C and P violations in the PNJL model

H. Kouno (Saga Univ.) Y. Sakai, T. Sasaki, K. Kashiwa, M. Yahiro (Kyushu Univ.)

Contents

① Deconfinement is a remnat of C violation

- ② Chiral restoration is a remnant of P restoration
- ③ D and C happen almost simultaneously in the real world
 ⇔C and P may happen simultaneously in the θ world

Deconfinement as remnant of C violation

- Deconfinement at zero density can be regarded as a remnat of C violation at θ=π/3, where μ_I= iθT is the imaginary chemical potential.
- PNJL model analysis
 - H.K., Yuji Sakai , Kouji Kashiwa, Masanobu Yahiro
 - Journal of Physics G 36 (2009)
 - 115010-1-115010-17

PNJL model

- K. Fukushima, Phys. Lett. B591, 277(2004)
 Polyakov loop+NJL
- Chiral symmetry chiral restoration extended Z₃symmetry deconfiment
- at imaginary chemical potential, there is Roberge-Weiss transition as C violation

RW periodicity and extended Z_3 symmetry (EZ₃)

 $\theta = \mu_I / T$

$$\Omega = -2N_f \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \Big[3E(\mathbf{p}) + \frac{1}{\beta} \ln \left[1 + 3(\Phi + \Phi^* e^{-\beta E^-(\mathbf{p})}) e^{-\beta E^-(\mathbf{p})} + e^{-3\beta E^-(\mathbf{p})} \right] \\ + \frac{1}{\beta} \ln \left[1 + 3(\Phi^* + \Phi e^{-\beta E^+(\mathbf{p})}) e^{-\beta E^+(\mathbf{p})} + e^{-3\beta E^+(\mathbf{p})} \right] \Big] + U_M + \mathcal{U}$$

 $E(\mathbf{p}) = \sqrt{\mathbf{p}^2 + M^2}, \ \sigma = \langle \bar{q}q \rangle, \qquad \Sigma_{\mathrm{s}} = -2G_{\mathrm{s}}\sigma, \qquad U_{\mathrm{M}} = G_{\mathrm{s}}\sigma^2, \ M = m_0 + \Sigma_{\mathrm{s}}.$

extended Z_3 trans.

$$\theta \to \theta + 2\pi k/3, \ \Phi(\theta) \to \Phi(\theta) e^{-i2\pi k/3} \quad \theta = \mu_I/T$$

修正版Polyakovループ $\Psi \equiv e^{i\theta}\Phi$

$$\theta \to \theta + 2\pi k/3$$
, $\Psi(\theta) \to \Psi(\theta)$, $\Psi(\theta)^* \to \Psi(\theta)^*$

Thermodynamic potential

 $\theta = \mu_I / T$

$$\Omega = -2N_f \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \Big[3E(\mathbf{p}) + \frac{1}{\beta} \ln \left[1 + 3\Psi e^{-\beta E(\mathbf{p})} + 3\Psi e^{-2\beta E(\mathbf{p})} e^{3i\theta} + e^{-3\beta E(\mathbf{p})} e^{3i\theta} \right] \\ + \frac{1}{\beta} \ln \left[1 + 3\Psi e^{-\beta E(\mathbf{p})} + 3\Psi e^{-2\beta E(\mathbf{p})} e^{-3i\theta} + e^{-3\beta E(\mathbf{p})} e^{-3i\theta} \right] + U_M + \mathcal{U}_M$$

 $E(\mathbf{p}) = \sqrt{\mathbf{p}^2 + M^2}, \ \sigma = \langle \bar{q}q \rangle, \qquad \Sigma_{\mathrm{s}} = -2G_{\mathrm{s}}\sigma, \qquad U_{\mathrm{M}} = G_{\mathrm{s}}\sigma^2, \ M = m_0 + \Sigma_{\mathrm{s}}.$

extended Z_3 trans.

$$\theta \to \theta + 2\pi k/3, \ \Phi(\theta) \to \Phi(\theta) e^{-i2\pi k/3}$$

修正版Polyakovループ $\Psi \equiv e^{i\theta} \Phi \quad \theta \to \theta + 2\pi k/3, \ \Psi(\theta) \to \Psi(\theta)$

$$\Omega(\theta) = \Omega(\Psi(\theta), \Psi(\theta)^*, e^{3i\theta}) \quad \text{Extended Z_3 inv.}$$

