非摂動くりこみ群による SU(N)ゲージ理論におけるカイラル凝縮の解析

愛知淑徳大 宮下和洋 金沢大 青木健一,佐藤大輔

導入

SU(Nc)ゲージ理論におけるカイラル対称性の自発的破れ

running gauge coupling constant : $\beta(\alpha_s) = -b\alpha^2 - c\alpha^3 + \cdots$

$$b = \frac{1}{6\pi} (11N_c - 2N_f) \qquad c = \frac{1}{24\pi} \left(34N_c^2 - 10N_cN_f - 3\frac{Nc^2 - 1}{Nc}N_f \right)$$

Nfが大きい場合、赤外固定点は小さくなる。 weak couplingとなり、カイラル対称性の自発的破れを 引き起こすグルーオンdynamicsによる寄与が小さくなる。 従って、低エネルギーにおいて、カイラル対称性が保存される SU(Nc)ゲージ理論を考えることができる

Schwinger - Dyson eq.

$$\alpha_c = \frac{2N_c}{N_c^2 - 1} \cdot \frac{\pi}{3} \qquad \longrightarrow \qquad N_f^{\rm cr}$$

非摂動くりこみ群方程式と近似法

Wegner-Houghton equation

Wilsonian effective actionの変化を sharp cutoffを用いて記述する

$$\frac{d}{dt}S_{\text{eff}}[\phi;t] = \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \tilde{p}_{i}^{\mu} \frac{\partial'}{\partial \tilde{p}_{i}^{\mu}} \right\} S_{\text{eff}}[\phi;t]$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \tilde{p}_{i}^{\mu} \frac{\partial'}{\partial \tilde{p}_{i}^{\mu}} \right\} S_{\text{eff}}[\phi;t]$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \tilde{p}_{i}^{\mu} \frac{\partial'}{\partial \tilde{p}_{i}^{\mu}} \right\} S_{\text{eff}}[\phi;t]$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \tilde{p}_{i}^{\mu} \frac{\partial'}{\partial \tilde{p}_{i}^{\mu}} \right\} S_{\text{eff}}[\phi;t]$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \tilde{p}_{i}^{\mu} \frac{\partial'}{\partial \tilde{p}_{i}^{\mu}} \right\} S_{\text{eff}}[\phi;t]$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \tilde{p}_{i}^{\mu} \frac{\partial'}{\partial \phi_{\phi}} \right\}$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \tilde{p}_{i}^{\mu} \frac{\partial'}{\partial \phi_{\phi}} \right\}$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \tilde{p}_{i}^{\mu} \frac{\partial'}{\partial \phi_{\phi}} \right\}$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \frac{\partial'}{\partial \phi_{\phi}} \left\{ nd_{\phi} \frac{\partial'}{\partial \phi_{\phi}} - p \right\} \right\}$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \frac{\partial'}{\partial \phi_{\phi}} \left\{ nd_{\phi} \frac{\partial'}{\partial \phi_{\phi}} - p \right\}$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \frac{\partial'}{\partial \phi_{\phi}} \left\{ nd_{\phi} \frac{\partial'}{\partial \phi_{\phi}} - p \right\} \right\}$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \eta_{i}(t) - \sum_{\mathbf{f}} \frac{\partial'}{\partial \phi_{\phi}} \left\{ nd_{\phi} \frac{\partial'}{\partial \phi_{\phi}} - p \right\}$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \frac{\partial'}{\partial \phi_{\phi}} \left\{ nd_{\phi} \frac{\partial'}{\partial \phi_{\phi}} - p \right\} \right\}$$

$$= \left\{ D - nd_{\phi} - \sum_{\mathbf{f}} \frac{\partial'}{\partial \phi_{\phi}} \left\{ nd_{\phi} \frac{\partial'}{\partial \phi_{\phi}} + \frac{\partial'}{\partial \phi_{\phi}} \left\{ nd_{\phi} \frac{\partial'}{\partial \phi_{\phi}} + \frac{\partial'}{\partial \phi_{\phi}} \right\} \right\}$$

$$= \left\{ D - nd_{\phi} + \frac{\partial'}{\partial \phi_{\phi}} + \frac{\partial'}{\partial \phi_{\phi}} \left\{ nd_{\phi} \frac{\partial'}{\partial \phi_{\phi}} + \frac{\partial'}{\partial \phi_{\phi}} \right\} \right\}$$

