the finite-dimensional composite system! That 
may not be so bad! 



In a typical pure state of old black 
hole(BH) and Hawking radiation(HR) 
after Page time,  
the internal system of BH is almost 
maximally entangled with a part of 
HR, and BH entropy is almost equal 
to entanglement entropy. (Page) 

Then the discretized model suggests: 
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BAHR 

CBH 

B

A

Late radiation 

C
Early radiation 

CBA ,,1

ACB 

Mathur and AMPS apply this Page’s argument to late-time  
Hawking radiation.  

After Page time, 



Mathur-AMPS strong subadditivity paradox: 
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BC are almost maximally entangled with a 
part of A in a typical state after Page time. 

ACAB AA  ,

Harrow-Hayden 
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Strong subadditivy: 
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No correlation between B and C! 

Typical-State Condition: 



Summary of Typical-State Condition: 

0)||( CBI

No correlation between B and C! 

B is almost maximally entangled with a part of A! 

1)||( BAI
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No-Drama Condition across Horizon: 
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No-Drama Condition across Horizon: 
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No-Drama Condition across Horizon: 
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No-Drama Condition across Horizon: 
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Summary of No-drama Condition: 

0)||( BAI

No correlation between A and B! 

B is highly entangled with C! 

1)||( CBI



Strong Subadditivity Paradox: 

Typical-State Condition of A and B: No-drama Condition across Horizon: 
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No correlation between B and C. 

0
BBA

S

B is almost maximally  
entangled with A. 

0)||( BAI

0BCS

B is highly entangled with C 
in a pure state. 

No correlation between A and B. 

Monogamy conflict arises between A,B, and C! 
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Typical-State Condition of A and B: 
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No-Drama Condition across Horizon: 
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Quantum monogamy   



Mathur and AMPS 
conjectured that no-
drama condition does 
not hold and firewalls 
appear on the horizon! Free-fall 

observer 

FIREWALL 

They argue that there does 
not exist the interior of BH! 

THE DRAMA ON THE HORIZON 

At least, one of the assumptions 
 must be wrong! 



Another bold remark by Harlow and Hayden: 

Typical-State Condition of A and B: No-drama Condition across Horizon: 

0)||( CBI

No correlation between B and C. 

B is almost maximally  
entangled with A. 

0)||( BAI

B is highly entangled with C 
in a pure state. 

No correlation between A and B. 

Strong Complementarity Conjecture 

1)||( BAI 1)||( CBI

“Different Unitary Quantum Mechanics 
              for Different Observers.” 

For Outside Observers, For Infalling Observers, 
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Typical-State Condition does not hold: 
High-energy entanglement structure is 
modified so as to yield the correct description 
of low-energy effective field theory. 

0BCS

No-Drama condition does not imply purity 
of BC-system state: 
BC system is actually entangled with both 
A and zero-point fluctuation V.  
Main contribution comes from V. 

0
BBA

S

Our Argument:  

V

No Strong Subadditivity Paradox! 

M.H., Jiro Matsumoto and Ken Funo, arXiv:1306.5057 



In order to make our argument 
concrete, let us consider a 1+1 dim. 
Moving Mirror Model. 

The model mimics gravitational collapse of 
spherical matter shell and really generates 
Hawking radiation. Besides, it is completely 
unitary! 

⇒This unitary model is one of the best 
quantum systems for checking the reasoning 
of Mathur and AMPS in quantum black holes. 
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Standard quantization: 
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Scattered-Wave Mode Function: 
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Moving Mirror Model in 1+1 dim. mimics 
3+1 dim. spherical gravitational collapse.  
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The mirror accelerates and 
approaches the light trajectory,     
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Temperature: 
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Moving Mirror Model in 1+1 dim. mimics 
3+1 dim. spherical gravitational collapse.  
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Mirror Trajectory  
Describing  
Complete Evaporation of BH  
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               Our Argument (1): 
Typical-state condition should be 
modified in order to reproduce a 
correct description of low-energy 
field theory. 
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 Continuum Limit of Typical-State Condition?  
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⇒       Singluarity on Rindler horizon = FIREWALL  

← (Would-be) typical state! 

This picture can be reproduced by a limit with a bad regularization! 



However,  
for regularization with scale and translational invariance,  
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               Our Argument (2): 
No-drama condition does not 
imply the purity of BC system, 
if local independence between A 
and B holds.  

0BCS



No-Drama Condition across Horizon: 
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The support of Rindler mode functions are not localized!  
Overlap of A and B cannot be neglected. 

