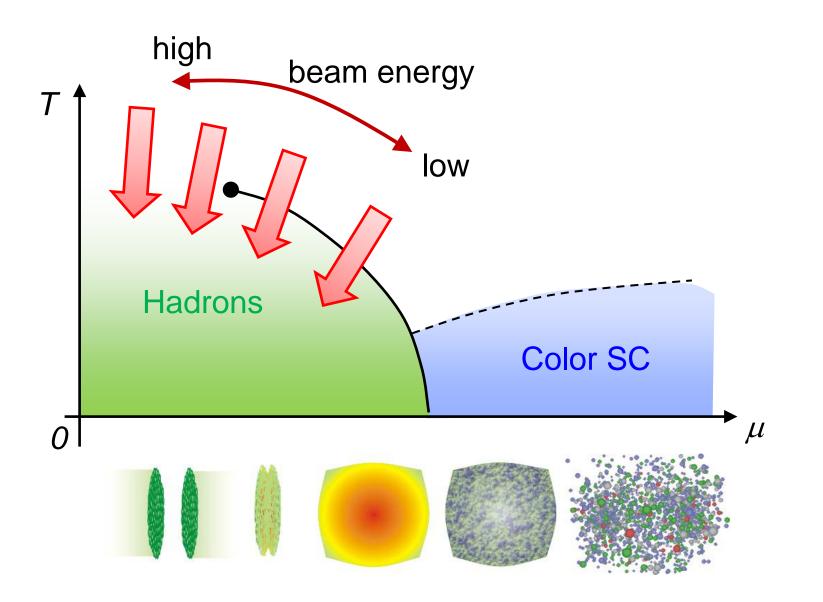
QCD相図の実験的検証における 陽子およびバリオン数ゆらぎの 役割について

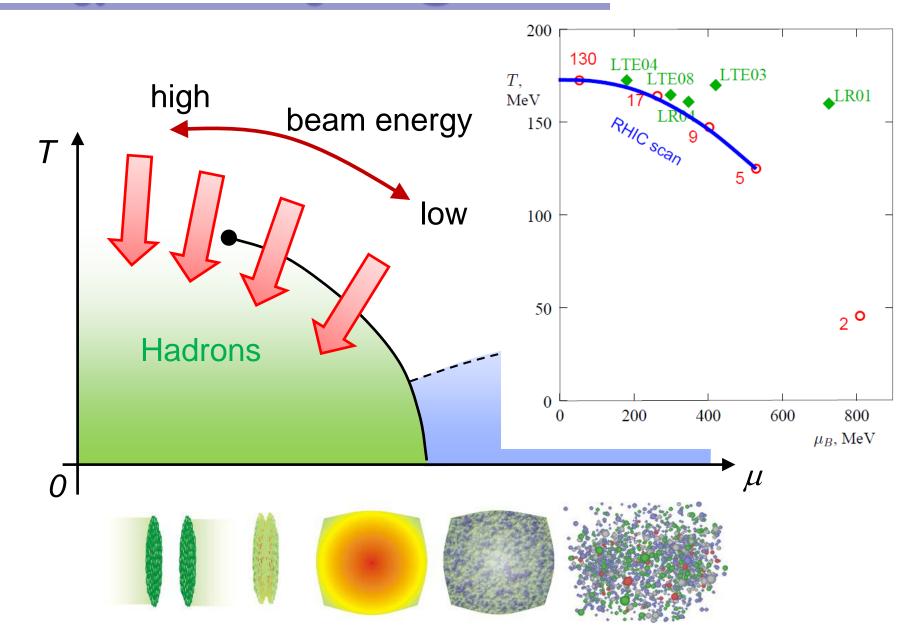
北沢正清 (阪大)

MK, M. Asakawa, arXiv:1107.2755[nucl-th]