$$= \left\{ D - nd_{\phi} + \frac{\partial'}{\partial \phi_{\phi}} +$$

ゲージ理論への適用

Wilsonian effective action $S_{\text{eff}}[\bar{\psi},\psi,A;t] = \int d^4x \Big\{ \bar{\psi}(\partial \!\!\!/ - g_s A)\psi + V_{\text{eff}}(\bar{\psi},\psi;t) + \frac{1}{4}(F_{\mu\nu})^2 + \frac{1}{2\alpha}(\partial_\mu A^a_\mu)^2 \Big\}$ $t = -\ln(\Lambda/\Lambda_0)$

 $SU(N_c) \times SU(N_f)_L \times SU(N_f)_R \times U(1) \times Parity$

$$V_{\text{eff}}(\bar{\psi},\psi;t) = -\frac{1}{2N_{\text{f}}N_{\text{c}}} \Big\{ G_1(t)\mathcal{O}_1 + G_2(t)\mathcal{O}_2 + G_{\text{f}2}(t)\mathcal{O}_{\text{f}2} + G_{\text{c}1}(t)\mathcal{O}_{\text{c}1} + G_{\text{c}2}(t)\mathcal{O}_{\text{c}2} \\ + G_{\text{fc}2}(t)\mathcal{O}_{\text{fc}2} \Big\}$$
非摂動くりこみ群方程式の導出

(Wegner-Houghton eq.+LPA)

$$\mathcal{O}_{1} = (\bar{\psi}\gamma_{\mu}\psi)^{2} - (\bar{\psi}\gamma_{5}\gamma_{\mu}\psi)^{2}$$
$$\mathcal{O}_{2} = (\bar{\psi}\gamma_{\mu}\psi)^{2} + (\bar{\psi}\gamma_{5}\gamma_{\mu}\psi)^{2}$$
$$\mathcal{O}_{f2} = (\bar{\psi}\gamma_{\mu}\lambda^{a}\psi)^{2} + (\bar{\psi}\gamma_{5}\gamma_{\mu}\lambda^{a}\psi)^{2}$$
$$\mathcal{O}_{c1} = (\bar{\psi}\gamma_{\mu}T^{a}\psi)^{2} - (\bar{\psi}\gamma_{5}\gamma_{\mu}T^{a}\psi)^{2}$$
$$\mathcal{O}_{c2} = (\bar{\psi}\gamma_{\mu}T^{a}\psi)^{2} + (\bar{\psi}\gamma_{5}\gamma_{\mu}T^{a}\psi)^{2}$$

 $\mathcal{O}_{\rm fc2} = (\bar{\psi}\gamma_{\mu}\lambda^{a}T^{b}\psi)^{2} + (\bar{\psi}\gamma_{5}\gamma_{\mu}\lambda^{a}T^{b}\psi)^{2}$

4-fermi couplingのbeta関数で評価されるダイアグラム

有効ポテンシャル

 $m,\;\langle \bar\psi\psi
angle$: chiral order parameter

有効ポテンシャルを非摂動くりこみ群で解析

・補助場の方法 K-I.Aoki, K Morikawa, J-I. Sumi, H.Terao, M.Tomoyose, Phys. Rev. D61 (2000)

補助場を導入して、補助場の真空期待値を計算する

・ルジャンドル有効ポテンシャル

Wilsonian effective actionに質量オペレータを外場項として導入し、理論空間 を拡張する。

$$egin{aligned} W(m) &= -\log \int \mathcal{D}\psi \mathcal{D}ar{\psi} \exp\left(-S[ar{\psi}, \ \psi, m]
ight) \ S &= \int dx^4 \left(\mathcal{L}_{ ext{invariant}} - m(m_0;\Lambda)ar{\psi}\psi
ight) \end{aligned}$$

カイラル凝縮の評価法

くりこみ群スケールΛでのカイラル凝縮

$$\langle \bar{\psi}\psi\rangle(m_0;\Lambda) = \frac{\partial W(m_0;\Lambda)}{\partial m_0}$$

