A study on charmonium spectral function with the variational method in lattice QCD

H. Ohno for WHOT-QCD Collaboration

Workshop at YITP "Thermal Quantum Field Theory and Their Applications 2010" YITP, Kyoto, August 30, 2010

Plan of this talk

- Introduction
- Spectral functions via the variational method
- Numerical results
 - Test in free quark case
 - Results at zero temperature
 - Results at finite temperature
- Conclusions

Introduction : motivation

- Charmonia dissociation in Quark Gluon Plasma (QGP)
 - Sequential J/Ψ suppression
 - : Suppression of J/ Ψ is one of the important signals of QGP formation in heavy ion collisions such as RHIC and LHC. T. Matsui and H. Satz (1986)
 - : $\Psi' \rightarrow J/\Psi$ 10%, $\chi_c \rightarrow J/\Psi$ 30% L. Antoniazzi et al. [E705 Collaboration] (1993)
 - : Dissociation of excited states and P-wave states is also important.
- Meson spectral function (SPF) at finite temperature
 - has information about the meson properties in medium.
- In current lattice studies e.g. A. Jackovac et al (2007)
 - Maximum Entropy Method (MEM) → meson SPFs
 - S-wave states (η_c , J/ Ψ) : survive up to 1.5 T_c ?
 - P-wave states (χ_c) : dissolve just above T_c
 - Excited states have NOT been investigated well yet.

It is necessary to check the results and also investigate excited states with the other methods.

H. Ohno for WHOT-QCD Collaboration

Introduction : our approach

H. Ohno for WHOT-QCD Collaboration

- On a finite volume lattice
 - $-\rho(\omega_i) \neq 0$, i=1,2,... : discrete spectra only.
- Below $T_{\rm c}$ (the critical temperature)
- $-\rho(E^{bs}) \neq 0$ for E^{bs} : energy of bound state
- Above $T_{\rm c}$
 - If bound states still survive,
 - $\rho(E^{bs}) \neq 0$ but $\rho(E^{bs})_{T < Tc} \neq \rho(E^{bs})_{T > Tc}$
 - If a bound state dissolves,

 $\rho(E^{bs}) = 0$ and $\rho(E^{ss}) \neq 0$ for E^{ss} : energy of scattering state

• We investigate temperature dependence of SPFs

- Not whole shape of $\rho(\omega)$ but just $\rho(E^{bs})$ or $\rho(E^{ss})$ are needed.
- Excited states should be investigated to understand Ψ' property.
 - Variational method
 - can extract the properties of some low-lying states.
 - is well-suited for discrete spectra.

SPFs via variational method

 Smeared meson operator A_1 A₂ **A**₂ A A A_7 A $\mathcal{O}_{\Gamma}(\vec{x},t)_i \equiv \sum \omega_i(\vec{y})\omega_i(\vec{z})\bar{q}(\vec{x}+\vec{y},t)\Gamma q(\vec{x}+\vec{z},t)$ 0.25 0.20 0.15 0.10 0.05 0.02 Gaussian smearing function point operator $\omega_i(\vec{x}) \equiv e^{-A_i ||\vec{x}||^2} \quad i = 1, 2, \cdots, n$ Meson correlator matrix $\Lambda(t; t_0) = \operatorname{diag}\{\lambda_1(t; t_0), \lambda_2(t; t_0), \cdots, \lambda_n(t; t_0)\}$ $\mathcal{C}_{\Gamma}(t) = \left[\sum_{\vec{x}} \langle \mathcal{O}_{\Gamma}(\vec{x},t)_{i} \mathcal{O}_{\Gamma}^{\dagger}(\vec{0},0)_{j} \rangle \right]_{\dots}^{n} \left[\begin{array}{c} V = [\boldsymbol{v}_{1},\boldsymbol{v}_{2},\dots,\boldsymbol{v}_{n}] \\ \mathcal{C}_{\Gamma}(t) = \mathcal{C}_{\Gamma}(t_{0})V\Lambda(t;t_{0})V^{-1} \end{array} \right]$ point-point component solve a generalized eigenproblem $\mathcal{C}_{\Gamma}(t)_{11} = \sum_{k} \rho_{\Gamma}(m_k) \frac{\cosh[m_k(t - N_t/2)]}{\sinh[m_k N_t/2]}$ $\mathcal{C}_{\Gamma}(t)\boldsymbol{v}_{k} = \lambda_{k}(t;t_{0})\mathcal{C}_{\Gamma}(t_{0})\boldsymbol{v}_{k}$ SPF Effective mass $\Rightarrow \lambda_k(t;t0) = \frac{\cosh[m_k(t;t_0)(t-N_t/2)]}{\cosh[m_k(t;t_0)(t_0-N_t/2)]} \Rightarrow \rho_{\Gamma}(m_k) = (\mathcal{C}_{\Gamma}(t_0)V)_{1k}(V^{-1})_{k1}\frac{\sinh[m_kN_t/2]}{\cosh[m_k(t_0-N_t/2)]}$ H. Ohno

for WHOT-QCD Collaboration

Numerical results (1) : Test in free quark case

Lowest state \rightarrow well consistent with analytic solution for all *n* 2nd, 3rd lowest state \rightarrow **improved as** *n* **increases**

H. Ohno for WHOT-QCD Collaboration

Lattice setup

- Action
 - Standard plaquette gauge action
 - O(a)-improved Wilson fermion action
 - Quenched approximation
- Lattice
 - Anisotropic lattice : anisotropy $a_s/a_t = 4$
 - $-a_s = 0.0970(5) \text{ fm} (a_s^{-1} = 2.030(13) \text{ GeV})$
 - $N_s = 20$
 - $N_t = 160$ (zero temperature), 32 (0.88 T_c), 26 (1.1 T_c), 20 (1.4 T_c)
- Number of gauge configurations
 - for zero temperature : 299
 - for finite temperature : 800

T is varied by changing N_t (fixed-scale approach)

H. Ohno for WHOT-QCD Collaboration

Numerical results (2) : at zero temperature 1

Comparison with MEM (Ve channel)

Ground state → all data almost consistent with experimental value 1st excited state → there is difference between variational method data and MEM one → variational method data get closer to experimental value as *n* increases It seems that variational method can improve data accuracy for excited states.

H. Ohno for WHOT-QCD Collaboration

Numerical results (2) : at zero temperature 2

Comparison with MEM (Ps, Sc, Av channel)

H. Ohno for WHOT-QCD Collaboration

Numerical results (3) : at finite temperature 1

Temperature dependence (Ve channel, ground state) *n* = 7

No clear temperature dependence for the effective masses. The value of SPF may change but does NOT become zero. **There is no clear evidence of dissociation for J/** Ψ **up to 1.4** T_{c}

H. Ohno for WHOT-QCD Collaboration

Numerical results (3) : at finite temperature 2

Temperature dependence (Ps channel, ground state) *n* = 7

No clear temperature dependence for the effective masses. The value of SPF may change but does NOT become zero. **There is no clear evidence of dissociation for** η_c **up to 1.4** T_c

H. Ohno for WHOT-QCD Collaboration

Conclusions

- Meson SPFs are calculated with the variational method.
- At zero temperature,
 - − ground state \rightarrow well extracted
 - excited state \rightarrow improved by increasing the number of basis op.
- At finite temperature,
 - S-wave ground state charmonia (J/ Ψ , η_c)
 - up to 1.4 $T_{\rm c}$
 - no clear temperature dependence for the effective masses
 - value of SPF may change but it is still nonzero
 - no clear evidence of dissociation