Energy Scan Program @ RHIC

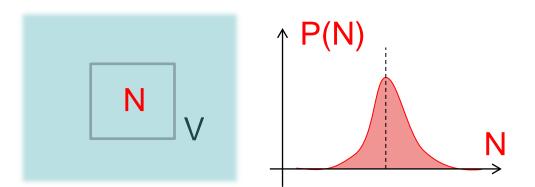


Energy Scan Program @ RHIC



Fluctuations

平衡状態において、 物理量はゆらいでいる。

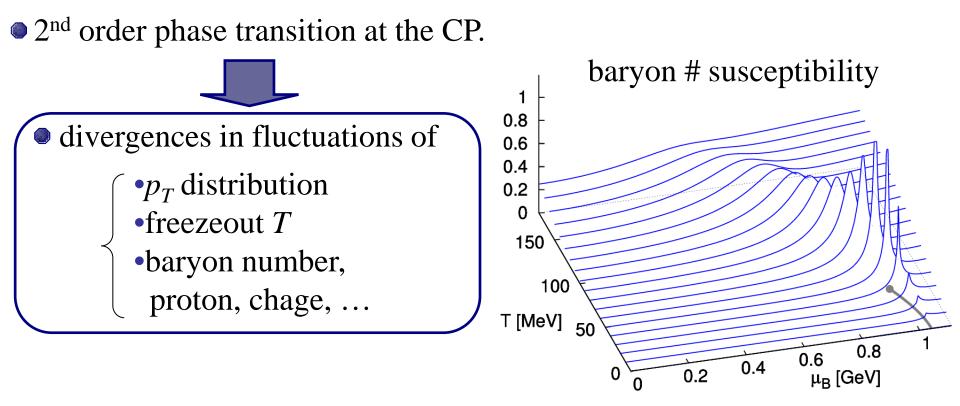


 $\delta N = N - \langle N \rangle$

> And much higher...

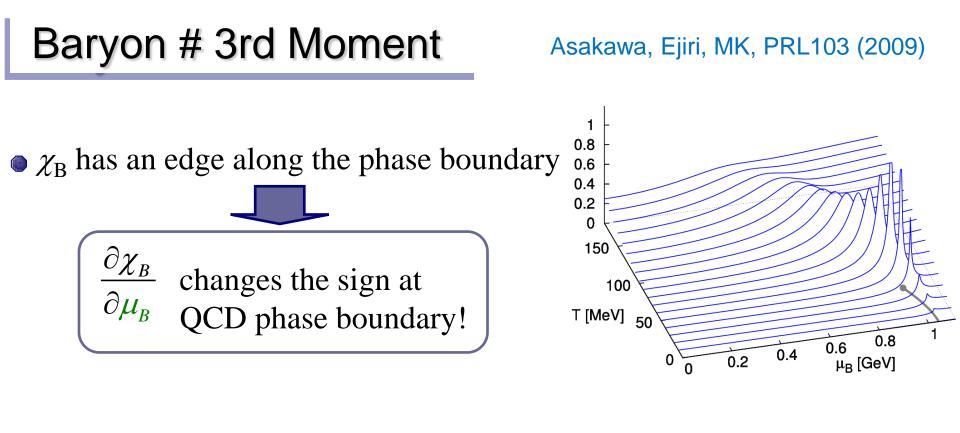
Fluctuations at QCD Critical Point

Stephanov, Rajagopal, Shuryak '98,'99



• Higher order moments has stronger ξ dep near the CP. Stephanov, '09

$$\langle \delta N^2 \rangle \sim \xi^2 \quad \langle \delta N^3 \rangle = \xi^{4.5} \quad \langle \delta N^4 \rangle_c = \xi^7$$



$$\chi_{B} = -\frac{1}{V} \frac{\partial^{2} \Omega}{\partial \mu_{B}^{2}} = \frac{\left\langle (\delta N_{B})^{2} \right\rangle}{VT} \quad \square \qquad \frac{\partial \chi_{B}}{\partial \mu_{B}} = -\frac{1}{V} \frac{\partial^{3} \Omega}{\partial \mu_{B}^{3}} = \frac{\left\langle (\delta N_{B})^{3} \right\rangle}{VT^{2}}$$

Third moment changes the sign at the QCD phase boundary!

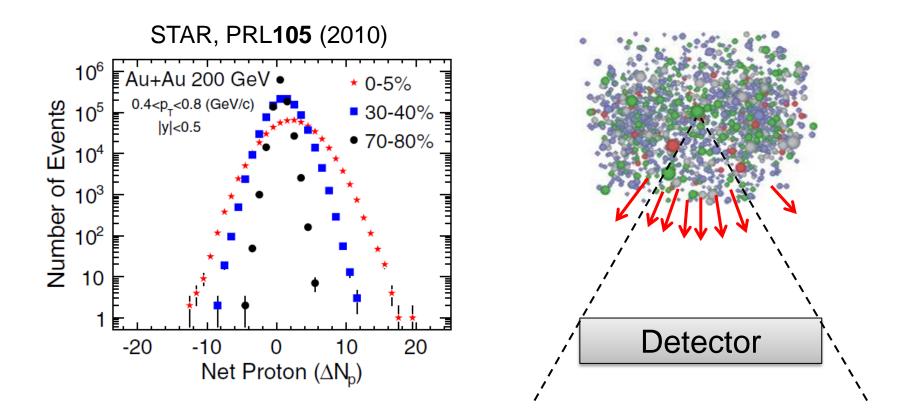
Impact of Negative Third Moments

• Once negative $m_3(BBB)$ is established, it is evidences that $\begin{cases}
(1) \chi_B \text{ has a peak structure in the QCD phase diagram.} \\
(2) Hot matter beyond the peak is created in the collisions.
\end{cases}$