カイラル凝縮のベータ関数

$$\frac{d}{dt}\langle\bar{\psi}\psi\rangle_t = 3\langle\bar{\psi}\psi\rangle_t - \frac{\partial m}{\partial m_0} \frac{1}{2\pi^2} \frac{m_t}{1+m_t^2}$$

十分に赤外スケールでの値のベア質量0極限がカイラル凝縮の大きさ

$$\langle \bar{\psi}\psi \rangle_{\text{physical}} = \lim_{m_0 \to +0} \lim_{\Lambda \to 0} \frac{dW(m_0;\Lambda)}{dm_0}$$

生成質量の評価法

有効質量オペレータの導入とそのくりこみ

Wilsonian effective actionに質量オペレータを外場項として導入し、理論空間 を拡張する。

$$S_{\text{eff}} = \int dx^4 \left(\mathcal{L}_{\text{invariant}} - m(m_0; \Lambda) \bar{\psi} \psi \right)$$
moはくりこみ群の初期スケールで導入される、カイラ

ル対称性をexplicitに破るbare mass

くりこみ群の初期スケールでbare mass=有効質量の初期値を与え、十分赤外までく りこむ。

有効質量のフロー群から 0 bare mass limitを推定することで、カイラル対称性の自 発的破れによるフェルミオンの質量を求める。

$$m_{\text{physical}} = \lim_{m_0 \to +0} \lim_{\Lambda \to 0} m(m_0; \Lambda)$$

質量オペレータのくりこみ群 $\frac{dm}{dt} = m + \frac{mR}{N_{\rm f}N_{\rm c}} \left\{ 2g_1 + N_{\rm c} \left(1 - \frac{1}{N_{\rm c}^2}\right)g_{\rm c1} \right\} + \frac{3mR}{4\pi} \left(N_{\rm c} - \frac{1}{N_{\rm c}}\right)\alpha_{\rm s}$ $\alpha_{\rm s} = g_{\rm s}^2 / 4\pi$ $g_i = G_i / 4\pi^2$ $R = 1/(1+m^2)$ 0.8 low energyでmassが生成 0.7 0.6 m(m₀ ; A) [GeV] 0.5 0.4 0.3 0.2 $N_{\rm f} = 3, \ N_{\rm c} = 3$ $m_0 = 50 \text{ MeV}$ 0.1 0 0.001 0.01 0.1 10 100 1 Renormalization scale [GeV]

有効質量の生成

非摂動くりこみ群方程式

$$\begin{aligned} \frac{dg_1}{dt} &= -2g_1 + \frac{R^2}{N_{\rm f}N_{\rm c}} \left\{ 3g_1^2 + \frac{3}{4} \left(1 - \frac{1}{N_{\rm c}^2}\right) g_{\rm c1}^2 + 2(N_{\rm f}N_{\rm c} + 1)g_1g_2 + \left(N_{\rm c} - \frac{1}{N_{\rm c}}\right) g_1g_{\rm c2} \\ &+ 2m^2 \left(N_{\rm f}N_{\rm c}g_1^2 + (N_{\rm f}N_{\rm c} + 2)g_2^2 + \left(N_{\rm c} - \frac{1}{N_{\rm c}}\right)g_2g_{\rm c2}\right) \right\} \\ &+ \frac{3}{4\pi} \left(1 - \frac{1}{N_{\rm c}^2}\right) R^2g_{\rm c1}\alpha_{\rm s} + \frac{3N_{\rm f}N_{\rm c}}{16\pi^2} \left(1 - \frac{1}{N_{\rm c}^2}\right) R^2\alpha_{\rm s}^2 \\ &\qquad R = 1/(1 + m^2) \end{aligned}$$