Roberg-Weiss periodicity and transition

$$\Omega(\theta) = \Omega(\theta + 2\pi k/3) = \Omega(-\theta).$$

Kratochvila, Forcrand PRD73,114512(2006)

Thermodynamic potential

Phase of Polyakov loop

Phase diagram

Nontrivial CEP of deconfinement

Y. Sakai, H. K. and M. Yahiro J. Phys. G: Nucl. Part. Phys. 37 (2010) 105007

RW transition

- θ-even quantities have cusp when T>T_{RW}, θ=(2k+1)π/3 (k integer), while θ-odd quantities are discontinuous there.
- At θ=(2k+1)π/3 and T=T_{RW}, Spontaneous breaking of C symmetry happens as T increases.

θ-odd quantities are order parameters.
 Imaginary part or phase of modified Polyakov loop Ψ
 phase ψof modified Polyakov loop Ψ
 baryon number density (imaginary)

C violation at $\theta = \pi/3$

Deconfinement as remnant of C violation

Dashen mechanism

CP violation in θvacuum.
 Dashen, Phys. Rev. D3, 1879(1971)

NJL version Boer and Boomsma, Phys. Rev. D78,054027 (2008)

Θ_v -term in two-flavor NJL

$$L_{NJL} = \psi (i\gamma^{\mu}\partial_{\mu} - m_{0} + \gamma_{0}\mu)\psi + L_{4} + L_{\theta}$$
$$L_{4} = (1 - c)G[(\overline{\psi}\tau_{a}\psi)^{2} + (\overline{\psi}\tau_{a}i\gamma_{5}\psi)^{2}]$$
$$L_{\theta} = ce^{i\theta_{v}} \det(\overline{\Psi}_{R}\Psi_{L}) + H.C.$$

PNJL model

- Replace derivative by D_{μ}
- Treat $A_4 = iA_0$ as a back ground field.
- Add Polyakov potential $U(\Phi)$

P violation and restoration at $\theta_v = \pi$

- For large c (c > c_{criti}), P symmetry is spontaneously broken at low temperature.
- P is restored at high T.
- P-odd quantities such as η are order parameters.

In broken phase,

$$\eta = \langle \overline{\psi} i \gamma_5 \psi \rangle \neq 0$$

P violation and restoration $at\theta_v = \pi$

Chiral breaking and restoration at $\theta_v = 0$

Chiral restoration as remnant of P restoration

Define $\Sigma = (\sigma^2 + \eta^2)^{1/2}$

Chiral restoration at $\theta_v = 0$ is a remnant of P restoration at $\theta_v = \pi$.

PNJL modde can treat both C and P at the same time!! ($\theta v = \pi$ and $\theta = /3$)

Chiral restoration as remnant of P restoration

Dashen vs. RW

	Dashen	RW
Symmetry	Ρ	С
Condition	At $\theta_v = \pi$	At θ=π/3
Order parameter	η	ψ, n _q
Ω	has a cusp	has a cusp
Broken phase	low T	high T
Origin	anomaly instanton	term with e ³ⁱ⁰

P restoration and C violation at $\theta = 0$ and $\theta_v = 0$ (Real World)

PC and CP

Real World PC Polyakov Chiral

PC and CP

Real Worldθ worldPCCPPolyakov⇔C violationChiralP restoration

Prediction

• If P and C happen almost simultaneously at real world,

C and P happen (almost) simultaneously at θworld ! ! ?

Real World

θWorld

Т

Entanglement PNJL model

- Gs \Rightarrow Gs[1- α ΦΦ*- β (Φ³+Φ*³)]
- Y. Sakai et al., arXiv:1006.3648[hep-ph]

EPNJL at $\theta = 0$ and $\theta = 0$ (Real World)

Susceptibilities at $\theta = 0$ and $\theta = 0$ (Real World)

EPNJL at $\theta = \pi$ and $\Theta = \pi/3$

Summary

① Deconfinement is a remnat of C violation

② Chiral restoration is a remnant of P restoration

③ P and C happen almost simultaneously in the real world
 ⇔C and P may happen (almost) simultaneously in the θ world

NJL vs PNJL($\theta = 0, \theta_v = \pi$)