• **No** dependence on any specific models. • Just the sign! **No** normalization (such as by N_{ch}).

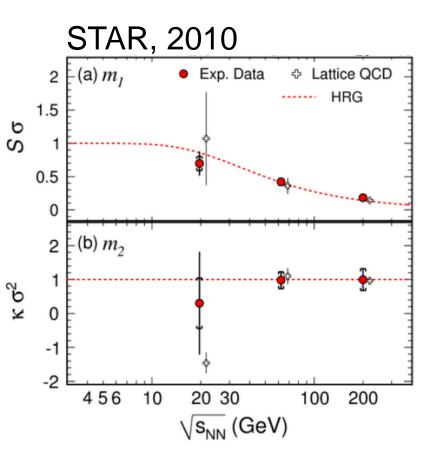
Event-by-Event Analysis @ HIC

Fluctuations can be measured by e-by-e analysis in experiments.



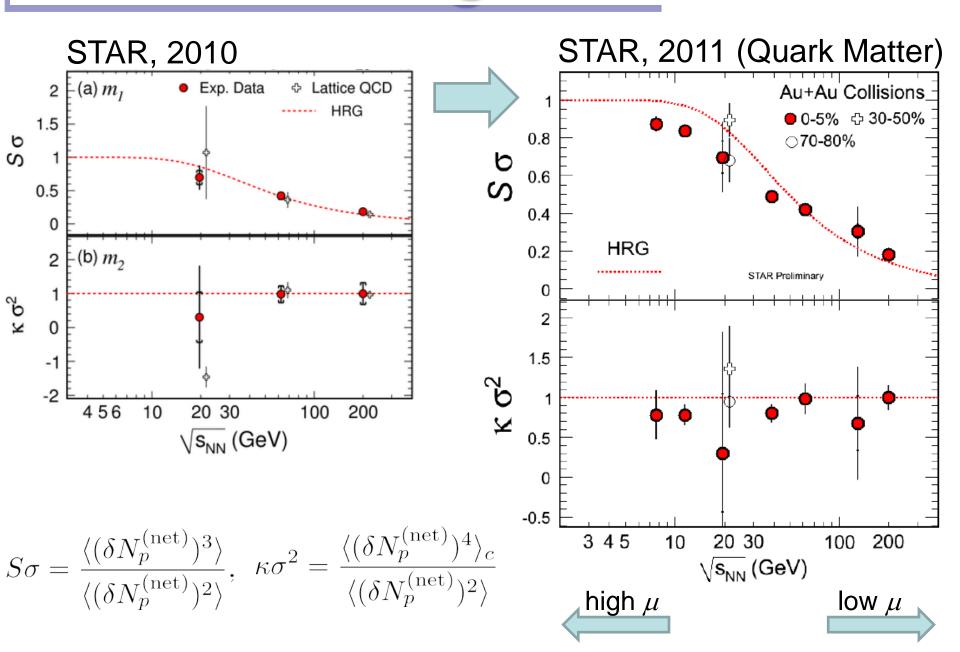
Variation of *N*_Q in a rapidity range is small for conserved charges. Asakawa, et al., '00; Jeon, Koch, '00; Shuryak, Stephanov, '02