$$\begin{aligned} \frac{dg_2}{dt} &= -2g_2 + \frac{R^2}{N_{\rm f}N_{\rm c}} \bigg\{ N_{\rm f}N_{\rm c}g_1^2 + (N_{\rm f}N_{\rm c}-1)g_2^2 + \frac{3}{4} \Big(1 - \frac{1}{N_{\rm c}^2}\Big)g_{\rm c2}^2 + \Big(N_{\rm c} - \frac{1}{N_{\rm c}}\Big)g_2g_{\rm c2} \\ &+ 2m^2 \Big(2(N_{\rm f}N_{\rm c}+1)g_1g_2 + \Big(N_{\rm c} - \frac{1}{N_{\rm c}}\Big)g_1g_{\rm c2}\Big)\bigg\} \\ &- \frac{3}{4\pi} \Big(1 - \frac{1}{N_{\rm c}^2}\Big)R^2g_{\rm c2}\alpha_{\rm s} + \frac{3N_{\rm c}}{4\pi}\Big(1 - \frac{1}{N_{\rm c}^2}\Big)m^2R^2g_1\alpha_{\rm s} - \frac{3N_{\rm f}N_{\rm c}}{16\pi^2}\Big(1 - \frac{1}{N_{\rm c}^2}\Big)R^2\alpha_{\rm s}^2 \end{aligned}$$

$$\begin{aligned} \frac{dg_{c1}}{dt} &= -2g_{c1} + \frac{R^2}{N_f N_c} \left\{ 2\left(N_c - \frac{3}{2N_c}\right)g_{c1}^2 + 6g_1g_{c1} + \left(N_f - \frac{1}{N_c}\right)g_{c1}g_{c2} + 2g_2g_{c1} \right. \\ &+ m^2 N_f g_{c1}^2 + m^2 \left(N_f - \frac{2}{N_c}\right)g_{c2}^2 + 4m^2g_2g_{c2} \right\} \\ &+ \frac{3}{\pi} R^2 \left\{ g_1 + \frac{1}{2} \left(N_c - \frac{2}{N_c}\right)g_{c1} \right\} \alpha_s + \frac{9N_f N_c}{32\pi^2} \left(N_c - \frac{8}{3N_c}\right) R^2 \alpha_s^2 \end{aligned}$$

$$\frac{dg_{c2}}{dt} = -2g_{c2} + \frac{R^2}{N_f N_c} \left\{ \frac{1}{2} \left(N_f + N_c + \frac{4}{N_c} \right) g_{c2}^2 + \frac{N_f}{2} g_{c1}^2 - 4g_2 g_{c2} + 2m^2 \left(N_f - \frac{1}{N_c} \right) g_{c1} g_{c2} + 4m^2 g_2 g_{c1} \right\} - \frac{3}{\pi} R^2 \left(g_2 - \frac{1}{N_c} g_{c2} \right) \alpha_s - \frac{3}{4\pi} \frac{1}{N_c} m^2 R^2 g_{c1} \alpha_s - \frac{3}{32\pi^2} N_f N_c \left(N_c - \frac{8}{N_c} \right) R^2 \alpha_s^2$$

理論空間

6次元理論空間 $\alpha_s, g_1, g_2, g_{c1}, g_{c2}, m$

解析結果(Nc=3,4)

解析結果(Nc=5,6)

まとめ

- 一般的なゲージ理論におけるカイラル対称性の自発的破れのフレーバー数 依存性
- gauge coupling constant のrunning に2-loop beta function (perturbative)を採用すると、赤外固定点が現れて強い相互作用にならない ため、カイラル対称性の自発的破れが起きなくなると考えられる。
- 対称性に矛盾しない全ての4体フェルミ相互作用の非摂動くりこみ群による解析から自発的破れのNf依存性を調べた
- SD方程式による解析結果との比較

Nc	3	4	5	6
Nf (SD eq.)	11	15	19	23
Nf (NPRG)	11	14	18	22

• 課題

4-fermi結合定数の発散がないフレーバー領域では有効質量、外場のbare mass limit、が必ずゼロになる。(4-fermi結合定数の発散とカイラル対称性の自発的破れの関係、発散しなければ破れない?)

非摂動くりこみ群を用いてLegendre有効ポテンシャルを解析し、カイラ ル凝縮をもとめる。

$$\alpha_c = \frac{2N_c}{N_c^2 - 1} \cdot \frac{\pi}{3} \qquad \qquad \alpha^* = -\frac{b}{c}$$

$$\alpha^*(N_c, N_f^{\rm cr}) = \alpha_s^{\rm cr}$$

$$b = \frac{1}{6\pi} (11N_c - 2N_f)$$
$$c = \frac{1}{24\pi} \left(34N_c^2 - 10N_cN_f - 3\frac{Nc^2 - 1}{Nc}N_f \right)$$