←AMPS purity of BC system 

Note:  Strict localization cannot be attained by superposing one-particle states. (J. Knight 1961) 
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regions must be introduced.   
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Localized BC system is actually 
entangled with A and zero-point 
fluctuations:  
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Our Argument (3): 

    <<Information Loss Problem>> 
It may be possible that  
main entangled partner of Hawking 
radiation is zero-point fluctuations  
in local vacuum regions.  
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What is the entangled partner 
of Hawking radiation? 

Is it the final informative shock 
waves emitted by BH burst? 

?C

No!! 
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(Holzhey-Larsen-Wilczek) 

Entanglement Entropy  
between R and its compliment: 



This formula shows that shock waves,  
which are confined in a very narrow space,  
are not entangled with anything! 
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Gosh! 
What is actually the entangled partner 
of Hawking radiation? 

⇒ Zero-point fluctuations  
       in local vacuum regions 
             (Wilczek 1992, Hotta-Matsumoto-Funo 2013) 

Entanglement without energy cost! 
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0r

Zero-point 
fluctuation 
entangled with HR 

Hawking 
Radiation 

Non-entangled 
highly energetic pulse in0

Apparent 
horizon 

Collapsing 
Shell 

Zero-point 
fluctuation 
entangled with HR 

Non-entangled 
highly energetic pulse 



Free-fall observers do not encounter 
firewalls when come across event horizon!  

Infalling 
Particle Large BH 

Classical 
Horizon 

Firewall paradox of AMPS is resolved  
in this model!  



In fact, NO FIREWALLS 
in an average meaning 
in moving mirror models. 
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However, we have another  firewall 
paradox in the moving mirror model.  
 
The point is Reeh-Schlieder theorem 
in quantum field theory. 
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 Reeh-Schlieder theorem: 

The set of states generated from          by the polynomial 
algebra of local operators in any bounded spacetime region 
is dense in the total Hilbert space of the field.  Thus, in 
principle, any state of L′ can be arbitrarily closely reproduced 
by acting a polynomial of local operators of E′ on        . 
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The Reeh-Schlieder property ensures much entanglement 
of the system in the final state of the moving-mirror model.  
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This property is maintained in the time evolution of 
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measured 
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Imagine that, besides the background Hawking 
radiation, a wave packet with positive energy of the 
order of the radiation temperature appears  
at               in the post-measurement state        of L.  
Then the above firewall (FW) appears at                     . 
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Firewall Measurement Paradox: 

If measurement operator of E is constructed  
from Reeh-Schlieder operation, an arbitrary 
 post-measurement state of L can emerge. 
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Resolution of the Paradox 
from a viewpoint of 
Quantum Measurement Energy Cost 

Because the mirror merely stretches 
the modes of the field, the future 
measurement is equivalent to a past 
measurement for the in-vacuum state. 
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If                 is not singular,   
no outstanding peak of energy flux appears. 
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The two-point correlation functions for non-singular measurements simply 
decay via power law as a function of the distance. ⇒ No Firewalls! 
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⇒No Firewall appears! 

The local measurements generally inject energy on average to the 
system in         owing to its passivity property (Pusz and Woronowicz). 
Thus the measurements always require an energy  cost.   
Though the Reeh-Schlieder theorem is mathematically correct, it does 
not guarantee that the measurement energy to create         is finite. Li

)( fwh xgx 

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    Huge amount of energy    
   for firewall measurement 
           

Black hole is formed in the measurement 
region during the preparation of huge 
energy for the firewall measurement 

Event  
Horizon 

0110101011
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0110101011

0110101011

Singular measurements, which yield firewalls, generally 
require preparation of a divergent amount of energy in the 
measurement region before the measurement is 
performed and this energy is expected to provide a large 
back reaction to the spacetime. The effect may cause 
formation of a new black hole in the measurement region 
and enclose the measurement device within the event 
horizon before it outputs results.  

iEM̂

⇒ Firewall Information Censorship 
      (Hotta-Matsumoto-Funo,2013) 
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Summary 
○ Strong subadditivity paradox is a superficial one.  
    If the models which allow correct continuum limit to low-
energy field theory,  typical-state condition does not hold. 
If strict localization of subsystems (A,B and C), no-drama 
condition does not imply purity of BC system. Acutually, both A 
and zero-point fluctuation are entangled with the BC system. 
No firewall is required by the entanglement monogamy argument. 

○ Reeh-Schlieder theorem rises a measurement-based firewall 
problem. However, the amount of  measurement energy of 
firewalls becomes divergent. The effect may cause formation of 
a new black hole in the measurement region and enclose the 
measurement device within the event horizon before it outputs 
results.  ⇒ Firewall Information Censorship 