Proton # Fluctuations @ STAR

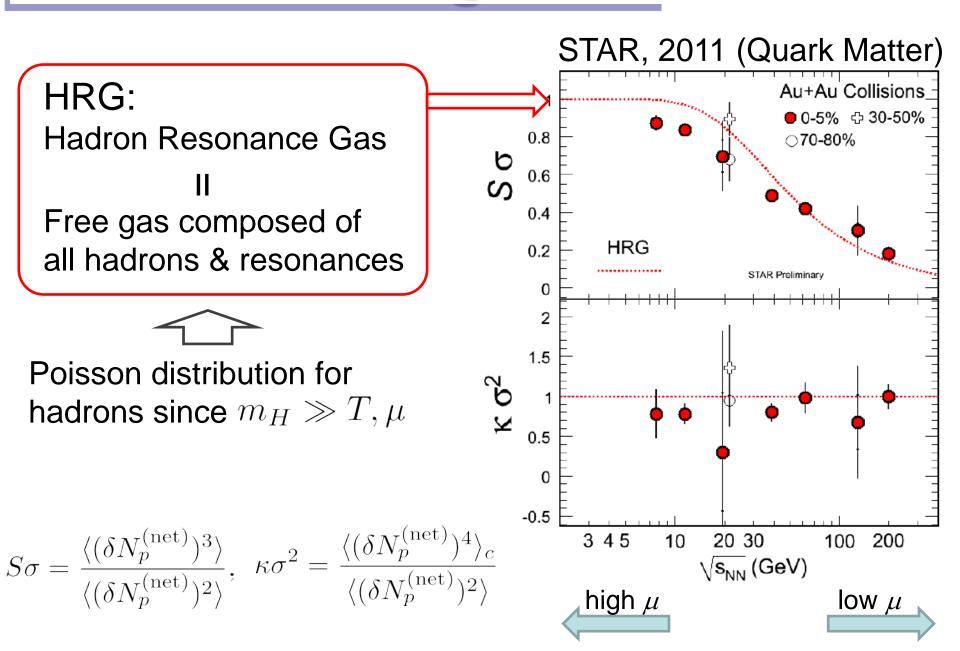


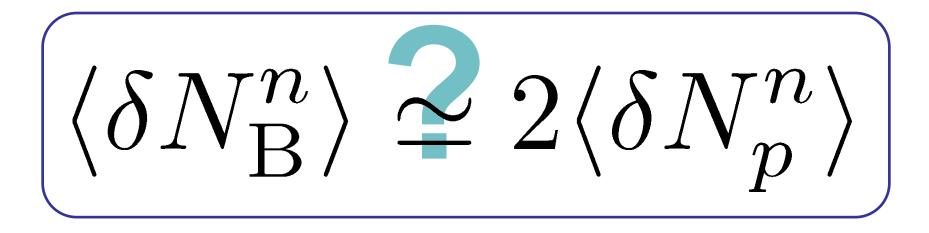
$$S\sigma = \frac{\langle (\delta N_p^{(\text{net})})^3 \rangle}{\langle (\delta N_p^{(\text{net})})^2 \rangle}, \quad \kappa \sigma^2 = \frac{\langle (\delta N_p^{(\text{net})})^4 \rangle_c}{\langle (\delta N_p^{(\text{net})})^2 \rangle}$$

Proton # Fluctuations @ STAR



Proton # Fluctuations @ STAR





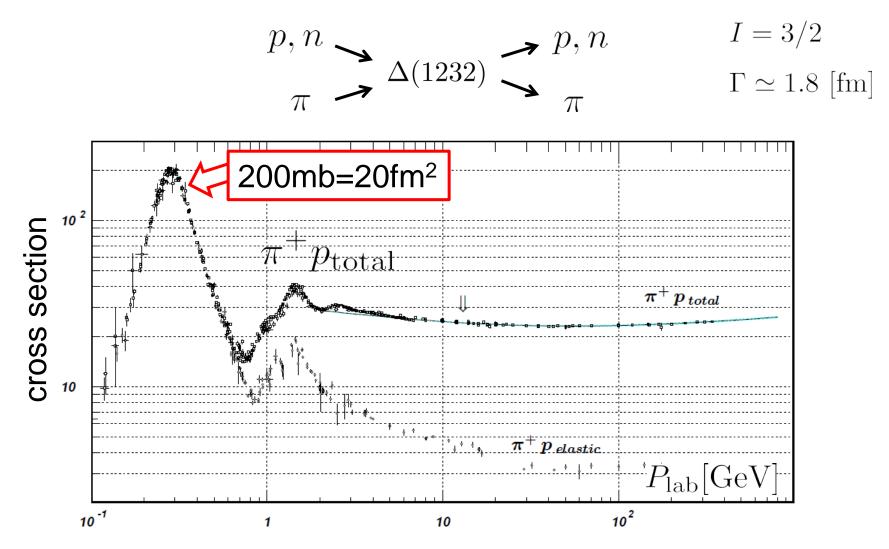
How do these cumulants look like? How are they different?

Baryon # fluctuations are desirable! Since they can

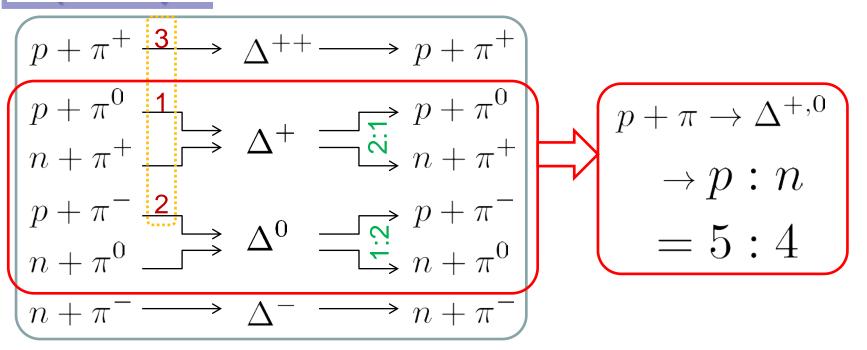
- > remember fluctuations generated in earlier stages.
- clearly reflect signals of phase transitions.

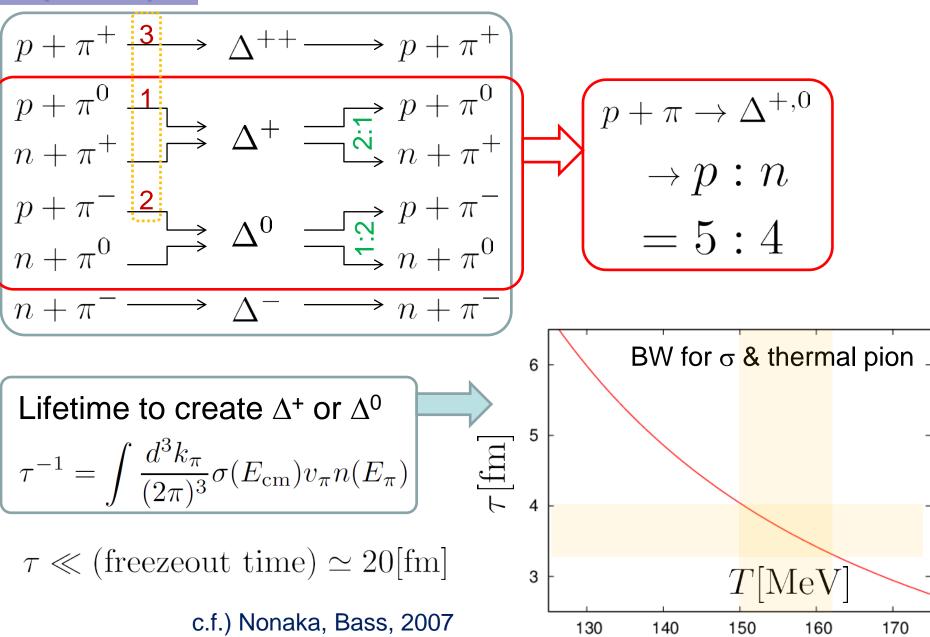
Variation of Proton # in Hadronic Phase

> Proton # varies even after chemical freezeout via charge exchange reactions mediated by $\Delta(1232)$:

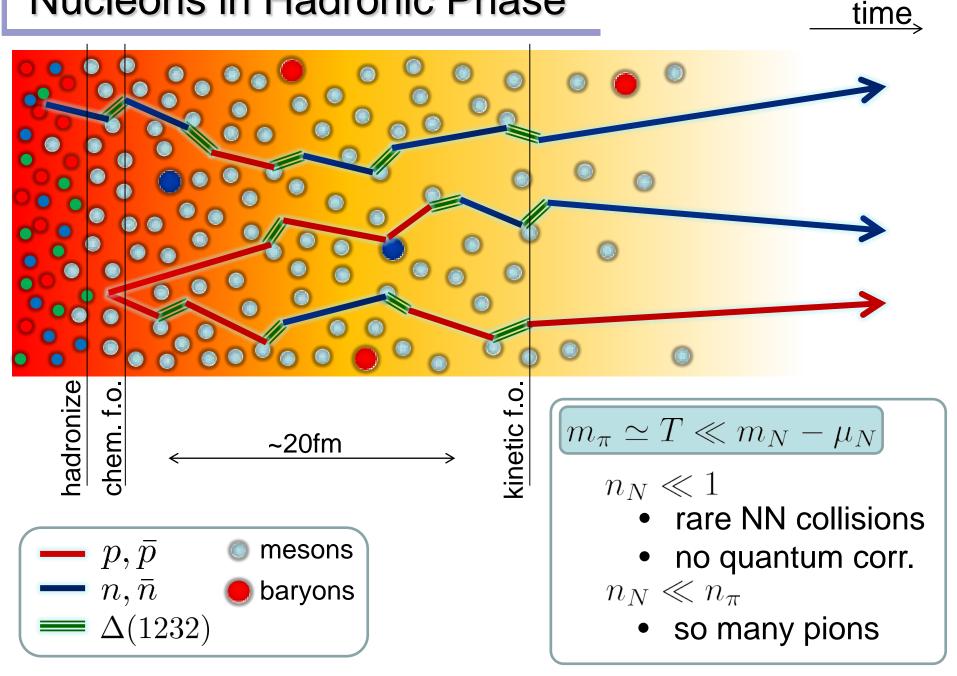


∆(1232)

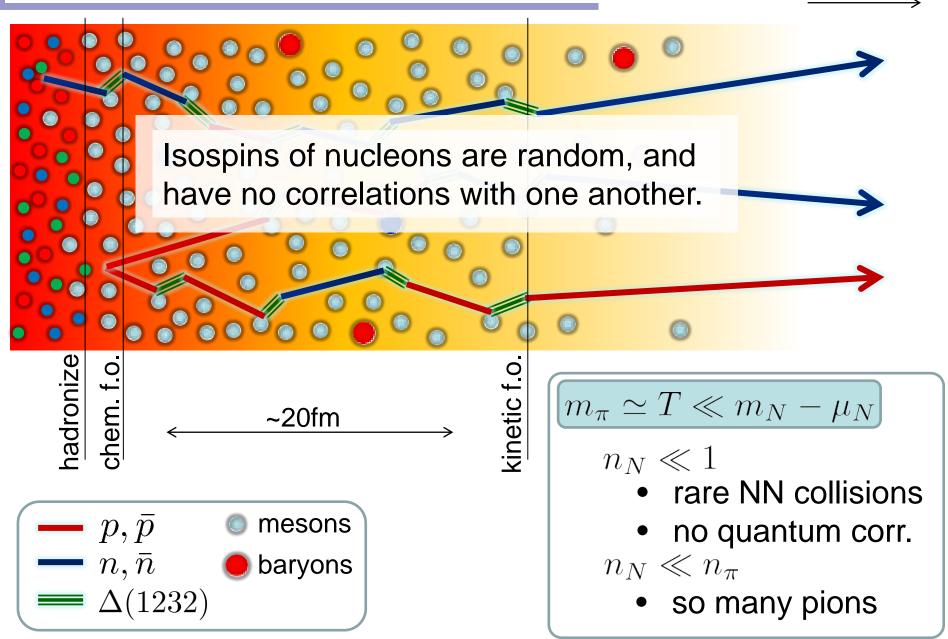




Nucleons in Hadronic Phase



Nucleons in Hadronic Phase



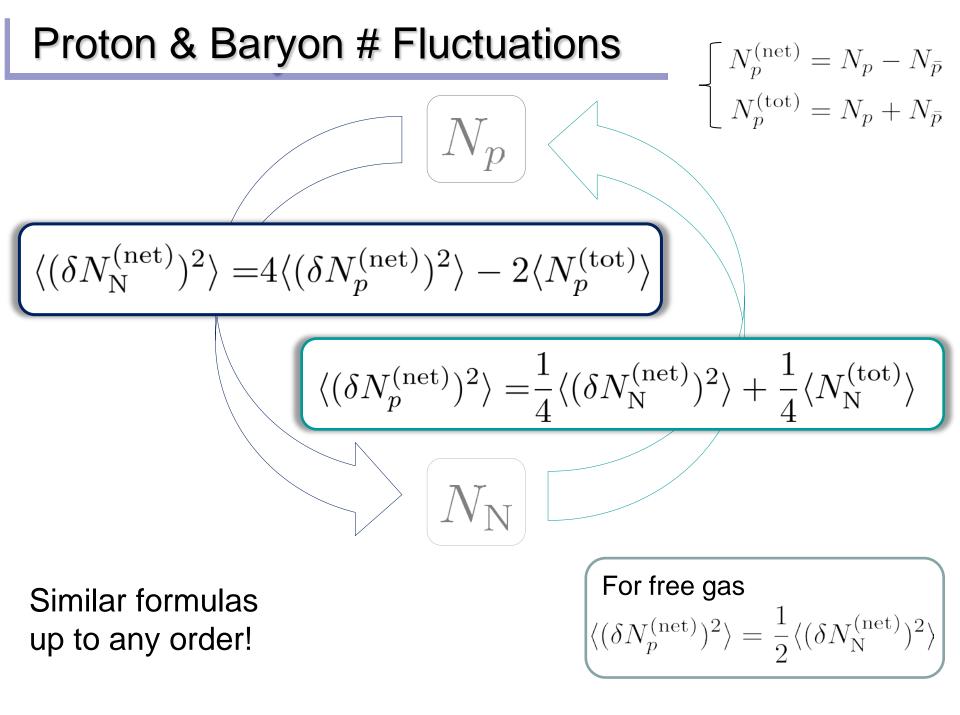
time

Probability Distribution to find particles in each event

$$\begin{cases} P(N_p, N_n, N_{\bar{p}}, N_{\bar{n}}) \\ = F(N_N, N_{\bar{N}})B(N_p; N_N)B(N_{\bar{p}}; N_{\bar{N}}) \end{cases} \\ B(k; N) = \frac{1}{2^N} \frac{N!}{k!(N-k)!} \\ \text{binomial distribution func.} \end{cases} \begin{bmatrix} N_N = N_p + N_n \\ N_{\bar{N}} = N_{\bar{p}} + N_{\bar{n}} \end{cases} \end{cases}$$

NOTE:

- The factorization is applied to distributions in any phase space in the final state.
- \succ F(N_N,N_N) may carry fluctuations in early stage.



Strange Baryons

Decay modes: Decay Rates: $\Lambda \longrightarrow p + \pi^{-} 64\%$ $n + \pi^{0} 36\%$ $m_{\Lambda} \simeq 1116 [\text{MeV}]$ $\Rightarrow p: n \simeq 1.6:1$ $\Sigma^{+} \xrightarrow{p} \pi^{0} 52\%$ $m_{\Sigma} \simeq 1190 [\text{MeV}]$ $\Sigma^{0} \rightarrow \Lambda \xrightarrow{p} p + \pi^{-} 64\%$ $n + \pi^{0} 36\%$ $\Rightarrow p: n \simeq 1: 1.8$ $\longrightarrow n + \pi^{-}$

Regarding these ratios even, protons from these decays is incorporated into the binomial distribution. Then, $N_N \rightarrow N_B$

An Extreme Example

(1) $N_B^{(\text{net})} = N_B - N_{\bar{B}}$ reflects primordial fluctuations. (2) $N_B, N_{\bar{B}}$ are Poissonian.

$$= \begin{cases} 2\langle (\delta N_p^{(\text{net})})^2 \rangle = \frac{1}{2}\langle (\delta N_B^{(\text{net})})^2 \rangle + \frac{1}{2}\langle (\delta N_B^{(\text{net})})^2 \rangle_{\text{free}} \\ 2\langle (\delta N_p^{(\text{net})})^3 \rangle = \frac{1}{4}\langle (\delta N_B^{(\text{net})})^3 \rangle + \frac{3}{4}\langle (\delta N_B^{(\text{net})})^3 \rangle_{\text{free}} \\ 2\langle (\delta N_p^{(\text{net})})^4 \rangle_c = \frac{1}{8}\langle (\delta N_B^{(\text{net})})^4 \rangle_c + \frac{7}{8}\langle (\delta N_B^{(\text{net})})^4 \rangle_c, \text{free} \end{cases}$$
what we want noise

For free gas

$$2\langle (\delta N_p^{(\text{net})})^n \rangle_c = \langle (\delta N_N^{(\text{net})})^n \rangle_c$$

An Extreme Example

(1) $N_B^{(\text{net})} = N_B - N_{\bar{B}}$ reflects primordial fluctuations. (2) $N_B, N_{\bar{B}}$ are Poissonian.

- Baryon and proton # fluctuations are different.
- We obtained formulas to relate baryon # cumulants with experimental observales.
- Experimental analysis of baryon # fluctuations may verify
 signals of QCD phase transition
 - \succ speed of baryon number diffusion in the hadronic stage.

Future Work

Refinement of the formulas to include nonzero isospin density / low beam energy region

Proton # Cumulants

$$\begin{split} \langle N_{\rm B}^{(\rm net)} \rangle =& 2 \langle N_p^{(\rm net)} \rangle, \\ \langle (\delta N_{\rm B}^{(\rm net)})^2 \rangle =& 4 \langle (\delta N_p^{(\rm net)})^2 \rangle - 2 \langle N_p^{(\rm tot)} \rangle, \\ \langle (\delta N_{\rm B}^{(\rm net)})^3 \rangle =& 8 \langle (\delta N_p^{(\rm net)})^3 \rangle - 12 \langle \delta N_p^{(\rm net)} \delta N_p^{(\rm tot)} \rangle \\ &\quad + 6 \langle N_p^{(\rm net)} \rangle, \\ \langle (\delta N_{\rm B}^{(\rm net)})^4 \rangle_c =& 16 \langle (\delta N_p^{(\rm net)})^4 \rangle_c - 48 \langle (\delta N_p^{(\rm net)})^2 \delta N_p^{(\rm tot)} \\ &\quad + 48 \langle (\delta N_p^{(\rm net)})^2 \rangle + 12 \langle (\delta N_p^{(\rm net)})^2 \rangle \\ &\quad - 26 \langle N_p^{(\rm tot)} \rangle, \\ \langle (\delta N_p^{(\rm net)})^2 \rangle =& \frac{1}{4} \langle (\delta N_{\rm B}^{(\rm net)})^2 \rangle + \frac{1}{4} \langle N_{\rm B}^{(\rm tot)} \rangle, \\ \langle (\delta N_p^{(\rm net)})^3 \rangle =& \frac{1}{8} \langle (\delta N_{\rm B}^{(\rm net)})^3 \rangle + \frac{3}{8} \langle \delta N_{\rm B}^{(\rm net)} \delta N_{\rm B}^{(\rm tot)} \rangle, \\ \langle (\delta N_p^{(\rm net)})^4 \rangle_c =& \frac{1}{16} \langle (\delta N_{\rm B}^{(\rm net)})^4 \rangle_c + \frac{3}{8} \langle (\delta N_{\rm B}^{(\rm net)})^2 \delta N_{\rm B}^{(\rm tot)} \rangle \\ &\quad + \frac{3}{16} \langle (\delta N_{\rm B}^{(\rm tot)})^2 \rangle - \frac{1}{8} \langle N_{\rm B}^{(\rm tot)} \rangle, \end{split}$$

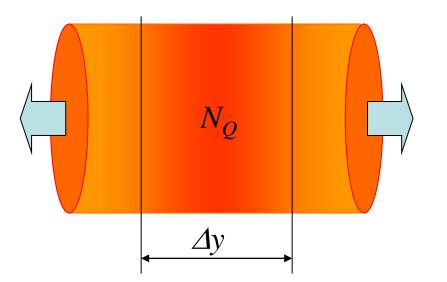
>

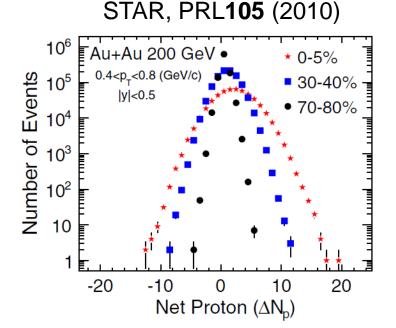
Manipulations

$$\begin{split} \langle N_p^{(\text{net})} \rangle &= \sum_{N_{\{p,n,\bar{p},\bar{n}\}}} (N_p - N_{\bar{p}}) P(N_p, N_n, N_{\bar{p}}, N_{\bar{n}}) \\ &= \sum_{N_N, N_{\bar{N}}} F(N_N, N_{\bar{N}}) \sum_{N_p, N_{\bar{p}}} (N_p - N_{\bar{p}}) B(N_p; N_N) B(N_{\bar{p}}; N_{\bar{N}}) \\ &= \sum_{N_N, N_{\bar{N}}} F(N_N, N_{\bar{N}}) \left(\frac{N_N}{2} - \frac{N_{\bar{N}}}{2}\right) \\ &= \frac{1}{2} \langle N_N^{(\text{net})} \rangle \end{split}$$

Event-by-Event Analysis @ HIC

観測可能粒子のゆらぎ、及び高次のモーメントは、 event-by-event解析で「観測」できる。





FreezeoutからのN_Qの変化は、 保存量であれば小さいと期待できる。

Asakawa, et al., '00, Jeon, Koch, '00 Shuryak, Stephanov, '02

Nucleon Time Scales in Fireballs

